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Spatiotemporal Urban Inference and Prediction
in Sparse Mobile CrowdSensing:
a Graph Neural Network Approach
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Abstract—Mobile CrowdSensing (MCS) has recently become a promising data acquisition paradigm, which recruits a large number of
users to collect data from the target sensing areas. Obviously, with the increase of sensing scale and the decrease of sensing
granularity, traditional MCS cannot fully cover the required sensing areas especially the inaccessible areas. As a variant, Sparse MCS
can utilize the spatiotemporal correlations in sensing data to infer the whole sensing map only by sensing a few subareas. However, in
many real-world scenarios, such as traffic congestion prediction or parking occupancy detection, inferring the current unsensed data
may not be the final goal. By comparison, it is more important to get the future information through the sparse sensed data. In this
paper, we turn attention from inferring the current unsensed data to predicting the future unknown data and propose an urban inference

and prediction framework in Sparse MCS. To deal with the sparse sensed data, we first present a bipartite-graph-based matrix
completion algorithm with spatiotemporal constraints to accurately recover the current full map. Then, by exploiting spatiotemporal
correlations based on the inferred full map, we present a Graph Convolutional Networks (GCN) with spatiotemporal attention to predict
the future maps. Furthermore, we design a spatiotemporal iterative method to repeatedly update the spatiotemporal attentions and
constraints, in order to connect the urban inference and prediction to improve the accuracy of the whole framework. Extensive
experiments have been conducted on two types of typical urban sensing tasks with four real-world data sets, which verify the
effectiveness of our proposed algorithms in improving the inference and prediction accuracy with the sparse sensed data.

Index Terms—Mobile crowdsensing, matrix completion, graph convolution networks, spatiotemporal correlations

1 INTRODUCTION

WITH the rapid development of information society
and wireless devices portability, Mobile CrowdSens-
ing (MCS) [2] has become a new data collection mode
combined with crowdsensing and mobile devices [3], [4]. It
recruits users carrying mobile devices to collect data from
target sensing areas in order to perform various sensing
tasks, such as environment monitoring [5], traffic controlling
[6] and urban sensing [7], etc. To obtain high-quality sensing
results, the traditional MCS system usually has to recruit lots
of users to cover the entire sensing map. However, consid-
ering the costs limitation, it cannot afford too many users.
Even if it has recruited enough users with acceptable cost,
some sensing subareas may still have no available users due
to the users’ uncertain mobility or subareas’ inaccessibility
[8]. Therefore, in most cases, the traditional MCS can only
collect incomplete or even sparse data, especially facing
large-scale and fine-grained urban sensing tasks.

As to this problem, researchers have proposed a more
practical data acquisition paradigm, called Sparse MCS [9],
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Fig. 1: Users sense data from a few subareas, which could
be used to infer the data of unsensed subareas at the current
and predict the data of all subareas in the future.

[10], [11], [12], [13]. Sparse MCS aims to infer the data
of unsensed subareas through the already sensed data to
complete the entire sensing map. As shown in Fig. 1, we
want to get complete fine-grained data from the sensing
map at the current time in this Sparse MCS scenario, while
only 3 out of 5 X 4 subareas have been sensed, and we
need to infer the data in unsensed subareas from the sparse
data. To deal with this problem, most of the existing work
focuses on the data correlations among the sensed data to
design various data inference algorithms. Bose et al. [14]
use interpolation methods to infer the entire sensed data
matrix by the sparse data. Liu et al. [15], Wang et al. [9],
[10], and He et al. [16] use the Compressive Sensing and
its variants (e.g., Spatiotemporal-CS and Bayesian-CS) to
recover the entire sensed matrix under the spatiotemporal
limit. Besides, Liu et al. [11] and Xie et al. [12] find that sub-
areas selection is also important and use different selection
methods based on the Reinforcement Learning technology
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and the sensing scheduling scheme to select more important
sensing subareas in order to improve inference accuracy. In
addition, some work is committed to the tradeoff between
inference quality and inference cost [17], [18].

However, these existing works mainly focus on utilizing
the partial sensing data to infer the current full sensing map,
they ignore that not only the current data but also the future
ones are important in many real-world scenarios. Taking
traffic sensing task as an example, compared with sensing
the destination’s current traffic congestion or parking occu-
pancy, it may be more useful to predict the future situation,
because it will take a while for us to reach the destination.
Therefore, in Sparse MCS, inferring the current sensing data
may not be the final goal, while it’s highly significant to get the
future information through the sparse sensed data.

To achieve this goal, intuitively, we can ignore the data
sparsity and predict the future data based on the already
sensed ones or regard the future data as the missing ones
and infer them directly. However, most of the traditional
prediction methods require large amounts of complete sens-
ing data, which are utilized to excavate the spatiotemporal
correlations among them for predicting the future full map.
While in sparse MCS, we are faced with the sparse sensed data,
such methods can not effectively exploit the correlations and
thus achieve bad performances in most cases. In addition,
many existing data inference algorithms are not designed
for prediction, they simply use data imputation as data pre-
processing for prediction, or independently imputation and
prediction with no connections. Generally, they fill in the
missing values by satisfying some constraints or properties,
e.g., the low-rank structure of sensing data matrix, which
can hardly deal with the future inferring without any sensed
data. Furthermore, considering the non-linear temporal re-
lationships between the pair-wise spatial correlations across
different subareas, the spatiotemporal correlations among sens-
ing data are actually very complicated. We should not only
extract them from the sparse sensed data but also utilize
them for prediction. Therefore, how to effectively utilize the
sparse sensed data to extract the spatiotemporal correlations
for inference and prediction is the main challenge in our
urban prediction problem via Sparse MCS.

In this paper, we turn attention from inferring the current
unsensed data to predicting the future full map from the
sparse sensed data. We propose an urban inference and pre-
diction framework via Sparse MCS consisting of three parts:
data inference, data prediction, and iterative update. Firstly,
we propose a bipartite-graph-based matrix completion algo-
rithm with spatiotemporal constraints to recover the current
full sensing map from the sparse sensed data. With the help
of the low-rank attributes and general spatiotemporal, we
can solve the problem which is difficult to extract enough
correlations from sparse data, so as to improve the inference
accuracy. Note that the added spatiotemporal constraints
not only guide the inference directions but also preserve the
latent spatiotemporal correlations for prediction. We then
present a Graph Convolutional Network (GCN) model with
spatiotemporal attentions to predict the future. Once having
the complete sensing information, we can utilize this GCN
model to exploit more spatiotemporal correlations among
sensing data and use attention to assist prediction. Finally,
we use spatiotemporal attention matrix in data prediction to
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update spatiotemporal constraint matrix in data inference
iteratively to enhance the correlations and improve the
performances of data inference and prediction.

Our work has the following contributions:

o We formulate the fine-grained urban prediction prob-
lem via Sparse MCS, which turns attention from
inferring the current unsensed data to predicting the
future full map from the sparse sensed data.

e We propose a bipartite-graph-based matrix comple-
tion algorithm with spatiotemporal constraints to
recover the current full sensing map from the sparse
sensed data.

e We present a GCN model with spatiotemporal atten-
tions to predict the full map based on the recovered
sensing.

o We fuse the spatiotemporal constraints and spa-
tiotemporal attentions iteratively to enhance the spa-
tiotemporal correlations for inference and prediction.

o We evaluate the proposed algorithms on two types of
typical urban sensing tasks (environmental sensing
and traffic monitoring) with four real-world data
sets (Humidity, PM2.5, Traffic Speed, and Traffic
flow), which show that our methods can effectively
improve the accuracy of inference and prediction.
We also evaluate the influences and impacts of the
spatiotemporal correlations.

The remainder of this paper is organized as follows. After
reviewing the related works in Section 2, we introduce
the system model and formulate the problem in Section 3.
Then, the inference and prediction methods are proposed
in Section 4 and 5, followed by the spatiotemporal matrix
iteration in Section 6. Finally, we evaluate the performance
in Section 7 and conclude this paper in Section 8.

2 RELATED WORK

Sparse Mobile CrowdSensing [9], [10], [11], [12], [13] has
played an essential role in the Mobile CrowdSensing be-
cause of its property of using little information to infer the
full sensing map. Due to cost or other constraints [8], [19],
it is more suitable for some real-world scenarios than the
traditional MCS [2], [5].

Recently, many fine-grained urban sensing systems have
been developed via Sparse MCS. Rana et al. [20] conducted
an urban noise monitoring system that randomly senses
data from some target subareas and uses compressive sens-
ing to infer a fine-grained urban noise map. Zhu et al.
[21] also used a modified compressive sensing approach
to estimate the urban traffic speeds, based on the data
periodically collected by probe vehicles. The above works
are all solving the Sparse MCS problem from a specific
direction, Wang et al. [9], [10] further provided a general
framework for Sparse MCS that includes three stages: cell
selection, data inference, and quality assessment. Briefly,
Sparse MCS will first select some subareas to sense and then
uses the sensed data to infer the full map. If the inferred
results are of poor quality, Sparse MCS continues to sense
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data and infer the full map. The authors also conducted var-
ious experiments over four urban sensing tasks, including
temperature, humidity, air quality and traffic monitoring, in
order to verify the effectiveness of Sparse MCS. Similarly,
Lana et al. [22] and Liu et al. [23] proposed a sparse
MCS-based urban traffic monitoring system, which uses an
imputation method for missing value filling. He et al. [16]
and Liu et al. [15] also proposed the urban air pollution and
signal mapping systems based on Sparse MCS, while they
further added the incentive design to steer users to sense
data from some subareas. Furthermore, to effectively sense
the useful subareas which hold sufficient information for
data inference, Liu et al. [11] introduced the Reinforcement
Learning and Xie et al. [12] studied the sensing scheduling
scheme to actively determine the next sensing subareas.
Although Sparse MCS provides an effective way for fine-
grained urban sensing systems, current research focuses
primarily on inferring current unsensed data and is un-
able to anticipate the near future full map. To solve this
problem, some prediction models based on spatiotempo-
ral conditions have been developed. Williams et al. [24]
proposed a univariate auto-regressive time series predic-
tion model based on the Wold Decomposition Theorem
to forecast vehicular traffic flow, which Zivot et al. [25]
then expanded to multi variables. However, these models
are unable to handle nonlinear data. To deal with non-
linear data prediction, Van et al. [26] proposed a hybrid
short-term spatiotemporal data prediction approach based
on the K-Nearest Neighbor (KNN) algorithm. Simultane-
ously, Jeong et al. [27] proposed a new online short-time
data prediction model based on the temporal correlation,
named the Online Weighted Support Vector Regression
model (OLWSVR). Furthermore, relying on Deep Learning’s
more powerful ability to capture spatiotemporal features,
Zhang et al. [28] designed an ST-RESNET model based on
the residual convolutional unit to predict spatiotemporal
data. Specifically, they first used a residual network to
capture spatial features of data, then used multi networks
to extract temporal features of data, and finally achieved a
better prediction effect. Besides, Yao et al. [29] integrated
a Convolutional Neural Network (CNN) and Long-Short
Term Memory artificial neural network (LSTM) to jointly
model the spatiotemporal correlation, and proposed the
Deep Multi-View Spatial-Temporal Network (DMVST-NET)
to deal with the prediction problem. Although the above
works made great contributions to prediction, they do not
take into account the fact that in a sparse environment
the inference and prediction algorithms should be closely
coupled to avoid the loss of data features. There are also
some works that are specifically concerned with this issue.
Chan et al. [30] and Gupta et al. [31] proposed a neural
network for prediction with a missing data imputation
system, tying inference and prediction together. Wang et al.
[32] proposed an inference-prediction framework, which
first infers the sparse data using Deep Matrix Factorization
(DMF) and then performs short-time data prediction using
Non-Linear Auto-Regressive (NAR) neural network and
Stacked Denoising Auto-Encoder (SDAE). However, in the
face of graph-structured data, it is challenging to capture,
store and use spatiotemporal correlations, especially when
these correlations are critical for inference and prediction.
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3 SYSTEM MODEL AND PROBLEM FORMULATION
3.1 System Model

We consider a general urban sensing scenario where the
sensing system recruits some users to collect data from a
large-scale target sensing area to provide the fine-grained
urban sensing services. We divide the whole sensing cam-
paign into many equal-length sensing cycles and the target
area is split into m subareas, in order to provide the fine-
grained results. Note that the lengths of cycles and the
sizes of subareas are predetermined according to the tasks’
requirements.

Under such a fine-grained urban sensing scenario, we
recruit users to sense data from some subareas, and use the
data inference algorithms to infer the unsensed data for each
sensing cycle. Specifically, for each sensing cycle, we sense
some data from a few subareas, which are recorded in a
vector ¢y’ € R™*!, and the unsensed data are recorded as 0
(if 0 is not the reasonable sensing value, then we should use
another value). Let the vector y € R™*! denote the ground
truth and the binary sensed vector ¢ € R™*! mark whether
one subarea has been sensed: if subarea i has been sensed at
the current cycle, c[i] = 1; otherwise, c[i] = 0, and thus

Y =yec, ©)
where e represents an element-wise product, ie. , y'[i] =
yli] x c[i]. Then, we use a data inference algorithm I to
infer the unsensed data from the sensed data y’ with the
spatiotemporal constraints, and the inference error is €.

I(y) =y =y, )
s 9) =Y |yl —glil. )

At the n—th sensing cycle, we have already sensed n
vectors and obtained the actually sensed matrix Y, =
{y},v5,...,y,}. Similarly, let Y,, £ {yi,y2,...yn} and
C, = {ci,cy,...c,}, wehave Y, =Y, o C,,. Then, with the
goal to accurately predict the fine-grained near future full
map from the sparse sensed data, we first use [ to recover
the historical sensed matrix Y,, from Y, and then use a
near-future prediction method P with the spatiotemporal

correlations to predict the future vector:
P(I(Yé)) = P(Yn) = Yn+1 = Ynt1, 4
E(Ynt1,Yn+1) = Zi:l | Ynt1[i] — Gna[1] |- ®)

We can add the predicted 9y, 41 to Yn and obtained Yn+1~

In order to more clearly show the spatiotemporal cor-
relations in our framework, we use the I to Eienote the
spatiotemporal constraints in the inference and P to denote
the spatiotemporal attentions. Correspondingly, I; and Pp
represent the inference algorithm with spatiotemporal con-
straints and the prediction algorithm with spatiotemporal
attention. Therefore, the Eq. 4 changes to:

Pﬁ'(IIA(Yr;)) = PP(Yn) = Unt+1 = Ynt1- (6)
After a round of inference and prediction, we obtain the
spatiotemporal constraints I and the spatiotemporal cor-
relations P. We can use the specific spatiotemporal cor-
relations captured from the complete data to modify the
general spatiotemporal correlations that constrain sparse
data. Specifically, we use this correlations matrix Pp to
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Fig. 2: The framework of urban inference and prediction: we collect sparse sensing data from the city and infer the full
sensing data through the matrix completion. Then, we train a GCN model to predict the sensing data in the future of the
city. In addition, we use an iterative update mechanism to strengthen the spatiotemporal correlations between inference

and prediction system.

modify the constraints matrix I; in order to improve the
accuracy of the inference.

Iii1, Py = F(I;, P), @)
where the F' denotes the iterative algorithm. The new in-
ference data constrained by modified matrix fi+1 also has
influence on the P; in prediction module and also improves
the accuracy of the prediction, then the influenced Pi+1
modifies the inference module again. And we iterate this
process until the satisfactory accuracy is achieved. After
that, we continue to predict the next cycle 9,2 with the
Y, 1. We denote the P (I;(Y,)), k) = Yntr as the predic-
tion in the next £ cycles.

3.1.1  Problem Formulation

Problem [Urban Prediction via Sparse MCS] : Given an
MCS task with m subareas and n sensing cycles, for each
cycle, we can sense data from quite a few subareas, and
then use the sparse data to predict the full map of the
k near future cycles, with the objective of minimizing the
prediction errors:
n—k
min ZFl E(Yjth Yjtk)s ®)

s.t. PP(IIA(YA),]{I) :yj+k7j = 1,2,...,717]?. (9)

We now provide a running example to describe the
urban prediction problem in more detail, as shown in Fig. 2.
Suppose that we have an urban sensing task that needs to
sense data from a target area from 8:00 to 20:00. To provide
the fine-grained results, we divide the target sensing area
into 5 x 4 subareas and collect sensing data from these sub-
areas every one hour (upper of the Sensing system shown
in Fig. 2). To reduce the costs and deal with the unavailable
subareas, for each sensing cycle, only a few subareas will be
sensed, e.g., at 8:00, we only obtain the data sensed from 3
subareas. After 11 hours, the current time is 19:00, and we
get the data sensed from 4 subareas in this sensing cycle.
We can use a data inference algorithm to infer the unsensed
data of the current sensing cycle (upper of the inference
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and prediction system shown in Fig. 2). Furthermore, we
would like to predict the near future 20:00, 21:00 and 22:00
entire map based on the historical sparse sensed data (lower
of the inference and prediction system shown in Fig. 2). In
this paper, we first use a matrix completion algorithm with
the spatiotemporal constraints to recover the historical com-
plete matrix from the sparse sensed matrix, which provides
accurate and sufficient data for prediction. Then, with the
inferred matrix, we use a prediction method to learn the
spatiotemporal correlations for predicting the near-future
full map. Finally, we utilize the spatiotemporal correlations
of both modules to iteratively modify each other in order to
improve the accuracy.

4 DATA INFERENCE BY SPATIOTEMPORAL
GRAPH-BASED COMPLETION

4.1 Spatiotemporal Matrix Factorization

The urban sensing is actually to collect the various readings
from the urban regions. Note that most of the sensing
data are continuous in the physical world, which generally
exhibits strong spatiotemporal correlations, and thus the
complete sensing matrix Y usually has the low-rank prop-
erty. Given an incompletely and randomly (or even sparse)
sensed data matrix Y’, we would like to recover the full
sensing matrix Y based on the low-rank property:

min rank(Y'), (10)
st, YeC=Y" (11)

Note that the above optimization is nonconvex, so we can
hardly solve it directly. Given the complete sensing matrix
Y withrank k£ 1, i.e., fank(Y) = mnk(f/) = k, we can factor
our inferred matrix Y into the product of a spatial factor
matrix L,,x and a temporal factor matrix R, «x, as shown
in Fig. 3 (left part), in order to capture the low-rank feature

1. k is a property of Y, but in practice, we cannot obtain the complete
matrix Y and have to collect it for some sensing cycles to estimate the
initial rank k and readjust it according to the recovery errors during the
sensing campaign.
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and change the above rank optimization problem with
constraints to the error minimization problem for missing
data recovery:

min [|(Y ~Y)eC = (Y ~LRT e Cl}.  (12)
s.t., rank(Y) = rank(Y) = k,Y = LRT, (13)
where || - ||r is the Frobenius norm and used to denote the

error between the inferred matrix and the actually sensed
matrix. A

To obtain the optimal Y from Y, many existing meth-
ods, such as the Alternating Least Squares [21], [33] can
be used to train the two factors to solve the problem, i.e.,
Y = LRT according to the Eq. 10. However, the Eq. 10 only
focuses on the learning from the sensed data but ignores the
spatiotemporal correlations existing in the unsensed data.
Therefore, we further consider the important and naturally
occurring correlations as the supplement and constraint for
Eq. 10, and thus obtain the error minimization problem with
spatiotemporal constraints as follows:

min Y’ =Y ¢ Cf + M|[YTT|F + A[SY 7, (14)

where T and S are the temporal and spatial constraint
matrices:

e T presents the temporal constraint among the sens-
ing data of the same subarea between different sens-
ing cycles. Intuitively, two continuously sensed data
from the same subarea are usually similar. Thus,
we choose a temporal constraint matrix T, x, =
Toeplitz(0,1,—1) [34], [35] for Eq. 14 to constrain
that two continuous data from one subarea are the
same. Moreover, the prior domain knowledge and
the sufficient historical data may provide more tem-
poral constraints, such as the periodicity and statis-
tical characteristics, which can be used to conduct a
more sophisticated T.

e S presents the spatial constraint among the sensing
data of the same sensing cycle between different
subareas. Similar with the temporal constraint, the
data sensed from the closer subareas usually have the
similar values. Thus, we use the Euclidean distance
to characterize the spatial correlation, denoted as
Smxmli, j]=exp(—distance(i, j)/o2). Then, for each
row ¢ in S, we normalize them as E] 1,52 SlE, 7]=1
and set S[i,i|=—1,Vi = {1, ..

Note that the temporal and spatial constraint matrices T and
S are used as a supplement to further constrain the unsensed
data in the sensing matrix, which also preserves the spa-
tiotemporal correlations among all the subareas and sensing
cycles for the near-future prediction. Meanwhile, as shown
in Eq. 14, we can use the weighted parameters A; and A,
to balance the weights of different elements. Furthermore,
many other correlations could be easily modified into our
error minimization problem.

4.2 Graph-based Matrix Completion

To conduct the matrix completion, we first consider the
relationships between the spatiotemporal factors and the
inferred results. As discussed above, we obtain that the
inferred matrix Y = LRT. Specifically, as shown in
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Fig. 4: Matrix completion based on bipartite graph.
Fig. 3 (right part), let L = {I7,11,..

{r1,r2,....7m}7, we have Y[i,j] = lir] = z’g:l Li[c]r;]c].
Actually, the elements in the inferred matrix Y can be seen
as the linear combination of the elements in spatiotemporal
factors L and R. As an example, suppose that we obtain the
rank £ = 2 and the well trained spatiotemporal factors L
and R, as shown in Fig. 3, the unsensed data Y”'[i,j] = 0
can be inferred as follows:

Y[i, j] = Lir] = L[1)r,[1] + 1:[2]r,[2],
Y[i' ] = lor] =1y [1r;[1] + Ly [2]r;[2). (15)

Thus, we conduct the bipartite graph that consists of I; and
r; as the vertexes and Y[, j] as the edges, where i € [1,m]
and j € [1,n]. Then, the matrix completion can be seen as
the linear calculations of I; and ; to obtain Y[i, j].

After understanding the relationships between the fac-
tors and the inferred matrix, we further consider how to
train the spatiotemporal factors L and R. Based on the
error minimization problem in Egs. 11 and 12, we have

= LRT™ ¢ C'. Go back to the example in Fig. 3 (left part),
we have

Y'[1,n] = L[]ra[1] + L [2)ra[2] = 5. (16)

Consider that in the first (n — 1) sensing cycles, we already
calculate the suitable Ly, xx and R(,,_1)xy- For the current
n-th sensing cycle, we know the sensed data Y'[1,n] and
the spatial factor /;, and then we can use the linear Eq. 16
to calculate the unknown temporal factor r,,. With the well-
trained R = {R(,_1)x k,rn} and L, we can recover the
unsensed data, e.g., the Y'[i, j] and Y'[¢/, j] in our example,
through the linear calculations.

The detailed graph-based matrix completion algorithm
is summarized in Alg. 1 with an example shown in Fig. 4.
For the current n-th, we have already held the well-trained
temporal and spatial factors L;,,xx and R(,_1)x for the
historical sensing matrix. We first build the linear system as
Eq. 16 (line 2) to calculate the newly added temporal factor
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Algorithm 1 Graph-based Matrix Completion

Input: Y., = {Y;;Lx(n_l)’yg},
L7n><k N {l17l27 ~~alm}/ R(n—l)xk = {T17T27 ...,7’”_1}
Output: Y, xn

1: Init 7, Ryxr = {R(n—1)xk> Tn}, count = 0;
2: Build the linear system by using vy, L.k, and
R(;,_1)xk, and then calculate 7,;

3: while not convergent and count < MAX_ITER do

4:  Fix R, x; and treat me  as unknown, build the
linear system by using Y}, ..., Lmxk and R, «j, and
then calculate and update L., xx;

5. Fix L,,xr and treat RnX r as unknown, build the
linear system by using Y}, ..., Lmxk and R, «j, and
then calculate and update R, x, Y = LRT, and
count-f+;

6: return Y.

Ty,. Note that the current factors L, x; and R, _1)x only
hold the temporal and spatial information learned from the
historical matrix Y,/ (n—1)» We then iteratively train and up-
date the factor L or R by using an Alternating Least Squares
[10], [12], [21], [33] while keeping the others fixed (lines 3-5),
until the inferred Y is convergent or the maximum number
of iterations is reached. Finally, the graph-based matrix
completion algorithm outputs the complete inferred matrix
Y, which further provides sufficient data with effective
spatiotemporal correlations for the near-future prediction in
the next section.

5 DATA PREDICTION BY SPATIOTEMPORAL
GRAPH CONVOLUTIONAL NETWORKS

In common with the inference part, we still need to use the
strong spatiotemporal correlations among sensing data to
predict the near future. For this problem, many methods
have been proposed. With the rise of big data and deep
learning in recent years, the CNN is considered to be an
efficient prediction method for capturing the feature rela-
tionship between data [36], [37]. It should be noted deep
learning can also be applied to the inference part. However,
in this work, due to the sparse data(the sparse ratio is 0.1 or
even 0.05) in the inference, many unsensed data will lead to
the inability to extract effective spatiotemporal correlations
in the process of deep learning training. While our inference
method makes use of the structural correlation of the data it-
self, such as the low-rank attribute of the matrix, added with
the general spatiotemporal constraints, to enrich the correla-
tions among the data in the inference stage. Compared with
using neural networks to learn the correlations among data
from sparse data for prediction, our method performs better.
And we also proved this conclusion in the following related
experiments. While in the prediction part, we are faced with
complete data after inference, neural networks can capture
enough data correlations from the complete sensing data,
not only that, we also extract the spatiotemporal correlations
specifically to improve the accuracy. Therefore, we apply
the algorithm based on matrix completion method in the
inference part, while using the neural network model based
on the deep learning in the prediction part.
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Sensing Map Structure of Sensing Data
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Fig. 5: Graph transformation: the data collected from the
sensing map are represented by matrix in the inference and
transformed into graph in the prediction.

5.1 Overall Structure
5.1.1

The traditional CNN usually faces structured grid data
based on its working principle. However, in real life, many
data are not stored structurally, but unstructured like a
graph, such as chemical molecular formula, road network
flow and so on. The graph structure can not only preserve
the data well, but also preserve the correlations among the
data. For example, the road network can show the traffic
flow and connectivity of each section. Therefore, in the
prediction, in order to obtain more exact spatiotemporal
correlations and improve the accuracy of prediction, we
use graph structure to represent sensing map. As shown
in Fig. 5, let the undirected graph G = (V, E) denote the
sensing map, where V is a set of |[V| = m nodes denotes
the subareas in the sensing map and F is a set of edges
indicating the connectivity > between the nodes. Each node
on the graph holds the data collected by the user at that
point or the data inferred subsequently (shown in Fig. 5).
That means we can use the Y, {9t ...,97"} of the
inference part to denote the data of all nodes at n-th sensing
cycle and the 9!, represents the data of node i at n-th sensing
cycle. Correspondmgly, we denote the data of all nodes over
n sensing cycles as Y = {Y17 . K,}

Graph transformation

5.1.2 Graph Convolutional Network

Although graph structure can provide more correlations
among data, its topology is also more complex, which is
difficult to deal with by traditional neural network. There-
fore, we need GCN to convolute the irregular graph data
and extract feature correlation among data to predict. To ex-
tract spatiotemporal correlations, we propose a GCN model
based on spatiotemporal attention as shown in Fig. 6. It
consists of three identical and independent substructures
that represent different time spans, and each substructure
contains several convolution layers. It’s reasonable to design
different time spans because the data of current time can
not only be predicted from the previous hours, periodic

2. Connectivity depends on the type of sensing task. It is set for traffic
data according to the road network and for environment data according
to their own settings flexibly.
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T-ATT/S-ATT: temporal/spatial attentions; S-Gconv: spatial graph convolution; T-Conv: temporal convolution
R-Conv: residual convolution; FC: full connected

Fig. 6: Graph Convolutional Network with Spatiotemporal
Attention.

Temporal Convolution

Spatial Graph Convolution
Fig. 7: Spatiotemporal convolution.

changes in a few days or weeks can also help prediction,
like the number of vehicles in the morning peak or the
number of people in the parks on weekends. In this model,
we designed hour, day, and week time spans to explore
time correlation. For input data, let )A)h, j?d, )A)w denote the
hour, day, and week time span. We assume that the current
time is ¢, and the prediction time span is 7}. To predict
the data in T}, we get the corresponding time period on
the whole historical time axis T}, Ty, T,,. For example,
suppose it's 21:00 and we want to predict the data in
21:00 — 22:00 on May 26 with the sampling frequency of
one hour. We intercept the data in 18:00 — 21:00 on May 26
as Y = {Y18:00-19:00; ¥19:00—20:00, ¥20:00—21:00 }, similarly,
the data in 21:00—22:00 on May 23, 24, 25 as )y and the data
in 21:00 — 22:00 on May 5, 12,19 as )Aiu,. We show this inter-
ception process on the left of the network in the Fig. 6 and
we use the following formula to explain in more detail how
to use the data of the intercepted time period as the input
yh = {YT,L1 YT,,2 YT,L"} Vi = {Yle Ysz YTdn}

{YTw1 YTw2 Yr, }. After we obtain the input
data for each substructure, the data enters into several
consecutive blocks, which contains spatiotemporal attention
layer and convolution layer, and then the corresponding
output is obtained through a full connection layer, finally
we aggregate the three outputs Y, Y, Y, and get

n+1/ Wn 41
the final prediction data Yn+1'

n+17/

5.2 Spatiotemporal Convolution

When data enter into the convolution layer, we convolute
the data from two dimensions of time and space. As shown
in Fig. 7, in the spatial dimension, we use graph convolution
to extract spatial features of nodes based on graph structure,
in the temporal dimension, we use traditional convolution
to extract temporal features of nodes based on time slots.

5.2.1 Spatial Convolution

Borrowed from Spectral Graph Theory [38], [39], we can
extend convolution operation from matrix data to graph
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structure data. First, we regard the data in nodes as a signal.
For signal processing, it’s difficult to analyze in the time
domain so we need to analyze the signal in the frequency
domain by Fourier transform. [40]. We need to use the
eigenvectors of Laplacian matrix as the basis of Fourier
Transform. For signal in the graph, the Laplacian operator
is equal to Laplacian matrix, so we utilize Laplacian matrix
L = D — A to represent the graph structure. L is Laplacian
matrix of the graph structure, D is the Degree matrix and
A is the Adjacency matrix. After L is obtained, we can use
its eigenvector as the basis of the graph Fourier Transform
to carry out the Fourier Transform of the graph signal. Since
it’s an undirected graph, then L is a symmetric matrix and
certainly able to eigenvalue decompose as L = UAUT,
where U is a matrix in which each column is the eigenvector
of L and A is a Diagonal matrix with the eigenvalue of L.
Then, we obtain the graph Fourier Transform f=UTfand
deduce the graph convolution formula.

(f*9)c=UUTfoUTy).

If UTg is regarded as convolution kernel gy, the above
formula can be expressed as

(fxg9)a =UggUTf.

Taking the signal ¢; of all nodes at ¢-th sensing cycle as an
example, ¥, is filtered by a kernel gy:

17)

(18)

(Ut xg90)c = UgeUT ;. (19)

Due to the high cost of calculating all the eigenvectors
and the eigenvalues, we use Chebyshev polynomials [41]
to accelerate the solution of the eigenmatrix.

90 = Zk:o 0xTi(A), (20)

N 2A
= - I 21
Amaa; N> ( )

where 6 is polynomial coefficients, T(k) is the recursive
function and its definition is Ty () = 22T;—1(z) — Tk—2(x),
the function of A is normalize eigenvector matrix to [—1, 1],
Amaz 1s the maximum eigenvalue of the Laplacian matrix
and Iy is a unit matrix. Using the Chebyshev polynomials,
the convolution changes to

k—1 ~
@t *go)c =D, OTi(A)ie

After the node collects the neighbor information based
on the convolution kernel, the Rectified Linear Unit(ReLU)
activation function ReLU ((y: * go)c) is used to complete
the design of the whole module.

(22)

5.2.2 Temporal Convolution

After spatial convolution, each node extract surrounding
neighbor information in the spatial dimension. Then, we
add a standard convolution layer to extract the time infor-
mation between neighbor time slices. In order to obtain a
wide range of temporal correlation, we design multiple spa-
tiotemporal convolution layers. Assuming JAJhyl represents
the signal of all the nodes with the time span of hour and
convolution operation to layer [, then the convolution of
time dimension is

Vhis1 = ReLU(p - ReLU (Vh1 % go)c), (23)
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where - denotes the traditional convolution operation and p
is the parameters of the convolution kernel. Like the spatial
convolution, we choose ReLU as the activation function.

In brief, through multiple spatiotemporal convolution
layers, we collect enough spatiotemporal dimension infor-
mation from graph signals.

5.3 Submodule Aggregation

It’s worth noting that our whole neural network consists of
three submodules, each module outputs different dimension
prediction results. We need to aggregate these three results
[42], as follows

ynJrl = ¢)h © yhn+1 + d’d © gdn+1 + ¢w © ywn+17

where ¢y, bmog, ¢, are the learning parameters reflecting
the influence degrees of the three submodules on the pre-
diction target and Y., Yd,,1s Yw,, are the prediction
results.

(24)

6 ITERATIVE UPDATE BASED ON SPATIOTEMPO-
RAL CORRELATIONS

In the data inference part, we use the spatiotemporal corre-
lation extracted from the spatiotemporal constrain matrix to
improve the accuracy of inference. Similarly, we also use the
spatiotemporal correlation in the prediction part.

6.1 Spatiotemporal Attention

By adding spatiotemporal attention mechanism [43] to
graph neural network, we can further extract the spatiotem-
poral correlation between data. Attention mechanism can
be explained directly by human visual mechanism. For
example, our visual system tends to pay attention to some
information in the image and ignore the irrelevant informa-
tion. In neural networks, such as image-caption [44], only
some regions in the input image may be more relevant to
the word of caption. The attention model allows the neural
network model to dynamically focus on certain parts of the
input that contribute to the execution of the current task. In
our model, we focus on the spatial attention and temporal
attention. More specifically, we focus on the places that need
attention among all places, and the same is true for time.

6.1.1 Spatial Attention

For urban data, each location is affected by the surrounding
location in different degrees in the spatial dimension. It
means that we need to use the spatial attention to cap-
ture the dynamic spatial correlations between nodes in the
graph. We take the spatial attention module in the day span
as an example:

S=V. 0((Vai-1 %) P2(¥3Va1-1)" +ba),  (25)
Softmax (S, ;) = M, (26)

> =1 €xp(Si;)
where X is the input data of the I!* spatiotemporal layer.

Vi, b, W1, ¥y, W3 are learnable parameters and sigmoid o
is the activation function. The value of an element S; ; in S
represents the correlation strength between node 7 and node
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j. Then we use a softmax function to ensure the weights of
a node sum to one. With the connectivity of nodes provided
by adjacency matrix A, we can use spatial attention matrix
to capture the dynamic influence between nodes. When we
put the attention module into the GCN, the convolution
changes to:

k—1

(e go)a =D, OxTi(A © S)gs. 27)

6.1.2 Temporal Attention

The urban data in each location is also affected by the
surrounding time slices in different degrees in the temporal
dimension. We use the temporal attention to capture the
temporal correlations between time slices. As same as the
spatial attention, the temporal is:

E=V, - 0((Va1-1) Q1) (2Vai 1) +b.), (28

exp(E; ;)
Yoy exp(Ei )

where V., b., 1, 3, 23 are learnable parameters and
sigmoid o is the activation function. The value of an element
E; ; in E represents the correlation strength between time
slice ¢ and time slice j. E is normalized by the softmax
function like the spatial attention. When we put the atten-
tion module into the convolution neural network, the input
of convolution layer changes to: )A)C’l -1 = )A)d,l_lE.

Softmax(E; ;) = ) (29)

6.2 Spatiotemporal lteration

Now that we’ve used spatiotemporal correlations in both
two parts, we need a way to connect them to provide more
accurate spatiotemporal correlations. In fact, the spatiotem-
poral correlation in data inference is more inclined to the
realistic level, like the distance of the place and the size
of the time interval, while the spatiotemporal correlation
in data prediction is more inclined to the data level. More
specifically, assuming that there are two locations A and B
and we want to infer the temperature of location B from
A. If A and B are far away and due to the climate, the
temperature of A and B are similar. In this case, we can
infer that the temperature of B is similar to A by using
the spatial correlations extracted at the data level, while
the spatial correlations extracted from the real locations are
likely to have a large error due to the long distance. It means
that we can make use of flexible correlations at the data
level to make up for the tough constraints at the realistic
level to make the inferred data more accurate. Therefore,
we propose an iterative approach, using the spatiotemporal
correlation in data prediction to modify the correlation in
data inference iteratively as shown in Fig. 8.

In this way, the tough constraints of the inference part
will become more flexible and accurate after several rounds
of iteration, and can also react to the flexible correlations
of the prediction part to make it more accurate. We use the
following formulas to express this iterative relationship:

ji+1 = /\mfiz + )\prepiv

P =1I;1),

(30)
(D)
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TABLE 1: Statistics of four evaluation data sets

Data Type Urban environment Urban traffic

Datasets Sensor-Scope U-air TaxiSpeed Traffic Volume Viewer
City Lausanne(Switzerland) Beijing(China) Beijing(China) NSW (Australia)

Data Humidity PM2.5 Traffic Speed Traffic flow

Subareas 57 subareas (50 * 30m?) 36 subareas (1000 * 1000m?) 100 roads as subareas 30 checkpoints as subareas
Cycle & Duration 0.5k & 7d 1h & 11d 1h & 4d 1d & 1y

Mean = Std. 84.52 £ 6.32(%) 79.11 + 81.21(pg/m3) 13.01 £ 6.97(m/s) 10095.73 & 26750.79(n)

002[010] .. [o01] Constraintsin
002]0.07 0011%5| data inference

Iterative 002[011] .. o012

0.05[0.03[ .. |0.05f

L ijd\ate -
0.45 008[0.04| .. |015

Fig. 8: Spatiotemporal matrix iteration: the spatiotemporal
correlations matrix is updated with the iteration cycles and
different colors represent different intensities of spatiotem-
poral constraints and spatiotemporal attentions.

Attentions in
data prediction [007]006

where f, is the constraint matrix in the inference part, 13Z
is the attention matrix in the prediction part, Ai,r, Apre are
the weighted parameters and the I represents the inference
algorithm. It means that new inferred data will be generated
after the inference algorithm with updated spatiotemporal
constraints matrix and the spatiotemporal attention matrix
captured from the new data in the prediction part will also
be update. The iterative process will continue until the the
satisfactory prediction result ¢,4; is obtained. Then we
predict the next sensing cycle 9,2 with the new sensing
data Y, . Finally, we will get the prediction of multiple
sensing cycles in the future under the sparse urban data.

7 PERFORMANCE EVALUATION
7.1 Data Sets

To truly evaluate our proposed urban prediction scheme,
we introduce four data sets, two of which are Sensor-Scope
and U-Air under the urban environment sensing, and the
other two are TaxiSpeed and Traffic Volume Viewer under
the urban traffic sensing. We show the main information in
the table 1 with more details as follows:

o The Sensor-Scope is a dataset > of environment
information, which includes temperature, humidity,
and other variables. We choose the humidity dataset
for performance evaluation. This dataset contains
57 x 336 data collected from static sensors deployed
on the EPFL campus. It monitors the humidity vari-
ation in 57 areas for 7 days, recording the average
value every half hour as the real value.

e The U-Air is an air quality dataset *, which in-
cludes PM?2.5, SO5, and other variables. We choose
the PM 2.5 dataset for performance evaluation. This
dataset contains 36 x 264 data collected from monitor
stations deployed in Beijing, China. It monitors the
PM2.5 variation in 36 areas for 7 days, recording the
average value every half hour as the real value.

3. http://sensorscope.epfl.ch/network_code
4. https:/ /www.microsoft.com/en-us/research/project/urban-
computing/
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o The TaxiSpeed is a dataset ° of vehicle mobility infor-
mation. This dataset contains 100 x 96 data collected
from GPS devices deployed on taxis. It monitors the
speed variation in 100 road segments for 7 days,
recording the average value every half hour as the
real value.

o The Traffic Volume Viewer is a dataset ® of traffic
flow information. Data in this dataset is collected
through sensors deployed at traffic collection stations
in NSW, Australia. The Traffic Volume Viewer moni-
tors the traffic flow at over 60 stations since 2006. We
select traffic flow data every day at 30 locations in
2018 for performance evaluation.

In the above datasets, The U-air and The Traffic Volume
Viewer, as the representatives of the urban environment and
traffic, have the characteristics of large data fluctuation, so
they can well measure the performance of inference and
prediction in our model. And the data in The Sensor-Scope,
The TaxiSpeed are closely related in time and space so that
they can well measure the influence of the spatiotemporal
constraints in our model. For all datasets, we set certain data
as unsensed in inference experiment based on sense ratio.
The training set accounts for 60% of prediction experiment,
whereas the validation set and test set each account for 20%.

Besides, it’s worth noting that for all the data by the static
sensors, we can use mobile devices or employee works to
collect the same data from the subareas. Moreover, the data
in these datasets are needed in typical data acquisition tasks,
which is of great significance for data inference and predic-
tion. So we choose these datasets to verify the effectiveness
of our model.

7.2 Comparison Algorithms
7.2.1 Data Inference

In order to effectively utilize the sparse sensed data to con-
duct the inference and prediction, we present the Bipartite-
Graph based Matrix Completion algorithm with spatiotem-
poral constraints (BGMC-st). Since the subarea selection is
not the main point of this work, we randomly sense some
subareas in each sensing cycle, and send the sensed data to
data inference algorithms to recover the unsensed data. We
mainly compare it with the following algorithms:

e BGMC is an algorithm with the same main part
as BGMC-st, but there are no spatiotemporal con-
straints.

5. https:/ /www.microsoft.com/en-us/research/publication/inferring-
gas-consumption-and-pollution-emission-of-vehicles-throughout-a-
city

6. https:/ /www.rms.nsw.gov.au/about/corporate-
publications/statistics/ traffic-volumes/aadt-map /
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e KNN-S and KNN-T are modified from the fa-
mous KNN algorithm, using the weighted average
of k data sensed from the nearest subareas (spa-
tial/temporal correlations) as the inferred value of
the current subarea in each sensing cycle.

e GP is the Gaussian process, it assumes that the spa-
tial distribution of data in the same cycle obeys the
Gaussian distribution. The unknown data is inferred
by calculating the expectation and variance of known
ones.

o DMF is the traditional Matrix factorization with deep
learning multi-layer network, which can decompose
a matrix X with missing values into two (or more)
matrices. And the result of multiplying these de-
composed matrices X’ is the approximation of the
original matrix [32].

7.2.2 Data Prediction

Based on the inference algorithm, we obtain the recov-
ered sensing matrix, then we conduct the Spatiotemporal-
Attention based Graph Convolution Network (AGCN-st)
to do the near-future prediction. Note that in this paper,
we mainly focus on predicting the near future sensing
map from the sparse sensed data, which is such a difficult
scenario that most of the existing works on urban prediction
cannot work well, and all prediction comparison algorithms
use the same sensing matrix recovered by the BGMC-st as
the input to ensure fairness. We thus mainly compare it with
the following algorithms:

e GCN-st is an algorithm with the same main part as
AGCN-st, but there are no spatiotemporal attentions.

e LSTM is the classic Long Short-Term Memory
method, which has the temporal recurrent structure
to capture the temporal relationships among data.

e NAR is the Non-linear Autoregressive Neural Net-
work, which is composed of autoregressive model
and neural network to effectively extract nonlinear
features for prediction [32].

e NAR-SDAE uses the NAR to exploit the temporal
correlation between the sensed data and a Stacked
Denoised AutoEncoder to utilize the spatial correla-
tion.

o LINEAR uses the Linear Regression model to predict
the near-future full map. It assumes that the future
results are linearly related to the historical sensed
data.

o  WNN combines Wavelet transform and Neural Net-
work. WNN is similar to STFNets, which is also good
at extracting periodic features of time series.

7.3 Evaluation Results: Data Inference
7.3.1 Sense ratio

In the aspect of data inference, we first test the performance
of the algorithm under the sensed ratio indicator. We set
the index from 0.1 to 0.5, which means that only 10% to
50% of subareas can be sensed at each sensing cycle. As
shown in Fig. 9, we can clearly see that the inference error
decreases with the increase of sensing ratio, because more
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sensing subareas are collected and the spatiotemporal cor-
relations contained in the data also increases. With the help
of spatiotemporal constraint matrix, our method BGMC-st
achieves the best performance under almost every indicator
compared with other methods. It is because the matrix
completion method makes up for the lack of the correlations
among sparse data by using the low-rank attribute of the
data itself and the added spatiotemporal constraint matrix.
Meanwhile, based on the same inference algorithm, the
BGMC has slightly worse performance than the BGMC-st
without spatiotemporal constraints. For KNN, some data
are more affected by spatial factors while some are more
affected by temporal factors, so the performance of KNN-
T and KNN-S is not consistent. For example, the Humidity
is greatly affected by time, so the KNN-T achieves better
results than KNN-s, while the KNN-S has better perfor-
mance for Traffic Flow. In addition, as a matrix completion
algorithm based on neural networks, the performance of
DMF is not as good as our method. It also proves our view
that our method is better than neural networks when it is
difficult to extract data correlations from sparse data.

7.3.2 Sensed subareas

Furthermore, we measure the performance of the inference
algorithm by the number of sensing subareas. We test how
many sensing subareas data need to be collected to achieve
a given certain error by all algorithms. As shown in Fig.
10, the result is the same as the sensed ratio indicator. The
BGMC-st needs the least subareas and the BGMC sense
more subareas than the BGMC-st. Conversely, other meth-
ods need more subareas. Both the sensed ratio and sensed
subareas verify the effectiveness of BGMC-st.

It is worth noting that for the Error indicator, our method
can still use fewer subareas to achieve the goal when the
error is low. However, due to the reason that other methods
need too many subareas under low error, the experiment is
of little significance. Therefore, we only select two suitable
error indicators to measure the experimental results.

7.3.3 Spatiotemporal ratios

Through the above experiments, we find that the spatiotem-
poral influence is different on different data sets, so we
should also control the spatiotemporal ratio when imposing
spatiotemporal constraints. We test all data sets to find the
best spatiotemporal constraint ratio for each data set. We
denote the spatial weight and temporal weight as A; and
Ay, and Ay = 1 — ;. As shown in Fig. 11, it is obvious that
the spatial weight plays a more important role in the urban
environmental data and the temporal weight is more impor-
tant in the urban traffic data. Because the traffic data itself
has stronger spatial attributes and relatively weak temporal
attributes, the data inference accuracy can be improved
by strengthening the temporal constraints. Similarly, the
spatial of the environmental data is weaker than temporal
so that the inference algorithm has better performance in
the high spatial weight. All other experiments on inference
in this paper are carried out with the optimal spatiotemporal
ratio. From the above experiments, we can see that for
different sensing tasks, using different spatiotemporal ratios
can achieve better results.
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Fig. 9: Inference accuracy under different sense ratios.
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Fig. 11: Inference accuracy under different spatiotemporal ratios.

7.4 Evaluation Results: Data Prediction
7.4.1 Sense ratios

In the aspect of data prediction, because our prediction
method needs the entire data from inference, we firstly test
the performance of the prediction algorithm under the sense
ratio indicator. Like inference experiments, we set the sense
ratio range from 0.1 to 0.5. As shown in Fig. 12, Fig. 13, with
enough spatiotemporal information, our method obtained
the lowest error in every sense ratio in all data sets. On the
contrary, due to the lack of spatial correlation capture, LSTM
is not good enough on each data set, especially for those
data sets with important spatial features like Sensor-Scope
and Traffic Volume Viewer. Interestingly, NAR has already
got good performance on each data set, NAR-SDAE should
have better results with the SDAE component modifying
the spatial correlation, but in some data sets, excessive
correction leads to bad results.

One more thing to note, due to the randomness of

subareas selection, under low sense ratio, some subareas
with strong spatiotemporal correlation may be selected at
0.1 sense ratio and not selected at 0.2 sense ratio, resulting
in an error of 0.2 slightly higher than 0.1.

7.4.2 Prediction cycles

After testing the effect of the sense ratio in the inference
algorithm on the prediction, we turn attention to the pre-
diction algorithm itself. The above experiments only test
the results of one prediction cycle, then we experiment
the algorithm with the multi prediction cycles. We set the
prediction cycle from 1 to 5 because we want the prediction
results of the near future and we set sense ratio to 0.1. Our
method still gets better performance than the others in every
data set as shown in Figs. 14 and 15.

Moreover, with the sufficient spatiotemporal correlations
captured by graph neural network and attention mecha-
nism, the error of our method is relatively more stable
than others in multiple prediction cycles. LINEAR got a
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Fig. 14: Prediction accuracy under near future prediction cycles.

good performance at the data sets which fluctuate little
and have linearity with the linear regressing. However, it is
difficult to compare our method under the sensing data with
complex spatiotemporal correlations. Similarly, although the
NAR and NAR-SDAE got a fine result when the data sets
are non-linear, they can not extract the correlations among
the data contained in the graph structure, and there is no
attention mechanism to capture these dynamic correlations,
its performance is not as good as our method. These results
prove that our method achieves the low error under the data
sets of various characteristics.

7.4.3 Spatiotemproal Attention

Next, we evaluate the impact of the added attention mech-
anism on prediction in two data sets. As shown in Fig. 16,
for PM2.5 data set, it is not only affected by spatiotemporal
characteristics, wind direction, climate and other factors
also account for a large proportion. Therefore, when only
spatiotemporal attention is applied, the improvement of

the algorithm is only about 4%. While for the traffic speed
data set, it is mainly affected by spatiotemporal. When the
attention mechanism is applied, the improvement of the
algorithm is not small, up to nearly 20%. In short, the atten-
tion mechanism can effectively improve the accuracy of the
algorithm, especially when the influence of spatiotemporal
characteristics is very important.

We also vividly show the attention matrix formed in the
spatial dimension as shown in Fig. 16 (c, d). We present
the real locations of ten subareas in the U-Air data set. The
grid in row j of column ¢ represents the spatial correlations
between location i and location j. For example, in row 4,
the colors of 5 and 10 are strong and close, while in the real
map, 4 and 5 are close and 4 and 10 are green areas, so they
have strong spatial correlations. And this also shows that
our model is interpretable to some extent.
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We set the sense ratio as 0.1, the prediction cycle is 5

: and set the optimal spatiotemporal ratio, after testing, we
~16 [ Prediction (7] Inference find that the ratio of 0.6 is the best correction ratio for
& ~_ ‘ U-Air data set. After the spatiotemporal iteration process,
é”m , \%2 the spatiotemporal correlations matrix in the inference and
5 I prediction will be updated. As show in Fig. 17(a, b), the
t & ‘ spatiotemporal constraint matrix becomes more flexible.
L0 1 ‘ It no longer strictly constrains the data similarity of two

0o 02 o1 0e o8 1o ; " ” - " adjacent ronS, but constrzjlins the data relqtionship .among
rows according to the spatiotemporal attentions matrix from

King/ 1M Error (ug/n’) the prediction. Similarly, as show in Fig. 17(c, d) because

(a) Iteration Ratio (b) Iteration Cycle the updated constraint matrix can provide more accurate

inferred data, the new attention matrix can capture more
detailed and accurate temporal correlation. Therefore, the
spatiotemporal information of the inference part and the
prediction part has been corrected with higher accuracy,

Fig. 18: Iteration ratio and cycle over U-Air.

7.5 Evaluation Results: Iterative Update

For the iteration module, we need to test the degree of
0 ’ S & 7. The constraints of data correlations between any two rows need to

iteration to see how much proportion is more appropriate  pe calculated only once, so the constraint matrix is the lower triangular
to correct the spatiotemporal matrix of the inference part. matrix.
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Fig. 19: Inference and prediction accuracy under different frameworks.

and the experiment performance has also been improved
as shown in Fig. 18. Regarding the spatiotemporal weight
ratio within the updated matrix, we did not conduct a more
detailed test, which is not our focus, and it will also make
the whole system too cumbersome. Anyway, the iterative
update module does improve the accuracy of the two parts.

7.6 Evaluation Results: Inference-prediction Frame-
work

To demonstrate the superiority of the inference-prediction
framework, which is connected based on spatiotemporal
correlations, we conduct the experiments to evaluate the
performance of inference and prediction under different
inference-prediction frameworks. As shown in Fig. 19, the
proposed method is our framework which has a complete
inference algorithm with spatiotemporal constraints and
prediction algorithm with spatiotemporal attentions, and
we utilize the spatiotemporal correlations to connect the two
together. The GAN method [31] is an inference-prediction
framework based on the Generative Adversarial Network,
but it does not have the connection between the infer-
ence and prediction and the spatiotemporal correlations.
The DMF+NAR_SDAE method [32] is also an inference-
prediction framework based on the neural networks without
connection and it utilized the spatiotemporal information in
the prediction. As shown in Fig .19, we evaluated the perfor-
mance of the inference and prediction algorithm under dif-
ferent frameworks. The solid line in the figure indicates the
inference error of each method at the 0.1-0.5 sense ratio, and
the dashed line indicates the prediction error of each method
at the 1-5 prediction cycles. In the inference experiment, our
method achieves the best results under each metric, while
GAN and DMF have worse experimental results than our
method due to the lack of spatiotemporal constraints. In
the prediction experiment, our method achieves the lowest
error under each metric as well. The GAN-based method has
difficulty in extracting sufficient spatiotemporal correlations
compared with the graph neural network, so its results
are worse than ours. Although the NAR+SDAE method
can utilize spatiotemporal information, it cannot capture
spatiotemporal correlations dynamically without an atten-
tion mechanism. Therefore, its prediction results are not as
good as ours and it even performs poorly on some datasets
with large spatiotemporal fluctuations. Another point worth
noting is that the added iterative update mechanism also
contributes to the improvement of our inference and pre-
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TABLE 2: Running time for main methods

PM2.5 Hum. TraSpeed. TraFlow.
BGMC-st 0.17s 0.21s 0.36s 0.22s
AGCN-st 0.21s 0.30s 0.54s 0.24s

diction effectiveness. It is able to obtain more accurate spa-
tiotemporal information to infer and predict better, which
cannot be done by the other two methods.

7.7 Running time

Finally, we list the running times of the main methods in the
table 2. Our experiment platform is equipped with Inter(R)
Core(TM) CPU i5-10400F @ 2.90GHz and 16.00 GB RAM,
and we use the Mxnet to do the urban prediction exper-
iments. The table shows the time of inferring a complete
matrix for each sensing cycle and training once in all data
sets. The BGMC-st costs 0.17-0.36s to infer data and the
AGCN-st costs 0.21-0.54s to predict data. The running time
is totally acceptable in practical applications.

8 CONCLUSION AND DISCUSSION
8.1

In this paper, we turn attention from inferring the current
unsensed data to predicting the future full map from the
sparse sensed data. We propose an urban inference and
prediction framework in Sparse MCS, which consists of
three parts: data inference, data prediction, and iterative
update. Firstly, we propose a Bipartite-Graph-based Matrix
Completion algorithm with spatiotemporal constraints to
recover the full sensing map from the historical data. Then
we present a GCN model with spatiotemporal attentions
to predict the near future data. Finally, we use the spa-
tiotemporal correlations matrix in both to update iteratively,
in order to enhance the correlations to improve the per-
formances of data inference and prediction at the same
time. Extensive evaluations have been conducted on two
types of typical urban sensing tasks with four real-world
data sets, including the monitoring of urban environment
(PM2.5, Humidity) and urban traffic (Traffic speed, Traffic
flow). The results show that our proposed algorithms can
achieve a high inference and prediction accuracy with the
sparse sensed data.

Conclusion
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8.2 Discussion

However, as the data density increases, the advantages of
our methods are no longer as obvious as when the data
is sparse. The reason is that we use the data inference
method first and then predict the future full map, which
is designed for the sparse mobile crowdsensing and has
one more step than the general prediction algorithms. In
addition, our sparse performance is that there are missing
values in each round of collection. In the face of large-
area missing data caused by no data collected in the whole
round, our method improvement is limited. And if the data
set is greatly affected by factors other than spatiotemporal
factors, our method improvement is not obvious enough in
the future. We should focus on the inference of spatiotem-
poral fault data and the prediction under the influence of
multiple factors, and further expand the prediction range in
the future.
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