
Int. J. Security and Networks, Vol. 12, No. 1, 2017 27

Secure android covert channel with robust
survivability to service provider restrictions

Avinash Srinivasan*, Jie Wu and Justin Shi
Department of Computer and Information Sciences,
Temple University,
Philadelphia, PA 19122, USA
Email: avinash@temple.edu
Email: jiewu@temple.edu
Email: shi@temple.edu
*Corresponding author

Abstract: The overarching field of information hiding has been extensively researched. However, the
potential for use of smartphones – communicating over cellular service provider networks – has yet
to be fully explored. In this paper, we propose Android-Stego – a covert communication framework
for Android smartphones. We have presented results analysing real-world cellular service-providers’
restrictions on MMS messages and the corrective actions they take using a prototype implementation
of Android-Stego. With the prototype implementation, we have also analysed the messages at both
the sending and the receiving ends to determine the service providers’ actions on MMS messages –
such as compression and/or format conversion.

Keywords: covert communication; information hiding; mobile security; robust security; information
secrecy; steganography.

Reference to this paper should be made as follows: Srinivasan, A., Wu, J. and Shi, J. (2017) ‘Secure
android covert channel with robust survivability to service provider restrictions’, Int. J. Security and
Networks, Vol. 12, No. 1, pp.27–39.

Biographical notes: Avinash Srinivasan received his PhD in Computer Science from Florida Atlantic
University in August 2008 and is currently a Faculty Member in the Department of Computer and
Information Sciences at Temple University. His research interests include network security and
forensics, forensic analysis of file systems, forensic file carving, and privacy and anonymity. He has
published 38 papers in refereed conferences and journals including IEEE INFOCOM and ACM SAC.
He is also a Certified Ethical Hacker and has trained both law enforcement officers and civilians in
security and forensics. Since January 2016, he is a Fellow at the National Cybersecurity Institute,
Washington DC, USA.

Jie Wu is the Chair and a Laura H. Carnell Professor in the Department of Computer and Information
Sciences at Temple University, USA. Prior to joining Temple University, he was a Program Director
at the National Science Foundation and Distinguished Professor at Florida Atlantic University. His
research interests include wireless networks, mobile computing, routing protocols, fault-tolerant
computing, and interconnection networks. His publications include over 600 papers in scholarly
journals, conference proceedings, and books. He has served on several editorial boards, including
IEEE Transactions on Computers and Journal of Parallel and Distributed Computing. He is a Fellow
of the IEEE.

Justin Shi is an Associate Professor in the Department of Computer and Information Sciences at
Temple University. His research interests include mobile programming, cloud construction, and high
performance computing architectures and applications. He received his PhD and MS degrees from
the Computer Science Department of the University of Pennsylvania and his BS degree in Computer
Engineering from Shanghai Jiaotong University. He has contributed extensively in the cloud and
parallel computing fields.

This paper is a revised and expanded version of a paper entitled ‘Android-Stego: a novel
service provider imperceptible MMS steganography technique robust to message loss’ presented at
The 8th ACM International Conference on Mobile Multimedia Communications (MobiMedia),
Chengdu, China, 25–27 May, 2015.

Copyright © 2017 Inderscience Enterprises Ltd.

28 A. Srinivasan et al.

1 Introduction

The overarching field of information hiding techniques has
been extensively researched. However, the potential for use
of smartphones over cellular carrier networks has yet to be
fully explored. Steganography – the art and science of hiding
communication (Johnson and Jajodia, 1998) – is one form of
information hiding that has been extensively researched over
the last two decades. Additionally, while steganography has
been known for centuries, dating back to the Roman Empire,
only recently has it proliferated newer grounds – the all-
pervasive and ubiquitous mobile cellular telecommunications
services. The mobile cellular services are the most easily,
readily, and economically accessible communication means
to the masses. The mobile cellular penetration density was
approximately 7.1 billion global subscriber identity module
(SIM) subscriptions worldwide at the end of 2014,1 and the
total world population of 7.4 billion in Mid. 2016.2

With such ubiquity, they become the most lucrative attack
weapons as well as targets. The methods for embedding
secret data have been constantly evolving, and are more
sophisticated today than ever before. Nonetheless, the
basic principles of hiding information using steganography
techniques remain unchanged with a limited number of
possibilities and corresponding algorithms. Over the years,
one very popular type of steganography has been the digital
image steganography.

Definition 1: Steganography is the art and science of hiding
information within other innocent looking files.

Definition 2: Digital image steganography is one form of
steganography in which data is hidden within a digital image
file (a.k.a. graphics file) – including but not limited to – .bmp,
.gif, and .png.

Definition 3: Entropy is a measure of randomness in a given
message which increases when the message is closer to
random and decreases otherwise.

Within digital image steganography, numerous algorithms
have been proposed to embed the secret data using various
image formats as cover files. Through all the advances that
steganography has witnessed, the least significant bit (LSB)
(El-Seoud and Taj-Eddin, 2013; Patel et al., 2013a; Van
Schyndel et al., 1994) method of embedding secret messages
remains the most popular and the simplest of all to implement.
Furthermore, LSB is also one of the main techniques in spatial
domain image steganography. In this technique, the LSBs of
some random bytes or perhaps all of the bytes of the cover
image file (aka the carrier file) are changed appropriately to
encode the secret message. The LSB embedding technique is
explained in greater detail in Section 5.

Steganographic data is often hidden through the use
of mathematical techniques that add information content
to digital objects such as images, audio, and video
files (Sinha et al., 2015), including other various digital
objects such as executable codes (https://www.nitrd.gov/pubs/
csia/csia_federal_plan.pdf). However, when sophisticated

embedding techniques are used, the degradation in quality or
increase in payload is perceptible. One of the first works on
the feasibility of MMS-based steganography on smartphones
is presented in Amoroso and Masotti (2006).

Additionally, a steganography message can be encrypted
prior to hiding, making it substantially harder to detect, extract,
and finally recover the message. In particular, encryption
makes it harder to use statistical analysis, particularly
entropy-based techniques, since encrypted data has very
high entropy – between 7.5–8.0 bits-per-byte. Furthermore,
there is no universally applicable methodology for detecting
steganographic embeddings, and the few general principles
that exist tend to be rather ad-hoc.

Today, steganography has slowly gained momentum
and has become very popular within the underground
hacker community. This should cause serious concern,
as steganography is now a new weapon in the
already-sophisticated arsenal of the Black-Hat hackers.
Steganography, over the years, has become the adversary’s
preferred mode for delivering malware and exploit payloads.
Underground hacking communities are quickly embracing
steganography techniques for data exfiltration. Our work
combines cryptography and steganography, like the one
presented in Dominic and Crina (2013), to achieve a secure
communication channel on the Android platform.

Assumptions and threat model. For simplicity and clarity, we
assume that Alice and Bob are the principals involved in covert
communication over an unsecured channel.3 They intend to
exchange steganographic messages exploiting MMS services
on Android Devices. We assume they have not established a
pre-shared secret key. Hence, they will authenticate each other
and spontaneously negotiate a session key using the standard
public key infrastructure (PKI) and digital certificates. We will
not discuss additional details pertaining to PKI infrastructure
and the process of key negotiation due to page length
restrictions. The communication channel used by Alice and
Bob is subject to monitoring and it will be shut down if
detected. Finally, Alice and Bob have no control over the
communication channel once the message leaves the device.
In our implementation, we have assumed and implemented a
unique session key for each new message. Finally, this paper is
an extension -version of our previous work (Srinivasan et al.,
2015).

Our contributions. While we acknowledge numerous existing
works similar to our proposed Android-Stego, including
Dhobale Dhanashri et al. (2010), we do believe our work
has its novelty, offers some very unique features, and makes
important contributions. Some of the salient features of
Android-Stego can be summarised as follows. Android-Stego
– in its implementation and application – differs markedly
from its contemporary methods that are mere LSB techniques.
Android-Stego independently segments the secret message file
into chunks, encodes them, and finally embeds them in a series
of PNG (or other user supplied image format) images – all of
which is done with minimum user interaction.

Furthermore, Android-Stego is a segmented, distributed,
multi-part MMS Steganography with detailed cryptographic

Secure android covert channel with robust survivability to service provider restrictions 29

processes to provide core security requirements –
confidentiality, integrity, and source authentication, which
have been discussed in detail in later sections. Our paper
presents the first and perhaps the only work to study and
analyse the restriction on MMS message sizes and its impact
on MMS-based Steganography over four real-world cellular
service providers – Verizon, T-Mobile, Sprint, and ATT.
Furthermore, our paper also presents results summarising the
actions that each of the aforementioned carriers perform on
MMS messages whose sizes exceed the carrier-permissible
maximum size.

We have custom-implemented a real-world working
prototype due to the lack of libraries for the Android platform.
This was also one of the reasons we deviated from the
popular F5 algorithm. In this paper, we have presented the
benchmark results for carrier-imposed size restrictions and
the corresponding actions on oversized MMS messages. Most
importantly, the prototype implementation relies on native
images and MMS functionality common to most Android
devices and does not necessarily depend on direct internet
connectivity or carrier limitations.

Road map. The rest of the paper is organised as follows. In
Section 2, we present some of the more relevant mobile device
steganography related works, followed by a quick overview
of background information related to the proposed work in
Section 3.

Later, in Section 4, we discuss the Android-Stego
architecture highlighting details of the covert channel
communication accomplished with MMS steganography. This
section also provides details on the embedding process, sender
side operations, as well as the receiver side operations, with
relevant cryptographic operations.

Section 5 presents discussions on security properties of
the proposed framework, carrier restrictions on MMS size
and the actions carriers take when MMS size exceeds the
imposed limit, and some of the unique features of the proposed
framework. Finally, we conclude the paper with directions for
future research in Section 6. A summary of all notations used
throughout this paper is presented in Table 1.

Table 1 Table summarising the notations used

Notation Description

Msec Secret message or file to be exchanged
KAlice

pub Alice’s public key
KAlice

prv Alice’s private key
KBob

pub Bob’s public key
KBob

prv Bob’s private key
KAlice

rand Session key randomly generated by Alice

2 Related work

‘Operation twins’, culminated in 2002 with the capture
of criminals associated with the ‘Shadowz Brotherhood’,
a pedophile organisation responsible for the distribution
of child pornography, with the aid of steganography.

Steganographic methods have also proven to be useful tools
for data exfiltration, evidenced in the 2008 incident in which
someone at the US Department of Justice smuggled sensitive
financial data out of the agency by embedding it in several
image files.

In 2010, the FBI arrested members of a Russian
spy ring called ‘illegals’. These members were allegedly
sending classified US government documents through
clandestine messages to Moscow through digital image
steganography over publicly-available websites (Higgins,
2010; US Department of Justice, 2010).

A new worm called ‘Duqu’ was discovered sometime
during September 2011, with glaring similarities to
Stuxnet (stuxnet, 2011). Both Stuxnet and Duqu had
similar general malware structures and characteristics.
However, upon closer examination, Duqu revealed a
marked difference in comparison to Stuxnet – Duqu was
written to gather information on the infected system
and transferred the gathered information back to the
command and control centre (C&C) using a backdoor.
The information transmitted via the backdoor to the C&C
was hidden in seemingly innocent pictures, without raising
any suspicion. A similar functioning mechanism was
coincidentally discovered in a new variant of the Alureon
malware (https://www.virusbtn.com/blog/2011/09_26.xml)
and around the same time as Duqu.

Ibrahim and Kuan (2011) proposed a steganography
algorithm for hiding secret messages inside a bitmap (BMP)
image. Although the paper does not fully disclose the
algorithm utilised, it is suspected that an approach similar to
LSB is used for hiding the message in a carrier BMP image.
In this algorithm, a secret message is first encrypted with a
key. The encrypted secret message is then compressed into a
zip file. Subsequently, the encrypted and compressed secret
message is then converted into a binary file. The encryption
key is also zipped and converted to binary.

To hide the message and key in the cover BMP file,
binary codes from the series are encoded two bits at a time
into an image pixel until all the binary codes have been
exhausted. The process is then reversed at the receiver’s end
to retrieve the secret message from the BMP carrier image.
Rather than using a single bit per byte to hide a message as
in a traditional LSB substitution approach, their algorithm
uses two bits-per-byte to maximise the amount of secret data
that can be embedded in the cover image and transmitted.
Based on the above algorithm, Ibrahim and Law (2012)
further developed a Google Android-based application called
MoBiSiS (Mobile Steganography Imaging System) to send
steganographic images through MMS or email. They extend an
algorithm to support additional image formats such as JPEG,
GIF, and PNG, in addition to merely BMP from their original
algorithm.

Bucerzan et al. (2013) have presented SmartSteg, an
application that works on Android platform and is able to
hide and quickly encrypt files using digital images of MB
dimension as a cover. LSB steganography is combined with a
random function and symmetric key cryptography to transfer
digital information, in a secure manner between smartphones
that run under Android. However, their work does not talk

30 A. Srinivasan et al.

about multi-part MMS messages, or secret message integrity,
and also assume a pre-shared symmetric key between the
principals. Zhou et al. (2012) have proposed a new MMS-
based steganography method for an iOS, specifically iPhone,
platform.

Another new approach securing data while transmitting or
storing it in smartphones has been proposed in Vivek Amruth
and Amrita (2014). The proposed method employs Multi-
Level Steganography with a defense-in-depth mechanism for
enhanced protection of embedded data and a compression
method to effectively compress the data. Multi-level
steganography has many levels of steganography employed,
which makes it hard to detect without knowing the level
number and the methods used in each level. The ‘In-painting’
method is used for compressing secret images and YASS
steganography, which works on JPEG cover images, and
resists blind steganalysis on both the levels. To enhance
the security in the inner level, one time padding (XOR)
is used.

Dastoor and Patel (2012) have considered speech signals
as the cover media to hide secret data. This work steeped
away from the conventional image-based steganography
venturing into audio files as a potential carrier medium. Similar
message condensing approaches have been proposed that have
adaptively segmented the cover image based on the key,
selectively chosen pixels based on certain characteristics, and
that have used left nibble changes (4 bits from the left end
of a byte) in a byte (EL-Emam, 2007). These changes have
minimally and imperceptibly changed the cover images and
have made them less susceptible to steganalysis.

Mazurczyk et al. proposed SkyDe that utilises encrypted
Skype voice packets as a hidden data carrier. Their proposed
SkyDe achieves a steganographic bandwidth of about 2
Kbit/s. Mazurczyk et al. also proposed StegTorrent (Kopiczko
et al., 2013), which is a network steganographic method
for BitTorrent – the popular P2P file transfer service.
StegTorrent takes advantage of the many-to-one transmissions
in BitTorrent with the µTP protocol header providing a
mechanism for numbering packets and retrieving their original
sequence. This facilitates clandestine data transfer at a rate of
about 270 b/s.

Motivated readers are encouraged to read the paper
by Zieliñska et al. (2014), which presents a literature
review of state-of-the-art steganography. Another paper
which interested readers may refer to is (Wendzel et al.,
2014), in which authors have presented potential techniques
for countering Network steganography. Mazurczyk and
Caviglione (2014) have provided a summary of such efforts,
along with mitigation techniques. Additionally, in Petitcolas
et al. (1999), authors have presented a very detailed survey of
information hiding techniques. Another survey on information
hiding can be found in Patel et al. (2013b). Finally, there
have been numerous other works that address steganography
and other information hiding techniques in general including
Thakre and Chitaliya (2014) and Gupta et al. (2013).

Sutherland et al. (2011) have presented and discussed
two key areas – the potential for the drive operation to
be impacted by malicious software and the possibility for
the drive firmware to be manipulated to enable a form of

steganography. Furthermore, in Wang et al. (2013), authors
introduce information hiding technique for Flash memory that
hides data within an analogue characteristic of Flash – the
program time of individual bits. They argue and show that
their technique uses analogue behaviours and has no impact
on normal Flash memory operations, and hidden information
is invisible in the data stored in the memory.

Suarez-Tangil et al. (2014) discuss a class of smartphone
malware that uses steganographic techniques to hide malicious
executable components within their assets, such as documents,
databases, or multimedia files. Authors claim that they have
introduced various types of stegomalware and demonstrate its
feasibility with a prototype implementation of a stegomalware
app that they say has remained undetected in Google Play.
Finally, they have also introduced a detection system for
stegomalware and use it to analyse around 55,000 apps
retrieved from both malware sources and alternative app
markets, but results are inconclusive.

3 Background

In this section, we will provide some basic discussions
necessary for the reader to appreciate the work.

3.1 Cryptography vs. steganography

While cryptography and steganography have a lot of
similarities as well as differences, a key difference lies in
their fundamental objective. Cryptography operates with the
fundamental objective of securing the communication from
eavesdroppers; it does not hide the fact that a secret message
exists. This is because the encrypted information can be seen
by anyone. Hence, cryptographic communications fall well
within the bounds of overt communication channels.

Steganography, on the other hand, operates with the
fundamental objective of concealing the very fact that a
secret message is hidden. It hides information by concealing
it within another innocuous-looking medium, and no third-
person will ever know that a secret message exists.
Therefore, steganography communications constitute a covert
communication channel. In particular, due to the vastness
of cyberspace, steganography provides an unprecedented
capability for true adversaries to transmit information that can
easily evade detection mechanisms.

3.2 Smartphones and steganography

The information technology industry has undergone
unprecedented advances in the last few years, particularly in
the realm of mobile devices and their operating systems (OSs).
Contemporary mobile devices, smartphones in particular,
have become extremely integrative in nature, combining all
computing features and functionalities that a user needs into
a single portable device.

Today, smartphones have risen to become the epitome of
ubiquitous and pervasive computing, and on such powerful
devices that are true miniatures of personal computers,
steganography is an easily-accessible covert communication

Secure android covert channel with robust survivability to service provider restrictions 31

channel. With the growing size of mobile networks, even in
developing countries, and the growing ubiquity of camera-
equipped smartphones, it may be important to revisit image
steganography as a powerful and potent covert communication
channel between mobile devices.

In this paper, we propose and discuss Android-Stego
– a novel, robust steganography framework for Android-
based smartphones. Android-Stego is an extension of image-
based steganography into an MMS-based steganography
for Android smartphones. It is aware of cellular carriers’
restrictions on MMS message sizes and can traverse the
network from sender to receiver surviving compressions and
format conversions. We demonstrate our framework through
the implementation of a real-world working prototype. The
prototype implementation relies on native images and MMS
functionality common to most Android devices, and does not
necessarily depend on direct internet connectivity or carrier
limitations.

Our prototype is a segmented and distributed multi-
part implementation that supports MMS-based steganography
on both sender and receiver devices with the following
capabilities:

• splitting and encoding a secret message (can be
multi-part depending on message size and service
provider restrictions) on the sender side

• encoded message successfully traverses the networks
surviving service provider restrictions

• decoding the received secret message, and reassembling
if it is a multi-part message, on the receiver side.

The two key features expected from steganography carriers,
as noted in Zieliñska et al. (2014) and listed below, are both
satisfied by the cover file in our proposed Android-Stego:

• The cover file should be popular such that its usage
should not in itself be considered an anomaly. Our
proposed Android-Stego technique meets this
requirement since MMS messages, which serve as the
cover file, are very popular, and do not account for
anomalies.

• Modifications to the cover file resulting from insertion
of the secret message should be imperceptible to a
third-party, who is not aware of the covert
communication channel. So, insertion of a secret
message into a single instance of the carrier should be
upper bound by the imperceptibility threshold to
modifications.
Consequently, additional instances of the cover file
should be used to accommodate the leftover part of the
secret message. Our proposed Android-Stego technique
meets this requirement by incorporating multi-part,
segmented, and distributed capabilities into the LSB
encoding algorithm.

3.3 Android platform overview

Android is Google’s Linux-based open source mobile platform
and has evolved into a dominant and popular smartphone

OS. It has a rich application programming interface for
software developers, and Android applications are written
in Java using the software development kit (SDK). While
robust steganography libraries do exist, few have been ported
to support the Android OS. All Android applications are
comprised of the following: component activities, services,
content providers, and broadcast receivers.

3.4 Fundamentals of image file steganography

All image files employ some form of compression and all
such compressions algorithms can be categorised into two
fundamental types.4 –

• lossless compression algorithms – PNG, GIF

• lossy compression algorithms – JPG.

Definition 4: Lossless compression algorithms – these are
algorithms that reduce file size while preserving a perfect copy
of the original uncompressed image. Lossless compression
are often known to, though not always, results in larger files
than lossy compression. Lossless compression image formats
should be the preferred choice when using image file as the
cover file for generating steganographic object.

Definition 5: Lossy compression algorithms – these are
algorithms that preserve a representation of the original
uncompressed image that may appear to be a perfect copy,
but it is not a perfect copy. Often lossy compression is able
to achieve smaller file sizes than lossless compression. Most
lossy compression algorithms allow for variable compression
that trades image quality for file size.

There are numerous image file types. Especially when
considering proprietary types, we look at hundreds of them.
However, the most popular image file types happen to be –
PNG, JPEG, and GIF – particularly on the internet. Also,
some of the major operating systems like Macintosh OS X has
an inbuilt screen capture utility,5 which by default saves the
captured screen image as a .png image.

Another dimension along which images can be
categorised, which has an impact on the proposed Android-
Stego framework, is their representation, which again is
categorised into two primary types – Raster Images (e.g.,
PNG) and Vector Images (e.g., JPG).

4 Android-STEGO framework

In this section, with the help of schematic diagram, we
describe the operations of various subsystems within our
Android-Stego application framework. Recall that Android-
Stego operates on both sides of the communication channel,
enabling the end users – the sender and the receiver –
in exchanging MMS-based steganography messages. For
illustration, we assume that Alice (sender) and Bob (receiver)
have established a covert channel, using the supporting PKI
infrastructure, which they will use during MMS message
exchanges.

32 A. Srinivasan et al.

In our discussions, we make generic references to
PKI infrastructure, digital certificates, and asymmetric
algorithms. However, the Elliptic Curve Cryptography (ECC)
encryption and digital certificate scheme is the most ideal
for mobile devices (Toorani and Beheshti, 2008), since it is
computationally cheap and yet secure. ECC is a public key
encryption technique that is based on elliptic curve theory
and can be used to create faster, smaller, and more efficient
cryptographic keys. A 160-bit ECC encryption key provides
the same security as a 1024-bit RSA encryption key (Bos et al.,
2009). Additionally, it can be up to 15 times faster, depending
on the specific platform on which it is implemented.

4.1 Definitions

Definition 6: Asymmetric key cryptographic (a.k.a Public
key cryptography) is one in which a unique pair of
mathematically related keys – a public key and a private key
– are assigned to each principal. The key pair is generated
such that what one key does, the other key can reverse it. This
property makes it very popular for achieving core security
requirements of confidentiality and authentication.

Definition 7: Symmetric key cryptographic (a.k.a Private
key cryptography) is one in which a single key is
assigned to two principals involved in the communication.
While symmetric key cryptography can provide very
fast and strong security against disclosure, i.e., providing
strong confidentiality, it fails to provide authentication and
subsequently non-repudiation.

Definition 8: Symmetric key assigned to two principals is
commonly known as a pairwise shared key. When a fresh
symmetric key is generated for each session, then it is known
as a pairwise session key.

Definition 9: Symmetric key assigned to more than two
principals is commonly known as a group key. When a fresh
key is generated for each session, then it is known as a group
session key.

4.2 LSB embedding

Least significant bit simply refers to the rightmost bit of a byte
of data in the big-endian representation. LSB embedding is a
general steganographic technique employed to embed secret
data into the LSBs of the carrier/cover file. While LSB based
secret data embedding can be used with any file type, the most
popular being digital media, specifically for hiding secret data
inside an image file. LSB embedding derives its popularity
primarily from their simple design and significantly high
effectiveness. Furthermore, the LSB embedding technique
is simple and easy to implement, with the only variation
stemming from the file that is being used as the carrier/cover
file.

Let us consider a simple example to understand LSB
embedding in action. In Figure 1, we have presented four
possible cases considering a scenario with a cover file of 8
bytes and a secret message of 1 byte. We chose such small

size for simplicity and intuitive communication of our work.
The stego-object is generated when the secret message is
embedded into the cover file, one bit at a time, into the LSB of a
previously unused byte of the cover file. The secret data bit that
needs to be embedded is compared with the LSB of the byte
under consideration for embedding. If the two match, then the
corresponding cover file byte remains unchanged. Otherwise,
the cover file byte’s bit is flipped to match that of the secret
data bit in question. With that, we have the following possible
cases:

• Best case: All secret data bits exactly match the LSBs
of the corresponding cover file’s bytes. This case is
presented in Figure 1(a).

• Average case: Only half of the secret data bits exactly
match the corresponding cover file bytes’ LSBs. This
means, 50% of the cover file bytes used will have their
lest significant bits flipped. This case is presented in
Figure 1(b).

• Worst case: None of the secret data bits match the
corresponding cover file bytes’ LSBs. Therefore, 100%
of the cover file bytes used for embedding the secret
data bits will have their lest significant bits flipped. This
case is presented in Figure 1(c).

Finally, in Figure 1(d), we present the scenario of representing
a random byte of secret data in the given 8-byte cover file,
and as can be seen, 6 bytes of the cover file have their LSBs
flipped while two remain unaltered. This particular scenario
falls between the average and worst case scenarios.

4.3 Android-Stego: process overview

In this section, we discuss the details of the process of MMS-
based secret message exchange between Alice and Bob under
the proposed Android-Stego framework. With regards to key
management, Alice and Bob make use of a secure shared
key, which can be negotiated offline, or negotiated online, in
real time, using asymmetric algorithms. Below are the details
pertaining to the encrypted and authenticated steganographic
message exchange, assuming a shared key has been previously
negotiated either in-band or out-of-band.

Stage-1: Alice selects a secret file Msec that she wants to send
to Bob using the user interface on the prototype application.
Subsequently, she also selects the cover image files she wants
to use, through the user interface.

Alice then invokes the encoding process that will embed
a secret file into the cover image bitmap files. The secret file
is serialised by the Android-Stego prototype application and
is broken into segments that are combined with the bitmap
carrier images.

Stage-2: The prototype application uses the PngStegoImage
class to combine the bitmap files and the serialised secret file
segments, and then converts them into steganographic bitmap
PNG images, as shown in Figure 2.

For each pixel holding some part of the secret data, the
integers representing red, green, and blue are evaluated and

Secure android covert channel with robust survivability to service provider restrictions 33

Figure 1 Illustration of LSB embedding performance cases: (a) best case; (b) average case; (c) worst case and (d) random case (see online
version for colours)

Figure 2 The process of embedding the secret message in a steganographic MMS message (see online version for colours)

modified, when necessary, such that even and odd values
represent the zeros and ones of the binary encoded data.

The secret file images are then shepherded to the MMS
(or email service) of the Android application, which then uses
the cellular carrier services to send the images to Bob, the
recipient.

On the security and integrity of the secret message
itself, the framework uses a hybrid cryptographic system,
a combination of asymmetric and symmetric encryption
algorithms as delineated below.

1 Alice is in possession of Msec, the secret message that
she wishes to share with Bob. She is also in possession

of her public key KAlice
pub , her private key KAlice

prv , and
Bob’s public key KBob

pub .

2 Alice generates a random sessions key: KAlice
rand , which

she will use to encrypt Msec.

3 If the size of Msec is greater or equal to a
predetermined permissible message size, Alice splits
the message Msec into multiple parts as follows –[
Mpart−1

sec ,Mpart−2
sec , ·Mpart−n

sec

]
. The permissible size

for these parts varies among service providers, a
summary of which is presented for four major North
American carriers in Table 2.

34 A. Srinivasan et al.

Table 2 Summary of carrier restriction on in-coming MMS message size for the big-four cellular service providers in North America

Receiving carrier Receive status File integrity

Verizon True Partial. All images of size ≥ 1 MB were compressed (and converted to JPEG) by the native MMS
application. Smaller images remained intact

T-Mobile True No. All images of size ≥ 1 MB were compressed (and converted to JPEG) by the native MMS
application. Files of size 500 KB and 750 KB were compressed (as PNGs) by the carrier

Sprint True Partial. All images of size ≥ 1 MB were compressed (and converted to JPEG) by the native MMS
application. Smaller images remained intact

AT&T True Partial. All images of size ≥ 1 MB were compressed (and converted to JPEG) by the native MMS
application. Smaller images remained intact

4 Alice computes a hash of the message Msec, and its
parts if any: h(Msec). If the situation warrants that the
message be split into multiple parts, as discussed in the
above step, then Alice computes a hash value for each
part, in addition to the hash of the complete original
message.

5 Alice encrypts the secret message (or each individual
part of a multi-part message) with the session key:

[Msec]KAlice
rand

. (1)

Here, note that each part of a multi-part message is
encrypted with the same session key KAlice

rand . However,
in implementation, different session keys can be used
for added security.

6 Alice then encrypts the session key, which she
generated in step 2 above, with her private key:[
KAlice

rand

]
KAlice

prv
. (2)

7 Now, Alice appends the output from steps 4–6 as
follows:[[

Msec

]
KAlice

rand

||
[
KAlice

rand

]
KAlice

prv
||[h(Msec)]KAlice

rand

]
.

(3)

8 Alice encrypts the output from step 7 with Bob’s
public key KBob

pub , as shown in Figure 3:[
[Msec]KAlice

rand
||[KAlice

rand]KAlice
prv

||[h(Msec)]KAlice
rand

]
KBob

pub

.

(4)

For a multi-part message, Alice includes KAlice
rand only if

she had to change the session key for any security
reasons. Otherwise, only the very first message
transmitted will include [KAlice

rand].

9 Alice repeats steps 4–8, until all pieces of the secret
message are transmitted.

10 In the case of a multi-part message, Alice transmits the
hash of the original complete message that she
computed in step 3.

Stage-3: On the receiver side, the Android platform’s native
SMS/MMS content provider handles the receipt of messages,
as shown in Figure 4. On Bob’s device, the prototype
application service watches for changes upon the receipt
of a message (MMS/Email). If a change is detected, the
steganography application service dispatches a worker to
execute the steps required to load and decode the images.

1 Bob decrypts the received message, shown in
equation (4), with his private key KBob

prv and extracts the
following three components:

[Msec]KAlice
rand

(5)

[KAlice
rand]KAlice

prv
(6)

[h(Msec)]KAlice
rand

. (7)

2 Then, he uses Alice’s public key KAlice
pub on the extracted

component shown in equation (6), and extracts KAlice
rand .

3 Later, using the session key KAlice
rand , Bob decrypts the

secret message and its hash shown in equations (5) and
(7), respectively.

4 Bob then computes the hash of the decrypted message
and verifies message integrity by comparing it to the
hash extracted in the previous step. If the hash computed
by Bob matches the hash included in Alice’s original
message, then Bob continues with the steps below;
otherwise, he stops processing the message. In case
of a multi-part message, he will discard that specific
chunk and continues with the rest starting from step 1
above.

5 In the case of a multi-part secret message, Bob repeats
the above steps (steps-1–4) until all pieces of the secret
message are received, verified, and decrypted. He then
reconstructs the original secret message from the pieces,
computes the hash of this reconstructed original
message, and compares it to the hash of the original
unencrypted message received from Alice in step 10 for
integrity verification of the overall message.

The prototype implementation and the framework are, in
general, designed to be modular, so that additional features can
be easily incorporated into the framework. This even facilitates
using encryption schemes of the user’s choice.

Secure android covert channel with robust survivability to service provider restrictions 35

Figure 3 Exchange of information between Alice and Bob
(see online version for colours)

4.4 Android-Stego implementation

The prototype implementation is modular, and built with
existing Android APIs. Therefore, new features can be
easily introduced, making it more capable in hiding, as
well as robust to detection. For implementing a real-world
working prototype of Android-Stego, we have written a
custom implementation of the LSB algorithm, which can
hide arbitrary binary data. The Android-Stego framework is
presented in Figure 5.

Our implementation is a segmented and distributed
implementation built on the LSB embedding technique.
For the sake of completeness and enable readers better
appreciate the work, we present a brief discussion on how LSB
embedding technique works.

Here, we would like to draw the readers’ attention to an
important fact. Android-Stego is a framework that can be
further customised to support formats other than PNG images,
which is what we use to demonstrate its performance. For the
curious reader, we have not attempted testing the Android-
Stego framework on image types such as JPEG since they
employ lossy compression algorithms.

More importantly, lossy compression can interfere making
it hard to clearly attribute the lost stego messages to the
appropriate cause and source, such as – channel loss, service
provider filtering, reversal of lossy compressed cover image,
etc. However, other formats that employ lossless compression
(e.g., GIF) or apply no compression at all (e.g., BMP) can be
used as cover files.

Since, we are focusing on a multi-part-based segmented
implementation, we avoid utilising every single bytes’ LSB
of the cover file. Also, since the number of MMS messages
required to send the complete secret message is controlled by
the user (which is the client side of the app), there is latitude
for the user to choose the level of compaction in each cover
file. Lower the ratio of secret message size to cover file size –[Msize

sec

Csize

]
– the higher the probability of survivability.

For illustration, let us consider that the size of the secret
message M size

sec = 10 KB6. and the size of the cover file
denoted as Csize = 2 KB. The framework can be tuned to
use varying rates of embedding such that each cover file has
only a certain percentage of secret message in it payload.

The results of overhead and throughput are presented below.
Only messages that pass message integrity check are counted
towards the framework’s throughput.

At payload ratio of 25%, only the first 25% of the cover
file bytes are used for embedding secret message bits using the
LSB technique. In the above scenario, at 25% payload ratio,
we need 20 cover files of size 2 KB to embed and transfer a
secret message of size 10 KB. If we increase the payload ratio
to 50%, then we only need 10 cover file to transfer the secret
message.

Therefore, the number of cover files required is impacted
more by the embedding density, which we call the payload
ratio, more than the size of the actual secret message. To this
aim, consider the cover files to be of size 1 KB. Now, with
a payload ratio of 50%, we can still successfully transfer the
10 KB secret message with 20 cover files.

4.5 Implementation challenges

Implementing an MMS-based steganography system on the
Android platform presents certain very unique challenges.
Any such implementation is dependent on systems both
within the Android environment, as well as carrier-
specific systems external to and outside the control of the
Android environment. Several of these systems’ requirements
and specifications are neither very consistent nor well
documented. So, it is imperative that we test these external
systems, in order to understand and predict their behaviour.
Furthermore, while some free and open source steganography
libraries do exist for the Java platform, they rely on
existing graphics and GUI libraries – such as Oracle’s
Abstract Window Toolkit – that are not implemented
for the Android platform (https://code.google.com/p/f5-
steganography/; http://www.openstego.info; Westfeld, 2001).

Therefore, we found it necessary to specify, design,
and implement a custom application under our proposed
framework using the Android SDK, which provides API
libraries and developer tools necessary to build, test, and debug
applications for Android devices.

The proposed Android-Stego framework encodes binary
data into a bitmap image using the very popular LSB technique
by making slight modifications to the pixel data, and where
necessary. Specifically, the encoded binary data will be
represented by the parity of the red, green, and blue values in a
group of pixels. This will allow us to encode three bits of secret
data per pixel, or equivalently one byte of secret message per
2.66 pixels while making only slight changes to those which
are imperceptible to the original image data.

Our algorithm relies on bitmap data, which are lossy-
compressed image formats, such as GIF or JPEG and they
are not very suitable as cover images. However, compression
is beneficial to data throughput. Therefore, we chose to use
the portable network graphic (PNG) image format. The PNG
image format employs a lossless-compression technique that
preserves pixel fidelity.

Part of any good digital steganographic method is the
ability to validate and measure the quality of the algorithm
in obfuscating the message in the carrier image. Changes
in the carrier images must not only be imperceptible to the

36 A. Srinivasan et al.

Figure 4 The process of extracting the secret message from a steganographic MMS message (see online version for colours)

Figure 5 Generating an MMS stego message using our Android-Stego framework

casual observer, but the image must also be able to withstand
statistical and steganalytical scrutiny. A standard measurement
used in steganography, to test the quality of the steganographic
images, is called peak signal-to-noise ratio (Ibrahim and Law,
2012). The higher the value of PSNR, the higher the quality
of the steganographic image will be.

PSNR = 10log10

M−1∑
x=0

N−1∑
y=0

[C(x, y)− S(x, y)]2. (8)

As noted in Ibrahim and Law (2012), if the cover image C
has a size (M ×M) and the steganographic image S has a
size (N ×N), then each C and S will have a pixel value
of (x, y) ranging from [0 to (M − 1)] and [0 to (N − 1)]
respectively. The MAX value is the maximum number of
pixels for the image. This information has been summarised
in Table 3.

Table 3 Summary of size and pixel range for the cover image and
the steganographic image

Image type Size Pixel value (x, y)

Cover image C M ×M (0, M − 1)
Steganised image S N ×N (0, N − 1)

5 Discussions

5.1 Android-Stego framework: security robustness

In this section, we discuss the security requirements satisfied
by our proposed Android-Stego framework.

• Confidentiality of the secret message: Since the secret
message Msec is encrypted with a session key KAlice

rand ,

Secure android covert channel with robust survivability to service provider restrictions 37

which is generated by Alice, no one will be able to
discern the message without the key. Furthermore, the
session key is encrypted with Bob’s public key
when it is transmitted. Consequently, an attacker will
not be able to decipher the message without Bob’s
private key.

• Integrity of the secret message: The secret message is
first encrypted with the session key and then is hashed.
The resultant hash is included along with the encrypted
message. The receiver computes the hash of the
received encrypted message (or that particular chunk of
a larger message) and compares it to the hash included
with the message. If the two hash values match,
message integrity is verified and the receiver proceeds
to decrypt the message. Otherwise, the receiver discards
the message (or that chunk).

• Sender authentication: A sender is authenticated
in our proposed framework by having the sender
encrypt the session key with the sender’s private
key. On the receiver side, the session key is extracted
using the sender’s public key. Hence, the session
key could not have been generated by anyone
else.

5.2 Carrier restrictions on MMS size

Network operators play an active role in MMS
communication, when compared to standard voice, data or
SMS communications. Carriers store uploaded MMS data
on their own servers, and then forward the data to capable
handsets, or grant access to subscribers to access the uploaded
data on their server. This implementation, while primitive, is
very much necessary to ensure backward compatibility. This
enables subscribers using older mobile devices to still view
contents through MMS, or through an alternative medium,
like a carrier’s website. Because of this, it is possible that
content sent via MMS may be rejected outright by the carrier
if they sense any malicious content.

A rejection may occur, for example, if a MIME type is
unknown or if a file is deemed too large. These restrictions
may not be documented or consistent between carriers. Our
implementation relies on PNG-compressed bitmaps, so we
tested the behaviour of this kind of data on four major US
carriers. We were interested in data size limits and data
integrity (compression or conversion, for example) measures
employed by these carriers that would prevent MMS-based
steganographic communication.

To test for any such limitations, we attempted transmission
of incrementally larger steganographic PNGs via MMS, and
then verified their integrity on the receiving end by comparing
the SHA-256 hash value of the message with that on the
sender’s side. With this information in hand, we worked to
develop a working prototype of the framework that would
work within the confines of MMS and any carrier-imposed
limitations. In the prototype, we have established a binary
specification, and an application that can both encode and
decode this data from a bitmap image.

6 Conclusions

Today, smartphones have risen to the pinnacle of pervasive
and ubiquitous computing. Smartphones have created an
unprecedented dependence thereby becoming the locus of our
lives. Considering the ubiquity combined with the integrative
nature of contemporary smartphones, steganography is
undoubtedly the most easily accessible point for covert
communication.

In this paper, we have proposed Android-Stego, a new
framework that implements a multi-part steganography on
Android smartphones exploiting the native MMS capabilities
of the platform. We have implemented a working prototype
of the proposed Android-Stego, and have verified its security
robustness. Through actual message exchanges, we have
confirmed the survivability of covert messages created using
our Android-Stego.

We have also analysed MMS handling behaviour by
various cellular service providers to ensure that our
implementation would work on most domestic networks, and
it is robust to message loss resulting from cellular operator
manipulations of steganographic MMS messages. We have
presented the restrictions placed on user MMS message
size by four major carriers and the actions – compression
and/or format conversion – the carriers perform on the MMS
messages once they exceed the imposed limit.

Part of our future research agenda is building fault
tolerance into the proposed Android-Stego using techniques
similar to threshold secret sharing. With such fault-tolerance,
if a particular message chunk, in case of a multi-part message,
fails the integrity check, then that chunk can be discarded
without needing retransmission. Nevertheless, the original
message can still be recovered as long as loss is under the
threshold.

Acknowledgements

The authors would like to thank Chris Brahms, Stephan
Reimers, and Thomas Valadez for their contributions towards
the implementation and validation of Android-Stego, as well
as the draft of this paper.

References

Amoroso, A. and Masotti, M. (2006) ‘Lightweight steganography
on smartphones’, Consumer Communications and Networking
Conference, 2006. CCNC 2006, 3rd IEEE, IEEE, Vol. 2,
pp.1158–1162.

Bos, J.W., Kaihara, M.E., Kleinjung, T., Lenstra, A.K. and
Montgomery, P.L. (2009) On the Security of 1024-bit RSA
and 160-bit Elliptic Curve Cryptography, No. EPFL-REPORT-
164549.

Bucerzan, D., Raþiu, C. and Manolescu, M-J. (2013) ‘Smartsteg:
a new android based steganography application’, International
Journal of Computers Communications and Control, Vol. 8,
No. 5, pp.681–688.

38 A. Srinivasan et al.

Dastoor, S.K. and Patel, V. (2012) ‘A novel android based mobile
application as a virtue of covert communication for concealing
information in the speech signal’, 1st International Conference
on Emerging Technology Trends in Electronics, Communication
and Networking (ET2ECN), 2012, IEEE, pp.1–6.

Dhobale Dhanashri, D., Patil Babaso, S. and Patil Shubhangi, H.
(2010) ‘Mms steganography for smartphone devices’, 2nd
International Conference on Computer Engineering and
Technology (ICCET), 2010, IEEE, Vol. 4, pp.V4–513.

Dominic, B. and Crina, R. (2013) ‘Steganography and cryptography
on mobile platforms’, Universitatii Maritime Constanta.
Analele, Vol. 14, No. 20, p.121.

EL-Emam, N.N. (2007) ‘Hiding a large amount of data with high
security using steganography algorithm’, Journal of Computer
Science, Vol. 3, No. 4, p.223.

El-Seoud, S. and Taj-Eddin, I. (2013) ‘On the information
hiding technique using least significant bits steganography’,
International Journal of Computer Science and Information
Security, Vol. 11, No. 11, p.34.

Gupta, S., Bhushan, B., Singhania, S. and Gulani, J. (2013) ‘A hybrid
approach for ensuring security in data communication’, CCSIT,
2013, 18–20 February, Bangalore, India.

Higgins, K.J. (2010) Busted Alleged Russian Spies used
Steganography to Conceal Communications, Dark Readings, 29
June.

Ibrahim, R. and Kuan, T.S. (2011) Steganography Algorithm
to Hide Secret Message Inside an Image, arXiv preprint
arXiv:1112.2809.

Ibrahim, R. and Law, C.K. (2012) ‘Mobisis: an android-based
application for sending stego image through mms’, ICCGI 2012,
The Seventh International Multi-Conference on Computing in
the Global Information Technology, 24–29 June, Venice, Italy,
pp.115–120.

Johnson, N.F. and Jajodia, S. (1998) ‘Exploring steganography:
seeing the unseen’, Computer, Vol. 31, No. 2, pp.26–34.

Kopiczko, P., Mazurczyk, W. and Szczypiorski, K. (2013)
‘Stegtorrent: a steganographic method for the p2p file sharing
service’, Security and Privacy Workshops (SPW), 2013, IEEE,
pp.151–157.

Mazurczyk, W. and Caviglione, L. (2014) ‘Steganography in modern
smartphones and mitigation techniques’, IEEE Communications
Surveys and Tutorials, Vol. 17, No. 1, pp.334–357.

Patel, K., Utareja, S. and Gupta, H. (2013a) ‘Information hiding using
least significant bit steganography and blowfish algorithm’,
International Journal of Computer Applications, Vol. 63,
No. 13.

Patel, K., Utareja, S. and Gupta, H. (2013b) ‘A survey of
information hiding techniques’, International Journal of
Emerging Technology and Advanced Engineering, Vol. 3, No. 1,
pp.347–350.

Petitcolas, F.A., Anderson, R.J. and Kuhn, M.G. (1999) ‘Information
hiding-a survey’, Proceedings of the IEEE, Vol. 87, No. 7,
pp.1062–1078.

Sinha, N., Bhowmick, A. and Kishore, B. (2015) ‘Encrypted
information hiding using audio steganography and audio
cryptography’, International Journal of Computer Applications,
Vol. 112, No. 5.

Srinivasan, A., Wu, J. and Shi, J. (2015) Android-Stego: A Novel
Service Provider Imperceptible MMS Steganography Technique
Robust to Message Loss, ACM, Vol. 8.

Suarez-Tangil, G., Tapiador, J.E. and Peris-Lopez, P. (2014)
‘Stegomalware: playing hide and seek with malicious
components in smartphone apps’, Information Security and
Cryptology, Springer, pp.496–515.

Sutherland, I., Davies, G. and Blyth, A. (2011) ‘Malware and
steganography in hard disk firmware’, Journal in Computer
Virology, Vol. 7, No. 3, pp.215–219.

stuxnet (2011) Symantec. W32.duqu – The Precursor to the next
stuxnet (version 1.4), Symantec Security Response, 14 October.

Thakre, K. and Chitaliya, N. (2014) ‘Dual image steganography
for communicating high security information’, International
Journal of Soft Computing and Engineering (IJSCE), Vol. 4,
No. 3.

Toorani, M. and Beheshti, A. (2008) ‘Lpki-a lightweight
public key infrastructure for the mobile environments’, 11th
IEEE Singapore International Conference on Communication
Systems, 2008. ICCS 2008, IEEE, Singapore, pp.162–166.

US Department of Justice (2010) Criminal Complaint, United States
vs. Christopher r. metsos et al. FBI Documents.

Van Schyndel, R.G., Tirkel, A.Z. and Osborne, C.F. (1994) ‘A digital
watermark’, Proceedings of the IEEE International Conference
on Image Processing. ICIP-94, IEEE, Vol. 2, pp.86–90.

Vivek Amruth, C. and Amrita, P. (2014) ‘Multi-level steganography
for smart phones’, 2014 First International Conference on
Networks and Soft Computing (ICNSC), IEEE, Tokyo, Japan,
pp.81–84.

Wang, Y., Yu, W-k., Xu, S.Q., Kan, E. and Suh, G.E. (2013) ‘Hiding
information in flash memory’, IEEE Symposium on Security and
Privacy (SP), 2013, IEEE, San Francisco, USA, pp.271–285.

Wendzel, S., Mazurczyk, W., Caviglione, L. and Meier, M.
(2014) ‘Hidden and uncontrolled-on the emergence of
network steganographic threats’, ISSE 2014 Securing Electronic
Business Processes, Springer, Brussels, Belgium, pp.123–133.

Westfeld, A. (2001) F5 – A Steganographic Algorithm, Information
Hiding, Springer, pp.289–302.

Zhou, F., Yang, R., Zheng, Z. and He, J. (2012) ‘Steganography
in multimedia messaging service of mobile intelligent
terminal’, 5th International Congress on Image and Signal
Processing (CISP), 2012, IEEE, Chongqing, Sichuan, China,
pp.1340–1343.

Zieliñska, E., Mazurczyk, W. and Szczypiorski, K. (2014) ‘Trends in
steganography’, Communications of the ACM, Vol. 57, No. 3,
pp.86–95.

Notes

1http://www.gsmamobileeconomy.com
2https://en.wikipedia.org/wiki/World_population
3In our scenario, an unsecured channel is one that the service provider
can monitor for the presence of cover channels.

4Some image formats do not make use of compression at all. One
such image format is the BMP image.

5The screen capture utility is enabled from the keyboard with the
following key combinations + + .

61 KB = 1000 Bytes.

Secure android covert channel with robust survivability to service provider restrictions 39

Websites

Alureon malware, Alureon Trojan uses Steganography to Receive
Commands, https://www.virusbtn.com/blog/2011/09_26.xml
(Retrieved 23 January, 2015).

F5-Steganography in Java, https://code.google.com/p/f5-
steganography/ (Retrieved 23 January, 2015).

Federal Plan for Cyber Security and Information Assurance Research
and Development, https://www.nitrd.gov/pubs/csia/csia_
federal_plan.pdf (Retrieved 23 January, 2015).

Openstego: The Free Steganography Solution, http://www.
openstego.info (Retrieved 23 January, 2015).

