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Spatio-Temporal Pyramid-Based Multi-Scale Data
Completion in Sparse Crowdsensing

Wenbin Liu"’, Hao Du"?, En Wang

and Jie Wu

Abstract—Sparse Crowdsensing has emerged as a crucial and
flexible method for collecting spatio-temporal data in various ap-
plications, such as traffic management, environmental monitor-
ing, and disaster response. By recruiting users and utilizing their
diverse mobile devices, this approach often results in data that
is both sparse and multi-scale, complicating the data completion
process. Although numerous data completion algorithms have been
developed to address data sparsity, most assume that the collected
data is of the same or similar scale, rendering them ineffective for
multi-scale data. To overcome this limitation, in this paper, we pro-
pose a spatio-temporal pyramid-based multi-scale data completion
framework in Sparse Crowdsensing. The basic idea is to leverage a
pyramid structure to efficiently capture the complex interrelations
between different scales. We first develop a Spatial-Temporal Pyra-
mid Construction Module (ST-PC) to handle multi-scale inputs,
and then propose a Spatial-Temporal Pyramid Attention Mecha-
nism (ST-PAM) to capture multi-scale correlations while reducing
computational complexity. Furthermore, our method incorporates
cross-scale constraints to optimize completion performance. Ex-
tensive experiments on four real-world spatio-temporal datasets
demonstrate the effectiveness of our framework in multi-scale data
completion.

Index Terms—Sparse crowdsensing, spatio-temporal data
completion, multi-scale, spatio-temporal pyramid attention.

I. INTRODUCTION

ITH the rapid development of smart devices and wireless
U w communication technologies [1], [2], Crowdsensing [3]
has emerged as a powerful paradigm for data collection. This
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approach leverages the participation of users to gather spatio-
temporal data in a cost-effective and scalable manner. Nowa-
days, Crowdsensing has been widely adopted in various domains
such as traffic management [4], environmental monitoring [5],
and disaster response [6]. Despite its advantages in flexibility and
scalability, Crowdsensing also presents significant problems,
such as high collection costs and heterogeneity in the sensing
capabilities of user devices. As a result, the gathered data are
often sparse and multi-scale, which making it challenging to
apply the data directly in practical applications.

To address data sparsity and missingness, Sparse Crowdsens-
ing [7], [8] has emerged as an effective approach. Various data
completion algorithms, including those based on compressive
sensing or low-rank matrix factorization [9], [10], [11], [12],
[13], have been explored to mitigate these issues. Note that
most of the existing works are based on the assumption that
the collected data are of the same or similar scales. However, in
real-world scenarios, due to the diversity of devices and the com-
plexity of sensing environments, data collected by different users
usually vary in scales. Consider a scenario requiring comprehen-
sive traffic flow information during a large-scale sudden event,
where the recruitment of users via a crowd sensing platform
becomes essential. This approach, however, inherently yields
sparse data due to the opportunistic and non-uniform nature of
mobile sensing. Such data sparsity significantly complicates the
accurate inference of a complete spatio-temporal view, making
it challenging to capture evolving traffic patterns or predict
future conditions effectively. Furthermore, due to the diversity of
user devices, the collected data often exhibit multi-scale char-
acteristics. For example, consider that traffic data is collected
by different devices: a smartphone, a vehicle, and a drone.
Obviously, a smartphone covers a smaller area, indicating a
finer scale, while vehicles and drones cover progressively larger
regions, indicating coarser scales.

Asshownin Fig. 1, different scales are represented by varying
grid sizes: smaller grids for finer scales and larger grids for
coarser ones. There is a numerical relationship between scales:
for example, coarser values such as air quality (e.g., PM2.5 or
humidity) can be derived by averaging finer-scale values, while
coarser traffic flow data may be the sum of finer-scale nodes.
Furthermore, Fig. 2 further illustrates this by showing a general
correspondence between coarse-scale aggregations and under-
lying fine-scale trends, highlighting inherent cross-scale corre-
lations valuable for data completion. Traditional single-scale
data completion models fail to capture these complex cross-scale
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relationships, leading to incomplete representations and a bias
towards specific scales, thus restricting a comprehensive under-
standing of the overall data structure. Therefore, addressing the
multi-scale data completion in Sparse Crowdsensing is critical.

Some researchers have also acknowledged and explored the
complexities associated with multi-scale data, such as in spatio-
temporal data super-resolution [14], [15], [16], [17]. This ap-
proach aims to convert low-resolution data into high-resolution
data, typically requiring the completion of low-resolution data
before attempting super-resolution. However, the preliminary
data completion step can introduce initial inaccuracies, lead-
ing to the accumulation of errors in the final results. More-
over, they primarily focus on the coarsest scale data, failing
to fully leverage the intricate interconnections inherent in
multi-scale spatio-temporal data. Similarly, some researchers
have focused on exploring multi-scale correlations within time
series data [18], [19], [20]. Their objective is to capture the
inherent relationships between long-term and short-term time
series, placing a significant emphasis on temporal multi-scale
information. However, these studies frequently overlook spatial
multi-scale connections and require high data completeness,
limiting their use in environments with sparse data. In summary,
these approaches still struggle with the challenges of sparsity
and complexity in multi-scale data.

To this end, this paper aims to tackle the dual challenges
of data sparsity and multi-scalability. Capturing multi-scale
relationships is inherently complex. As shown in Fig. 2, while
coarse and fine scales may reveal general trend correspondence,
fine-scale units within a single coarse region often exhibit signif-
icant internal heterogeneity. In Sparse Crowdsensing, capturing
these complex multi-scale correlations is further exacerbated
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by the limited and sparsely distributed data. Thus, how to
capture relationships within sparse and multi-scale data is the
first challenge. Note that the relationships within and across
scales are highly complex. Simply computing the correlation
between all data would significantly increase the input size
and computational burden. Also, it could cause the model to
overly focus on redundant information, thereby diminishing
overall performance. Thus, how to reduce the computational
complexity and focus on more useful information is the second
challenge. Finally, to achieve better data completion perfor-
mance, it is crucial to effectively utilize the sparse data col-
lected at each scale and incorporate cross-scale correlations to
enhance the model’s capability. Thus, after capturing the rela-
tionships within and across scales, how to effectively leverage
sparse and multi-scale data for data completion is the third
challenge.

To address these challenges, this paper proposes a novel
Spatio-Temporal Pyramid-Attention based Multi-scale Data
Completion Framework in Sparse Crowdsensing. To capture
relationships within sparse and multi-scale data, we introduce a
Multi-Scale Embedding Layer to better represent features from
diverse scales. Subsequently, we propose the Spatial-Temporal
Pyramid Construction Module (ST-PC) to organize multi-scale
inputs into a three-dimensional pyramid structure, providing a
hierarchical representation conducive to relationship modeling.
To reduce the computational complexity and focus on more
useful information, we propose the Spatial-Temporal Pyramid
Attention Mechanism (ST-PAM), using a pyramid structure for
efficient correlation extraction within multi-scale data, while
effectively reducing the computational complexity. Finally, fo
effectively leverage sparse and multi-scale data, we apply cross-
scale constraint restrictions on the completion results.

Our work has the following contributions:

e We propose a novel framework specifically for multi-scale
sparse data completion. This framework can effectively
capture the correlations between multiple scales, and be
used for inferring complete data at the finest scale. To the
best of our knowledge, this is the first work to address
the challenge of completing sparse data while considering
multi-scale data collection scenarios.

e We develop the Spatial-Temporal Pyramid Construction
Module (ST-PC). This module efficiently utilizes the char-
acteristics of sparse multi-scale spatio-temporal data, and
construct the multi-scale inputs as a three-dimensional
pyramid structure.

® We propose the Spatial-Temporal Pyramid Attention (ST-
PAM), a novel sparse attention mechanism to capture
multi-scale data relationships. We show that, with optimal
hyperparameters, ST-PAM achieves O(1) maximum path
length and O(LT') computational complexity.

e Experimentally, our algorithm performs better compared
to other baseline algorithms on four real-world datasets.
With limited multi-scale data assistance, our approach
significantly outperforms single-scale models.

The remainder of this paper is organized as follows. After

reviewing the related works in Section II, we introduce the
system model and formulate the problem in Section III. Then,
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the multi-scale completion methods are proposed in Sections IV,
followed by the theoretical analysis in Section V. Finally, we
evaluate the performance in Section VI and conclude this paper
in Section VII.

II. RELATED WORK
A. Data Completion in Sparse Crowdsensing

With the growing demand for fine-grained data and the
high costs of data collection, Sparse Crowdsensing [7], [8] has
emerged as an efficient and scalable solution for gathering data.
In this paradigm, data completion plays a crucial role, as it
leverages spatio-temporal correlations to infer missing data from
the sparse samples provided by users.

Traditional methods focus on machine learning algorithms
for data completion. For instance, Candes et al. [9] introduced
the concept of compressed sensing, a method for signal recon-
struction that can accurately recover signals from highly incom-
plete frequency information. Subsequently, Candes et al. [10]
employed matrix completion, using the low-rank property of
matrices to restore complete data. Alternatively, Wu et al. [11]
proposed spatio-temporal kriging interpolation, aimed at ad-
dressing data sparsity problems.

With the advancements in deep learning, neural network-
based methods have demonstrated significant potential in spatio-
temporal data completion. For instance, Yuan et al. [21] pro-
posed the STGAN model, employing generative adversarial
networks (GANs) to effectively address data sparsity. Li et
al. [22] utilized convolutional neural networks (CNNs) for
spatio-temporal data completion, improving data resolution via
super-resolution techniques. Furthermore, Wang et al. [23] intro-
duced a Transformer-based completion-prediction framework
for spatio-temporal data inference and long-term prediction. In
another development, Wang et al. [24] focused on few-shot data
completion in Sparse Crowdsensing. Although these approaches
achieve notable success in data completion, they are primarily
tailored for single-scale data, limiting their effectiveness in
multi-scale environments.

B. Multi-Scale Model

Multi-scale models have been extensively researched in the
field of Computer Vision. David et al. [25] proposed a theory on
how pyramid structures process and understand images, offering
key insights into the human visual system. Building on this,
Zhang et al. [26] introduced a multi-scale feature pyramid,
improving the ability to capture multi-scale correlations. With
the development of the Transformer [27], many studies based
on the Vision Transformer [28] have been carried out. For
example, Ren et al. [29] proposed a Shunted Self-Attention
mechanism, capable of capturing relationships between multiple
scales within the single attention layer. Recently, Fan et al. [30]
proposed Retentive Networks that integrate vision transformers
with retentive memory to capture both local and global scale
dependencies more effectively.

In urban management, the application of multi-scale data
is significant. One application is super-resolution, which uses
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coarse-scale data to infer fine-scale data. Crivellari et al. [31]
use GAN to up-scale urban settlements from satellite imagery.
Zhou et al. [15] used mobile IoT data to infer fine-grained
urban traffic and employed neural networks to solve ordinary
differential equations; Zhang et al. [16] conducted research on
spatio-temporal super-resolution of precipitation using GAN
models, achieving notable results. Beyond super-resolution
technology, multi-scale data has also been widely applied in time
series data, to understand the relationships between long-term
and short-term cycles. Wang et al. [20] introduced TimeMixer,
employing a decomposable multi-scale mixing mechanism to
integrate information across both fine and coarse scales. Liu et
al. [18] reduced computational complexity while maintaining
model accuracy and efficiency through a pyramid-structured
attention mechanism. However, the multi-scale work on spatio-
temporal data is difficult to apply to sparse data. Given the great
success of pyramids in multi-scale works, we propose to apply
the pyramid structure to multi-scale sparse data completion.

III. SYSTEM MODEL AND PROBLEM FORMULATION
A. System Model

In this study, we explore a comprehensive spatio-temporal
data application scenario. Users employ sensors of different
scales to collect data from specific areas during various time
periods. Unlike traditional data-completion frameworks, we are
faced with multi-scale data scenarios. The core objective is to
reconstruct complete datasets from these sparse spatio-temporal
observations. To better illustrate this scenario, we have provided
a clear definition of its key components.

Sense Map: To clearly illustrate the data collection process,
we begin by defining the concept of the sense map. Specifically,
the spatial map is partitioned into L discrete subareas at the
finest scale to ensure precise spatial coverage. Furthermore, the
entire data collection process is structured by dividing it into T
equal-length time periods. During each time period, users are
assigned to their respective subareas to collect data.

Scale: We categorize the sensing capabilities of sensors into
S distinct levels, where a higher level indicates a coarser scale.
Coarser sensors encompass the sensing areas of multiple finer
sensors, covering an area C-times larger than the finer sen-
sors.! Consequently, for data across various scales, the number
of spatial divisions L) differs, and these divisions exhibit a
multiplicative relationship across different levels.

e))

It is important to note that both S and C are treated as
hyperparameters. This design choice is grounded in the ob-
servation that real-world multi-scale sensing scenarios often
involve a few distinct and classifiable scale levels, such as data
from smartphones, vehicles, and drones. Our framework is thus

ITo simplify the problem, we assume that the inclusion relationship between
different scales is identical. For scenarios where these relationships differ, such
as C' = 2 between scale 1 and 2, but C' = 3 between scale 2 and 3, our model
can be adapted by employing different C' values across the respective scale
transitions.
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designed to be flexible, allowing .S and C' to be configured to best
represent the specific multi-scale structure of a given sensing
environment.

Data: For the t*" time period, the data captured by users
with level s sensing capability in their respective ¢ subarea

()

is denoted as x,”,. Unsensed data is recorded as a value of 0.2

Concurrently, the ground truth is represented as yﬁ) . To describe

the sensing status at each scale s, we introduce a sensing matrix
M) € RT*L™  where mgsﬁ) =
s has been sensed during the #*" time period and /*" subarea;
Conversely, misé) = 0 indicates it has not been sensed. From
this, the sensed data can be expressed as:

X ={X® x®  xEN

1 indicates that data at scale

; (2)
s=1,2,...,85, 3)

where X represents all the sensed data across different scales,
the dot product (®) represents the element-wise product.

Method: We utilize the completion algorithm Z() to process
the sensed multi-scale data X. Since the data at the finest scale
is the most difficult to obtain, yet highly demanded in practical
applications, our goal is to complete the data at this finest scale
(s = 1). The completed result is represented as Y e RTXL,
To quantify the accuracy of this completion, we introduce 4 to
represent the error between the completed data and the ground
truth. This process can be mathematically expressed as:

X = Y& o M),

IX) =YD = YD, )
T L
YW, YD) =33 | -5l )

i=1 j=1

B. Problem Formulation

Problem [Data Completion for Multi-scale Sparse Spatio-
temporal Data]: Given T time slices, S different scales of data,
and L subareas of the finest scale size, we aim to sense data from
a limited number of subareas across different scales, utilize this
data to reconstruct complete data at the finest scale. In doing so,

2if 0 has a specific meaning, an alternative value will be used.

The workflow of our work: the platform recruits users with different sensing capabilities to collect data for data completion.

we strive to minimize the error between the completion results
and the ground truth.

T L
min §(YD, yM)=3"%" ) — g, (©6)
i=1 j=1 '
st vse (18], 26 _q %
e T size(s — 1)
C. Workflow

Our workflow is shown in Fig. 3. We focus on an urban spatio-
temporal data sensing task, aiming at acquiring location-specific
data over adesignated time period in order to infer complete data.
Initially, the platform publishes sensing tasks to users equipped
with various sensing devices. These users then collect data in
specified areas and times, subsequently uploading their data to
the platform. After the data collection period concludes, the
platform aggregates and categorizes the data according to the
sensing scale of each user. Ultimately, this aggregated data is
fed into a completion model, which generates the finest-scale
completion results.

IV. METHOD
A. Overall Structure

As shown in Fig. 4, our method is composed of several
components: Multi-Scale Embedding Layer, Encoder, Spatial-
Temporal Pyramid Construction Module (ST-PC), Decoder, In-
ference Layer, and Cross-scale Constraint Mechanism.

First, the Multi-Scale Embedding Layer is used to extract
initial features from both sensed and unsensed multi-scale
input data. The Encoder then processes the sensed data to cap-
ture internal correlations. The resulting output is concatenated
with the embedded unsensed data to combine the information
from both, forming a comprehensive multi-scale representa-
tion. To further capture and organize multi-scale information
from spatio-temporal data, we specifically design the ST-PC
layer to construct a spatio-temporal pyramid structure that aids
the decoder in extracting richer multi-scale features. Subse-
quently, the Decoder works to extract correlations between
the unsensed and sensed data, leveraging the Spatio-Temporal
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Pyramid Attention Mechanism (ST-PAM) to enhance this
process. Finally, the Cross-Scale Constraint Mechanism is
applied to further refine and optimize the completion of the
finest-scale data.

B. Multi-Scale Embedding

Data embedding plays a crucial role in completion models,
significantly enhancing the model’s performance and accuracy.
Given that our method processes multi-scale spatio-temporal
data inputs, effectively capturing the spatio-temporal charac-
teristics and data scales is key in designing the embedding
module. To this end, we first develop a dedicated multi-scale
data embedding module, to effectively extract features from
multi-scale spatio-temporal data.

As shown in Fig. 5, our model, inspired by the Transformer
architecture [27], incorporates value embedding and various
forms of positional and contextual embeddings tailored for this
task.

1) Value Embedding: For value embedding, we differentiate
between sensed and unsensed data. For sensed data, we use
one-dimensional convolutions to map the sparse observed values
into a d,,eqe;-dimensional space. For unsensed data, inspired
by the Masked Auto Encoder [32], we employ a uniform ran-
dom learnable vector for its representation. Crucially, to better
capture scale-specific imputation patterns, we use a distinct
learnable vector for each scale. The final value embedding is
represented as X% € RT*LC) xdmodcr

2) Positional Embedding: Given the spatio-temporal na-
ture of our data, we use separate learnable embedding lay-
ers for time and space positions. These are represented
as TI(,S) € RT*L xdmodet for time-position embeddings and
S{¥) e RT*L® xdmoaet for space-position embeddings.

3) Contextual Feature Embedding: To further enhance accu-
racy, we incorporate additional contextual information derived
from prior knowledge. For temporal features, including times-
tamps and holiday indicators, we adopt an approach inspired
by Informer [33]. These features, after appropriate normal-
ization, are projected into d,,,q4.;-dimensional vectors using
a linear layer. This results in the temporal contextual feature
embeddings Tgf). For spatial features, our method is similar
to that in ST-TransI [23]. Longitude and latitude coordinates
are first normalized, then independently projected by separate
linear layers, and their resulting embeddings are summed. If
Point of Interest (POI) information is available for a location,
after one-hot encoding, its d,,,qe;-dimension embedding is then
added to the summed coordinate embeddings to form the final
spatial contextual feature embedding S( *)

4) Scale Embedding: Moreover, to accurately perceive the
scale of the data, we introduce a scale embedding. This begins
by computing the relative scale information as 2 5¢q;. = C*/ CS.
Subsequently, this information is mapped to a higher Eli)men-

€

sional space using a fully connected layer, resulting in X‘,» ale

RTXL(S)deodEl'
The final embedded representation for each spatio-temporal
point (¢,1) at scale s, denoted as ngb ;> is constructed by
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summing these individual embedding components:

X0, =X 480 + T 48+ 1l 4 xE) L 8)

em val scale?

Subsequently, based on the sensing matrix M(*), these point-
wise embeddings are partitioned into sets for sensed and un-
sensed data:

S
Xen = J (XM =13, ©)

S
Xemb Us:l{ emb,t,llM( - 0}7

where XSBI ».+.; Tepresents the embedding of the spatio-temporal

(10)

point at time ¢ and subarea [ within scale s, and M) is the
corresponding sensing matrix.

C. Encoder

After obtaining the multi-scale embeddings, the Encoder
processes these embeddings to capture intricate spatio-temporal
relationships within the sensed data. It is designed to ex-
tract key dependencies across scales while ensuring computa-
tional efficiency, setting the stage for subsequent stages of data
completion.

Inspired by the Masked AutoEncoder [32], the Encoder fo-
cuses exclusively on sparse sensed data, which typically holds
the most critical information for spatio-temporal modeling. To
capture these essential correlations across scales and time while
minimizing computational complexity, the Encoder employs a
self-attention mechanism, which dynamically focuses on the
most relevant components. Specifically, the self-attention mech-
anism transforms the multi-scale embeddings of sensed data into
query, key, and value matrices:

Q=XZ'WY K = XJUWE V =XZIWY. (1)

Subsequently, the attention scores are calculated using the for-
mula of Scaled Dot-Product Attention:

yi= (12)

S e (akd [V
j=1 Zé\f:1 €xXp (qzk%/\/@) ’

where q; represents the i-th row of Q, ij represents the trans-
pose of the j-th row of K, and v; represents the j-th row of V,
N is the size of the input, and \/d}, is the dimension of K, used
for scaling the dot product.

This attention mechanism allows the model to focus on the
most important components of the sparse sensed data, dynami-
cally adjusting based on learned attention weights. The Encoder
processes these features through multiple layers, each refining
the spatio-temporal correlations. After passing through all the
layers, the final output from the Encoder, denoted as X294, is
prepared for subsequent stages of processing.

ZL) = Norm (FA(XLH) + X5,

Z.2 = Norm (FFN(ZL) + ZL1)

en

Xep =2l =1,.... N,

N
Xe'rw

XO _ Xemb Xout

en

(13)
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where FA() represents the self-attention mechanism, FFN()
represents the feedforward network, and Norm() represents the
LayerNorm. X" represents the final encoded output after pro-
cessing through all layers. The Encoder efficiently captures key
relationships in sparse multi-scale spatio-temporal data, setting
the stage for the next phase of data reconstruction.

Before transitioning to the next module, it is crucial to address
that the Encoder focuses solely on sensed data, which lacks the
context provided by the unsensed data. We create a comprehen-
sive multi-scale spatio-temporal representation by combining
the Encoder’s output, X°%!, with the embedded unsensed data.

en

This process can be expressed as:

Xyep = = Resort(Concat (X" Xemb))

en

(14)

where Concat(X24t, X% represents concatenation XoUt
and X4 along the node dimension. Subsequently, Resort(.)
places the combined embeddings back into their original loca-
tions. This comprehensive representation lays the foundation for

further exploration of spatio-temporal information.

D. Spatial-Temporal Pyramid Construction Module (ST-PC)

After obtaining the output from the Encoder, we need to
construct a structure that effectively captures the multi-scale
spatio-temporal relationships. Spatio-temporal data is complex,
often displaying patterns across various scales and different
temporal contexts. Basic approaches to handling multi-scale
data often struggle with balancing fine-scale and coarse-scale
information, leading to a loss of critical details or inefficient
computation. To address these challenges, a robust structure
is required—one that effectively integrates information across
scales while preserving the rich characteristics.

For this purpose, we have selected a pyramid structure. The
pyramid structure is particularly advantageous because it allows
for the simultaneous consideration of fine-grained and coarse-
grained patterns. In the spatial dimension, this enables the model
to capture both local details and broader patterns, such as how
data collected by handheld devices in small areas relates to
broader trends captured by drones covering larger regions. In
the temporal dimension, it models short-term fluctuations and
long-term trends, ensuring that the model can relate immedi-
ate events to broader temporal behaviors, like daily variations
compared to weekly or monthly patterns. By integrating these
spatial and temporal scales, the pyramid structure effectively
combines both trends, enabling comprehensive spatio-temporal
data reconstruction.

Building on these advantages, we introduce the Spatio-
Temporal Pyramid Construction Module (ST-PC) to effectively
implement this structure. The ST-PC module is specifically
designed to extract and integrate features across multiple spatio-
temporal scales, effectively addressing the challenges posed by
sparse input data. This module constructs a pyramid structure
where each layer represents a specific scale, with coarser scales
at higher levels. In each layer, the rows correspond to time and
the columns correspond to space, with a direct correspondence
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between layers: each coarser-scale node encapsulates the com-
bined information of C' x C'finer-scale nodes in the layer below,
summarizing detailed spatio-temporal patterns.

To effectively implement this pyramid structure, the ST-PC
module is divided into two main parts: Temporal Multi-Scale
Extraction and Spatial Multi-Scale Extraction. As shown in
Fig. 6, we first focus on constructing a pyramid structure along
the temporal dimension. Starting from the finest temporal res-
olution, we aggregate the information across time while main-
taining the spatial distribution. To achieve this, we employ a
one-dimensional convolutional layer with a kernel size of C*~!
and a stride of C*~! to construct nodes at the corresponding
scale:

Cs—l

_ (s)
= Z wixrep(tfl)cﬂﬁe + bi,
i=1

xtfpct7 ¢ (15)
where w; represents the i-th element of the one-dimensional
convolution kernel w € R, and b, represents the i-th element
of the bias b € R¢.

Since our spatio-temporal data is highly sparse, constructing
effective representations at different scales is crucial to ensure
that no critical information is lost during the process. To achieve
this, we aggregate these finer spatio-temporal nodes to form
coarser representations, ensuring that we capture as much rele-
vant information as possible. To maximize data utilization, we
design the Spatial Multi-Scale Extraction part to enhance data
utilization. This part uses a two-dimensional convolutional layer
with akernel size and stride of C*~! to utilize smaller scale nodes
to construct coarser nodes:

Cs— lca 1
“1)
D D Wit ooty + b (16)

=1 j=1

Ts—pere =

where w; ; represents the element of row i and column j in the
two-dimensional convolution kernel W € RE" " *C"" and b,
represents the row i and column j in the bias B € RE* 'xC" ",
Ultimately, we concatenate the results from these two parts
and map their dimensions to d,,,,q¢; through a fully connected
layer, thus forming the newly constructed node set at scale s,
a7

s—pc

X](DSC) = Linear (Concat(ng)pc,X( ) )) .

In this manner, we construct the entire spatio-temporal pyra-
mid structure:

_ (1 2 S
={xX{),x,..., X},

(18)

this structure serves as the input for the decoder.

E. Decoder

After constructing the pyramid structure, the next step is to
facilitate direct interactions between the different scales within
the Decoder. Similar to the Encoder, the Decoder processes
the input through multiple layers, maintaining the hierarchical
structure. However, unlike the Encoder, the Decoder incorpo-
rates the Spatio-Temporal Pyramid Attention Mechanism (ST-
PAM), which is specifically designed to capture multi-scale
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dependencies by enabling direct interactions across different
scales. The Decoder’s operations can be formulated as:

X5 = Norm (STP(X!Y) + X4,
X2 = Norm (FEN(Xj)) + X[ ),
XL, =X 1=1,...,N,

X9, = X0, X34 = XY (19)

where STP() represents the ST-PAM, and X9“* represents the
final decoded output. Finally, the trained features are input into
the inference layer to obtain the finest-scale completion results.
Next, we will provide a detailed explanation of the ST-PAM,
the core component enabling multi-scale interactions within the
Decoder.

FE. Spatial-Temporal Pyramid Attention Mechanism (ST-PAM)

Within the Decoder, the ST-PAM plays a central role in di-
rectly modeling the interactions across different scales. By lever-
aging the pyramid structure established in the previous module,
ST-PAM allows the model to effectively capture both fine-scale
and coarse-scale dependencies in spatio-temporal data. This
mechanism is integral to the Decoder’s ability to process the
multi-scale information gathered from the Encoder and construct
accurate spatio-temporal representations.

As shown in Fig. 7, in the ST-PAM, we emphasize the impor-
tance of capturing two types of interactions: intra-scale connec-
tions and inter-scale connections. Intra-scale connections focus
on capturing localized patterns within the same scale, allowing
the model to learn detailed spatio-temporal correlations. On the
other hand, inter-scale connections bridge the relationships be-
tween finer and coarser scales, ensuring that detailed information
flows smoothly across the pyramid’s hierarchy and larger-scale
trends are maintained. By considering both types of connections,
ST-PAM effectively captures the complex multi-scale spatial and
temporal relationships.

ST-PAM handles intra-scale connections by attending to
neighboring nodes within the same layer. Specifically, for each
node at a given scale, the mechanism considers the closest A2
nodes, where A is a hyperparameter, representing the number of
adjacent spatio-temporal steps considered along both the tempo-
ral and spatial dimensions. Due to the inherent spatio-temporal
dependencies [34], nodes that are closer in time and space
tend to have stronger correlations. By selecting A2 neighboring
nodes, the model captures localized patterns more effectively,
leveraging both temporal and spatial proximity to enhance the
understanding of fine-grained details.

Simultaneously, to establish effective inter-scale connections,
we focus on the relationship between coarse-scale and finer-
scale nodes. Specifically, each coarse-scale node is connected
to the C? finer-scale nodes that form its composition, enabling
the model to aggregate detailed information from finer levels
into the coarser representation. Additionally, connections are
established between coarser-scale nodes and their counterparts
in adjacent layers, ensuring the model retains both the intricate
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details from finer scales and the broader context across space
and time, harmonizing detailed insights with overarching trends.
For regular sensing scenarios, the ST-PAM can be formulated as
follows:

(20)

where .AESE) represents the attention nodes within the same scale,
St(sl) represents the finer-scale nodes that form the current node,

and ]-}(;) represents the coarser-scale nodes associated with the
current node.

For irregular sensing scenarios (e.g., traffic management), we
redefine only the intra-scale neighborhood A to align the spatial
neighborhood with the actual topology:

A-1 . A-1
() _ J () B =T Si <t 4+ S5,
At,z - {Xi,u . = NA(U), ) (21)

where the spatial neighbor set N4 (v) is defined by
NA(U) = argmin Z dgraph(pa 1}),

SCV,ISl=A o5

(22)

and dgraph(~, -) denotes the shortest path distance between two
sensors. The full attention mechanism is defined as:
v = 3 exp (ae, kL /v di) Vi,
tl T / .
mEM?Z) ZmEMSZ) exp (qtvékm/ dk)

(23)

ST-PAM significantly reduces computational complexity
while maintaining high performance, with a computational com-
plexity of O(LT) and a maximum signal traversal path length
of O(1) under specific conditions.

G. Cross-Scale Constraint

In order to further refine the data completion process, espe-
cially at the finest scale, it is crucial to incorporate the inherent
mathematical relationships between data at different scales.
Operations such as summation and averaging provide valuable
insights from coarser scale data that can be leveraged to correct
and optimize the completion at finer scales. To address this,
we propose a novel Cross-Scale Constraint method aimed at
guiding the completion process across multiple scales, ensuring
consistency and accuracy.

Specifically, we introduce a loss function £ as follows:

L= ale (S?“),Y(l)) + (1= a)Lre (\?(U,Y) C(24)

where « is a weight parameter between O and 1. £, represents
the discrepancy between the data completion results and the
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Algorithm 1: Multi-Scale Data Completion.
Input: A,C,T,L,N,S, X
Output: Y
1: count < 0;
2: while not convergent and count < MAX_ITER do
3: Embedding:
4: Divide X into sensed part X.,, and unsensed part
Xde;
50 Get X\ s 5 8¢ Tl X)) for both X,
and X g.;

6: Calculate X¢™° X¢mP by (9) and (10);
7: Encoder:

8 XO — Xemb;

9: forl =1to N encoders do

10:  Calculate XL, by (13);

11 Xout « XN

12: Decoder:
13:  Calculate X, by (14);

14:  Calculate X(*) . and X, by (15) and (16);
15:  Calculate X, by (17) and (18);
16: X9, + X,
17: forl = 1to N decoders do
18:  Calculate X/, by (19);
19: Xout + XN
20:  Get YU by inputting X9“* to infer network.
21: Calculate and reduce L by (24);
22:  count < count + 1
return Y1)

ground truth on the finest scale, quantified in this study using
the Mean Squared Error (MSE) function. £,.; represents the
discrepancy between the data perceived at coarser scales and
the completed data, calculated as follows:

S
Lret = Lmse(Agg_s(YD)o MO Y o MW),

s=2

(25)
where © denotes element-wise multiplication, M(*) represents
the sampling matrix at scale s, and Agg_s(.) transforms the
finest-scale result to scale s.3

Through this approach, our method not only considers the
accuracy at the finest scale but also leverages coarser scale data
to enhance the overall quality and precision of the completion.
We show our whole work flow in Algorithm 1.

V. THEORETICAL ANALYSIS

Definition 1. Maximum Path Length: The maximum path
length is the maximum number of sequential processing steps
required for information to propagate from any input position to
any other input position within the sequence.

31f the task is concerned with the quality of the output at multiple scales, we
can treat it as a multitasking optimization loss, and the weighting factors for
each scale’s loss can be adjusted manually for the more concerned scales.
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Fig. 8. Maximum path length of commonly used models.

To provide a clearer intuition for this concept, Fig. 8 visually
contrasts the maximum path lengths required by different com-
mon architectures to relate distant signals in a sequence. A stan-
dard Recurrent Neural Network (RNN) processes information
sequentially, resulting in a maximum path length of O(N) for a
sequence of length N. A typical Convolutional Neural Network
(CNN) expands its receptive field by stacking layers, leading to
a path length that is proportional to its depth, often on the order
of O(log N) with dilated convolutions. In contrast, a standard
Transformer can achieve an O(1) maximum path length, as its
self-attention mechanism allows any input position to directly
interact with any other within a single layer.

Theorem 1: Whenthe given A, C, T, L, N, S satisfy the (26),
the coarsest scale node can obtain the global receptive field after
stacking N layers of ST-PAM layers.

mac)f(sjj,lL) 1< (A 21)N. 26)

Proof: Let S denote the number of scales, C' denote the
number of nodes of the coarser time scale s containing the
finer scale s-1, and the same at the spatial scale. Clearly, the
coarsest scale node is composed of C2(5~1 finest scale nodes.
Without sacrificing generalizability, we assume that both L and
T are divisible by C°~'. Then the number of coarsest scale

nodes is Since for each attention layer, at the same
(A-1)
2 b

Cz(s 1) -
scale, each node can be connected as far away from
the distance between the leftmost and rightmost node on the
coarsest scale is %. Therefore, when the number of
stacked attention layers satisfies (27), the coarsest-scale node

is within the receptive field of all nodes at the current scale.

2max (T, L)
N=anost @7
Moreover, due to ST-PC, the coarsest scale nodes can be seen as
summaries of the corresponding finer scale nodes. As a result,
when (26) is satisfied, all nodes at the coarsest scale have a global
receptive field. O

Theorem 2: The time and space complexity for the Spatial-
Temporal Pyramid Attention mechanism is O(LT).

Proof- Let L*) and T denote the number of spaces and
the number of time slices of a node at scale s. Then,

L

L) = _— (28)
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For the node nisg) in a pyramid graph, the number of dot products

it has as queries Pt(;) can be decomposed into two parts:

P =rY +P5 i (29)

where Pt(‘z), and Pt(‘z) denote the in-scale and off-scale
in 5 o]f f .
part respectively. According to the structure of our attention

mechanism, we can obviously conclude the following:

P}, SAxAP) <CxC+1. (30)
Therefore, the total number of dot products at scale s is:
L) )
pls) — ZZI ; (Pﬁ ; e)()ff)
< LOTE(Ax A+ C*C+1). (31)

In summary, the total number of dot products to be computed in
the entire attention mechanism is:

S
p=>pW
s=1

SLT(A24+ 1)+ -+ LOTE (A2 4+ 0% +1)

S
< LT((A*+2)) C271 4 1),

(32)
s=1
Thus, the complexity of the proposed attention is:
s
O(P) < O(LT ((A xA+2)Y 4 1)
s=1
s
=0 (LT(A xA+2)Y c<81>>
s=1
_0 (A+2)LT(1 —C9)
- 1-Ct
=0((A+2)LT)=0O(ALT) = O(LT). (33)
As a result, the complexity is O(LT). O

Theorem 3: When the given hyperparameters satisfy (34), the
distance between any two nodes in our proposed model network

is O(1).

(35)
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TABLE I
COMPARISON OF COMPUTATIONAL OVERHEAD AND EFFICIENCY
Method Computational Complexity | Maximum Path Length
CNN O(LT) O(log(LT))
RNN O(LT) O(LT)
Transformer O((LT)?) O(1)
Our O(LT) O(1)

Since A, S, N are given constants, the maximum signal traversal
path length is O(1). |

Table I highlights the theoretical advantages of our approach.
While a standard Transformer achieves an optimal O(1) maxi-
mum path length, its quadratic O((LT')?) complexity is a signifi-
cant drawback for long sequences. Conversely, CNNs and RNNs
have more efficient linear complexity but suffer from longer
path lengths, hindering long-range dependency modeling. Our
method uniquely achieves both an optimal O(1) path length
and an efficient linear computational complexity of O(LT),
combining the primary strengths of these common architectures.

VI. EXPERIMENTS
A. Setting

1) Datasets: To better validate the performance of our
model, we conduct experiments on five datasets from three
real-world scenarios: Air-Quality, Weather and Traffic.

Air-Quality* data set contains data such as PM2.5, NO2, and
03 from 2017 to 2018, recorded hourly at 35 air monitoring
stations in Beijing, China. We select PM2.5, NO2, and O3
from the first 32 stations as the experimental dataset.

Weather* data set contains meteorological data, such as tem-
perature, humidity and wind speed of different geographic grids
from 2017 to 2018 from more than 800 air monitoring stations
in London, with each grid recording data every hour. We select
Humidity and Wind Speed as the experimental datasets, retain
the original data in an 8 x 4 grid structure.

Traffic’ data set contains the capacity, speed, flow and other
data of more than 400 detectors on the California Highway in
the USA, with each detector recording data every 5 minutes. We
select PEMSO03 as the experimental datasets, and select the first
32 stations as experimental data.

TaxiBJ [35] data contains real-world crowd flow records col-
lected from taxicab GPS monitors in Beijing, China. It divides
the region into a 32 x 32 grid, with each cell reporting flow
information at 30-minute intervals across four distinct time
periods (P1-P4). For our experiments, we select P1, P2, P3
and P4 as the experimental datasets.

2) Baselines: We categorize the existing methods into four
categories: Single-Scale Spatial Completion, Single-Scale Tem-
poral Interpolation, Single-Scale Spatio-Temporal Completion
and Multi-Scale Spatio-Temporal completion methods. Single-
scale methods operate at a uniform resolution, while multi-scale
methods handle varying input scales.

“https://www.kdd.org/kdd2018/kdd-cup
Shttp://pems.dot.ca.gov.
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Single-Scale Spatial Completion Methods:

e MF [36]: A classical matrix factorization method to handle
sparse data by leveraging low-rank approximations.

e DMF [12]: A method combining matrix factorization with
deep learning for spatial data completion.

e GCN [37]: Utilizes graph convolutional networks to cap-
ture spatial dependencies in irregular data structures.

® FFDNet [38]: A CNN-based method utilizing denoising
techniques for spatial data completion.

Single-Scale Temporal Interpolation Methods:

® Mamba [39]: A linear-time sequence foundation model,
offering efficient temporal data processing.

o SAITS [40]: A multivariate time-series imputation method
based on diagonally-masked self-attention.

o [Informer [33]: A sparse attention model that captures long-
range temporal dependencies efficiently.

o TimesNet [41]: A general time series model that extracts
multi-scale temporal patterns effectively.

Single-Scale Spatio-Temporal Completion Methods:

® CGAN [42]: Uses generative adversarial networks to com-
plete data based on conditional inputs.

e WaveNet [43]: A Graph-based model for spatial-temporal
forecasting via adaptive dependency learning.

e ST-BGMC [44]: A low-rank matrix completion method
incorporating spatio-temporal constraints.

e ST-Transl [23]: A Transformer-based model capturing
spatio-temporal correlations for improved completion.

e PDFormer [45]: A method for spatio-temporal modeling
via propagation-delay-aware dynamic self-attention.

o [mputeFormer [46]: A low-rankness-induced Transformer
model for spatio-temporal data imputation balancing in-
ductive bias and expressivity.

Multi-Scale Spatio-Temporal Completion Methods:

e FULL-Attn: A variant of our proposed method that replaces
the ST-PC and ST-PAM modules with self-attention mech-
anisms for handling multi-scale data.

To address the limitation of single-scale models in handling
multi-scale data, we ensure fairness by adjusting the data input.
Specifically, the single-scale models are provided with input data
equivalent to the total amount of data collected across all scales
in the multi-scale models.®

3) Data Preprocessing: We preprocess the data to emu-
late real-world multi-scale data collection scenarios. First, for
regular sensing scenarios (e.g., Weather), sensors are already
arranged on a grid, so we aggregate neighboring grid cells
to create coarser scales. For irregular sensing scenarios (e.g.,
Traffic), we first project each sensor onto a two-dimensional
geographic map and cluster spatially contiguous nodes with
strong topological connections into elementary regions. The
subsequent aggregation of these regions into coarser scales
is defined through a manual but principled process, primarily
guided by geographic proximity and the desired hierarchical

®Note: While we ensure fairness in our evaluation by compensating single-
scale models with the total data input across all scales, their actual performance in
real-world applications would likely be worse, as they cannot inherently handle
multi-scale data effectively.
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TABLE II
COMPLETION PERFORMANCE WITH EQUAL SENSED DATA QUANTITY ACROSS MULTIPLE DATASETS

Data Air-Quality Weather Traffic TaxiBJ
Set PM2.5 NO2 03 Humidity =~ Wind Speed =~ PEMS03 P1 P2 P3 P4
Models MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
MF 0.406 0.366 0.589 0.536 0.457 0.448 0.052 0.151 0.332 0.379 0.208 0.300 0.704 0.540 0.642 0.522 0.560 0.470 0.565 0.458
DMF 0.921 0.603 0.904 0.715 0.873 0.667 0.370 0.452 0.941 0.665 0.976 0.787 1.029 0.728 0.835 0.662 0.835 0.667 0.805 0.638
GCN 0.599 0.492 0.598 0.572 0.583 0.567 0.556 0.570 0.511 0.475 0.536 0.510 0.595 0.553 0.502 0.503 0.500 0.489 0.496 0.475
FFDNet 0.411 0.432 0.511 0.562 0.388 0.481 0.040 0.147 0.299 0.390 0.227 0.360 0.517 0.487 0.437 0.440 0.437 0.426 0.420 0.423
Mamba 0.291 0.312 0.371 0.451 0.285 0.372 0.040 0.150 0.156 0.282 0.098 0.213 0.395 0.369 0.325 0.339 0.332 0.333 0.320 0.331
SAITS 0.329 0.332 0.429 0.481 0.331 0.377 0.032 0.130 0.156 0.283 0.089 0.203 0.381 0.358 0.313 0.322 0.312 0.309 0.303 0.310
Informer ~ 0.302 0.327 0.370 0.449 0.299 0.377 0.038 0.150 0.179 0.311 0.098 0.223 0.397 0.377 0.335 0.353 0.337 0.339 0.318 0.329
TimesNet ~ 0.267 0.315 0.356 0.447 0.268 0.366 0.030 0.130 0.135 0.262 0.081 0.190 0.403 0.374 0.326 0.336 0.333 0.329 0.328 0.329
CGAN 0.599 0.492 0.598 0.572 0.583 0.567 0.556 0.570 0.511 0.475 0.536 0.510 0.700 0.570 0.588 0.518 0.646 0.541 0.622 0.544
WaveNet  0.678 0.546 0.675 0.644 0.429 0.443 0.028 0.121 0.157 0.279 0.079 0.189 0.442 0.405 0.373 0.378 0.369 0.365 0.358 0.350
ST-BGMC  0.387 0.365 0.488 0.516 0.473 0.477 0.083 0.203 0.335 0.402 0.189 0.295 0.544 0.490 0.493 0.484 0.458 0.439 0.452 0.425
ST-TransI ~ 0.344 0.346 0.397 0.444 0.467 0.510 0.016 0.082 0.112 0.223 0.071 0.171 0.395 0.426 0.335 0.317 0.332 0.338 0.347 0.340
PDFormer  0.248 0.296 0.451 0.489 0.315 0.385 0.016 0.085 0.113 0.203 0.084 0.200 0.374 0.348 0.304 0.313 0.304 0.305 0.298 0.303
ImputeFormer 0.339 0.323 0.458 0.484 0.373 0.405 0.020 0.098 0.131 0.244 0.076 0.179 0.375 0.349 0.311 0.313 0.307 0.294 0.298 0.291
FULL-Attn ~ 0.395 0.363 0.281 0.349 0.286 0.333 0.019 0.081 0.092 0.202 0.088 0.190 0.629 0.523 0.555 0.481 0.537 0.462 0.489 0.438
Our 0.184 0.217 0.265 0.336 0.222 0.287 0.015 0.075 0.084 0.188 0.055 0.147 0.348 0.334 0.271 0.288 0.275 0.275 0.273 0.277

structure. For example, with C' = 2 and S = 3, we downsample
the original data by factors of 2 and 4 to simulate three distinct
scales. The downsampling process is tailored to the nature of
the data: for the Air-Quality and Weather datasets, we apply
averaging, while for the Traffic dataset, we use summation to
preserve the appropriate scale relationships.

4) Experimental Settings: In our experiment, the datasets are
divided into training, validation, and test setsina 7 : 2 : 1 ratio.
We normalize the data before feeding it into the model. For
model training, we use ADAM as the optimizer with an initial
learning rate of 0.001. The batch size is set to 16, and training
proceeds for 150 epochs. All experiments are conducted using a
single NVIDIA GeForce RTX 3090 GPU. We use Mean Squared
Error (MSE) and Mean Absolute Error (MAE) as our evaluation
metrics.

Regarding the hyperparameter settings, in our model d,;,oqe;
issetto 64, dj t0256,C, A, Sto2,3,4,and T to 16, respectively.
The number of encoders and decoders are both set to 3. These
parameters comply with the (34).

B. Completion Performance

1) Performance With Equal Sensed Data Quantity: We con-
duct experiments on ten real-world datasets, ensuring equal
sensed data across all models. For multi-scale models, the sense
ratio for each scale is set to 0.1. Here, sense ratio refers to the
proportion of actual collected spatio-temporal points to the total
number of spatio-temporal points. Single-scale models receive
input data equivalent to the total sensed data from all scales in
the multi-scale models for a fair comparison.

As shown in Table II, our method consistently outper-
forms the baseline algorithms across ten datasets. Spatial data
completion methods generally perform well on datasets with
relatively stable spatial patterns, such as Weather. However,
they struggle with more complex, high-dimensional datasets

like Air-Quality, which present more variable temporal de-
pendencies. Temporal interpolation excels at capturing long-
term dependencies, but they face challenges in handling in-
tricate spatio-temporal interactions, particularly in more com-
plex datasets like Traffic and TaxiBJ. Spatio-temporal com-
pletion methods show better performance in correlating spa-
tial and temporal data but still struggle with multi-scale
relationships. Notably, models like CGAN and DMF face
convergence issues and fail to adapt to sparse, high-dimensional
data, resulting in suboptimal outcomes. WaveNet, while effec-
tive on traffic datasets, shows comparatively less robust perfor-
mance on environmental datasets, potentially due to its convo-
lutional architecture being more adaptable to structured local
dependencies. In contrast, our method consistently outperforms
these baselines by effectively capturing the relationships across
different scales. Although the FULL-Attn method attempts to
capture multi-scale relationships, it suffers from redundancy
when capturing cross-scale relationships, leading to inferior
results compared to our approach.

2) Performance Under Varying Finest-Scale Sense Ratio:
We conduct experiments to evaluate how varying the sense ratio
at the finest scale affects model performance. In this part, the
finest-scale sense ratio ranges from 0.1 to 0.5, while keeping
other scales at 0.1. To ensure fairness, single-scale models
receive the same total sensed data as the multi-scale models.

As shown in Fig. 9 for MSE and Fig. 10 for MAE, our
model achieves the best performance across all datasets for both
MSE and MAE metrics, with performance steadily improving
as the finest-scale sense ratio increases. Upon closer analysis,
our method exhibits a more significant advantage in handling
high-variability datasets, such as the Air-Quality and Traffic
datasets. For example, on the TaxiBJ dataset, as the finest-scale
sense ratio increases, the reduction in both MSE and MAE for
our model is more pronounced compared to single-scale meth-
ods, highlighting its superior capability in urban transportation
scenarios characterized by dynamic and complex patterns. This
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Fig. 10. Completion MAE performance under different sensed ratios.

is due to our model’s ability to fully leverage the multi-scale
nature of the data, making it more efficient in inferring data
under highly variable conditions.

In contrast, single-scale models show notable limitations in
capturing these complex spatio-temporal patterns, especially in
highly dependent data scenarios. At the same time, although
the FULL-Attn model also attempts to capture multi-scale
relationships, its performance is relatively unstable. As the sense
ratio increases, its effectiveness even decreases in some cases.
This observed performance fluctuation and occasional degrada-
tion of FULL-Attn can be attributed to two main factors. First, its
global attention mechanism, with quadratic complexity, is highly
sensitive to variations and noise in sparse inputs, potentially
struggling to discern critical signals from redundant information.
Second, by attempting to model all-to-all relationships across all
scales without explicit hierarchical guidance, FULL-Attn may
inefficiently diffuse its attention, sometimes overemphasizing

less relevant cross-scale interactions, which leads to poorer
results compared to our structured pyramid-based approach.

3) Performance Under Varying Multi-Scale Sense Ratios: To
validate the utilization of different scales, we conduct exper-
iments to assess how varying sense ratios at different scales
impacts completion performance. The experiments are divided
into two phases: the first phase examines the impact of changing
the sense ratio at a single scale on overall model performance,
while the second phase focuses on the effect of simultaneous
changes in sense ratios across two scales.

First, we adjust the sense ratio at one scale while keeping
the others constant at 0.1. As shown in Fig. 11, the results
across ten datasets reveal a clear improvement in the model’s
completion performance as the sense ratio at the targeted scale
increases. This shows that our model effectively leverages data
from different scales. Notably, while the total spatial coverage
remains the same, the finer-scale data significantly enhance
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Fig. 11.

performance compared to coarser-scale data. Finer-scale data
contribute not only to more substantial error reductions but also
to more consistent and stable outputs, with fewer fluctuations.
While this general trend holds, the grid-based aggregated flow
data in TaxiBJ may exhibit slightly different sensitivities to scale
variations, potentially due to the inherent smoothing effect of
aggregation. These observations are consistent with real-world
applications, where finer-grained data typically result in more
accurate and representative inferences.

We further explore the impact on model completion per-
formance as the sense ratios of two scales are increased. As
shown in Fig. 12, the results indicate that as the sense ratios
across multiple scales increase simultaneously, the overall model
performance improves. However, an interesting phenomenon
is observed when simultaneously increasing the sense ratios
of the two coarsest scales, particularly at higher sense ratios
or on datasets with a limited number of spatial points, where
performance gains may diminish or show irregularities. This
could be attributed to an increased likelihood of redundant
information from overlapping fine-grained regions covered by
these highly-sampled coarse scales, and the inherent uncertainty
of aggregated coarse-scale data potentially becoming a limiting
factor when finer-scale context is also sparse.

4) Performance Under Single-Scale Inputs: To evaluate the
applicability of our model when provided with single-scale
inputs, we conduct experiments across six real-world datasets.
In this setting, only the finest-scale data is input into the model,
while data from other scales are treated as unsensed (with a
sense ratio of 0). The goal of this experiment is to determine
whether multi-scale processing still contributes to performance
improvements even when only single-scale data is available.

As shown in Fig. 13, our model outperforms most baseline
methods across the majority of datasets and sensing ratios,
particularly when the sense ratio is higher. This indicates that
even with single-scale inputs, incorporating multi-scale pro-
cessing can still improve performance. However, despite the
superior performance in most cases, the results are not as strong
as those obtained under multi-scale input scenarios. In some
specific cases, the performance of our model is even worse
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than ST-TransI and TimesNet, suggesting that our method is
better suited for multi-scale input scenarios. This also implies
that multi-scale processing alone is not the sole reason for our
model’s superior results.

Furthermore, as the sense ratio increases, the superiority of
our model becomes more pronounced. With a higher sense
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ratio, more available data allows the model to better capture
multi-scale processes, thereby improving overall performance.
In contrast, when the data is too sparse, the model struggles
to fully leverage the multi-scale processes, resulting in poorer
performance. This highlights the importance of data availability
in the success of multi-scale frameworks and suggests that our
model performs best when provided with sufficient data.

C. Ablation Study

In this subsection, we aim to validate the effectiveness of
various components of our model, including the Multi-Scale
Embedding, Cross-Scale Constraint, and ST-PC. To ensure a
comprehensive analysis, in subsequent experiments, we use
NOZ2 to represent the Air-Quality dataset, WindSpeed for
Weather dataset, and PEMSO03 for Traffic dataset.

1) Multi-Scale Embedding: We design an ablation experi-
ment to validate the effectiveness of the Multi-Scale Embedding
Module. Specifically, we compare the performance of our model
with and without different embedding components. As shown
in Fig. 14, across all datasets and varying sense ratios, our full
model consistently achieves the lowest MSE, demonstrating the
importance of all embedding components. Notably, removing
spatio-temporal embedding (“w/o sp&t”) leads to a significant
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TABLE III
PERFORMANCE OF DIFFERENT PYRAMID CONSTRUCTION METHODS

Air Weather Traffic
method
MSE MAE MSE MAE MSE MAE
ST-PC 0.2652  0.3358 0.0837 0.1876 0.0548  0.1470
T-PC 0.2868  0.3487 0.0965 0.1983 0.0635 0.1581
S-PC 0.4576 04710 0.1128 0.2229 0.0693  0.1656

performance degradation compared to the full model. Similarly,
ablating either spatial (“w/o sp”) or temporal (“w/o time”)
embedding components individually also results in poorer per-
formance, though the extent varies by dataset, reflecting their
differing sensitivities to spatial versus temporal context. Other-
wise, the scale embedding component also has a big impact on
the model, even more important than single spatial or temporal
embedding component.

2) Cross-Scale Constraint: To assess the effectiveness of
the Cross-Scale Constraint module, we repeat each experiment
five times, calculate the average performance, and present the
variability of the results through confidence intervals. As shown
in Fig. 15, when the parameter « is appropriately selected, the
Cross-Scale Constraint module significantly improves the model
performance. However, if « is set too low, the module has an
adverse effect, reducing the overall efficiency of the model. This
suggests that careful tuning of « is critical to fully leverage the
benefits of the Cross-Scale Constraint.

3) ST-PC: To validate the effectiveness of our ST-PC
method, we conduct a comparative experiment among ST-PC,
T-PC, and S-PC. Specifically, the T-PC method focuses solely
on temporal multi-scale extraction, while the S-PC method
concentrates only on spatial multi-scale extraction. As shown in
Table III, our ST-PC method achieves the best performance. The
S-PC method, which relies solely on the finest scale data and ig-
nores other scales, performs poorly. Although the T-PC method
leverages coarser scale data, its performance is constrained by
the sparsity of the inputs. Our ST-PC method, which uniquely
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integrates both the original and newly constructed data, achieves
the most effective results. These observations ultimately suggest
that under sparse collection scenarios, utilizing as much avail-
able information as possible may lead to significant performance
improvements.

4) Multi-Scale Parameter Sensitivity: To provide deeper in-
sights into different multi-scale scenarios, we conducted sen-
sitivity analyses on three key hyperparameters: A, C,S. For
parameter A, as shown in Fig. 16, when A < 3, itdoes not satisfy
(34), leading to lack of global receptive field, potentially limiting
performance. However, when A > 3, model performance signif-
icantly improves, while further increasing A yields diminishing
returns.

For parameter C, which describes the aggregation relationship
between adjacent scales, a larger C' implies that each coarse-
scale unit aggregates more fine-scale information, but this also
increases the uncertainty and level of abstraction of the resulting
coarse-scale features. As shown in Fig. 17, effectively leveraging
this highly aggregated and uncertain information would require
stronger model inference capabilities; thus, a moderate value like
C = 2 offers a better balance between information aggregation
and detail preservation. Regarding the total number of scales S,
as shown in Fig. 18, performance consistently improves as S
increases within our tested range. This is because a larger .S pro-
vides the model with a richer hierarchy and a greater volume of
multi-scale information to learn from. Crucially, while the spe-
cific choices of S and C' do lead to performance variations, these
fluctuations are generally acceptable. Our model consistently
outperforms the state-of-the-art single-scale baselines across all
configurations, which validates our framework’s robustness and
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TABLE IV
COMPUTING OVERHEAD FOR MAIN METHODS

method Transformer FULL-Attn Our
Q-K pairs 17039360 30642176 1262208
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its ability to effectively adapt to complex multi-scale sensing
environments.

D. Attention Analysis

As shown in Fig. 19, we compare the attention mechanisms
by visualizing their scores for a specific node. Our ST-PAM
selectively focuses on a small subset of the most relevant
nodes, efficiently capturing key spatio-temporal correlations. In
contrast, Full-Attention distributes its attention more broadly,
including many less relevant nodes. Notably, ST-PAM identifies
the same critical nodes as Full-Attention but avoids wasting
computational resources on unimportant ones, thus achieving
a more efficient attention allocation.

E. Computing Overhead

We compare the computing overhead of our model with the
Transformer model and the Full attention-based multi-scale
model from two perspectives: the number of query-key dot
products (Q-K pairs), and memory cost. As shown in Table IV,
our model demonstrates a significant reduction in both compu-
tational complexity and memory.

Furthermore, we conducted experiments on a single NVIDIA
GeForce RTX 3090 GPU, evaluating the runtime and memory
overhead across varying input sequence lengths. As shown in
Fig. 20, our model not only maintains a near-linear scaling
in both time and memory consumption, but also exhibits a
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remarkably competitive, even lower computational cost than
single-scale methods, particularly for longer sequences.

VII. CONCLUSION

In conclusion, this paper presents a groundbreaking multi-
scale spatio-temporal data completion framework for Sparse
CrowdSensing using a Pyramid-Attention based approach. The
framework addresses the challenges of data sparsity and multi-
scalability, integrating innovative components like the Multi-
scale Embedding Layer and the Spatial-Temporal Pyramid
Construction Module (ST-PC). The proposed Spatial-Temporal
Pyramid Attention Mechanism (ST-PAM) efficiently extracts
multi-scale correlations, maintaining linear computational com-
plexity. Our work presents a new perspective for handling
spatio-temporal data in Sparse Crowdsensing, offering valuable
insights into the potential of multi-scale processing. In future
work, beyond optimizing the collection of multi-scale data for
effective utilization, we also plan to explore the integration of
domain-specific prior knowledge and explicit semantic relation-
ships to further enhance model performance and interpretability
in targeted application scenarios, potentially refining the balance
between general applicability and specialized accuracy. This
could further enhance the capabilities of multi-scale models in
practical applications.
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