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Abstract—Accessibility to smart devices provides opportunities
for side-channel attacks (SCAs) on artificial intelligent (AI) models
in the intelligent Internet of Things (IoT). However, the existing
literature exposes some shortcomings: 1) incapability of quantify-
ing and analyzing the leaked information through side channels of
the intelligent IoT and 2) inability to devise efficient and accurate
SCA algorithms. To address these challenges, we propose a side-
channel fuzzy analysis-empowered AI model extraction attack in
the intelligent IoT. First, the integrated AI model extraction frame-
work is proposed, including power trace-based structure, execution
time-based metaparameters, and hierarchical weight extractions.
Then, we develop the information theory-based analysis for the
AI model extraction via SCA. We derive a mutual information-
enabled quantification method, theoretical lower/upper bounds of
information leakage, and the minimum number of attack queries
to obtain accurate weights. Furthermore, a fuzzy gray correlation-
based multiple-microspace parallel SCA algorithm is proposed to
extract model weights in the intelligent IoT. Based on the estab-
lished information-theoretic analysis model, the proposed fuzzy
gray correlation-based SCA algorithm obtains high-precision AI
weights. Experimental results, consisting of simulation and real-
world experiments, verify that the developed analysis method with
the information-theoretic perspective is feasible and demonstrate
that the designed fuzzy gray correlation-based SCA algorithm is
effective for AI model extraction.

Index Terms—Fuzzy analysis, information theory, intelligent
Internet of Things (IoT), model extraction, side-channel attacks
(SCAs).
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I. INTRODUCTION

R ECENTLY, artificial intelligence (AI) has wide applica-
tions in the intelligent Internet of Things (IoT), e.g., iden-

tity recognition, data processing, and intrusion detection [1], [2].
The security of the intelligent IoT has received attention from
industry and academia [3], [4]. As the key component of the in-
telligent IoT, AI models play critical roles in dynamic decisions,
resource optimization, etc. [5]. Moreover, with the increasing
computing resource and huge available data, the structure of AI
models in the IoT becomes more complex, and the resource
consumption for developing AI increases dramatically [6].
AI models are considered as important assets or intellectual
properties of their owners. The security of AI models is an
important issue in the intelligent IoT security field [7], [8]. The
leakage of AI models in the intelligent IoT not only causes huge
economic losses to their owners, but also facilitates evasion,
adversarial, and model inversion attacks [9], [10].

In the intelligent IoT, AI models are deployed in numer-
ous smart-X devices, such as automotive and virtual real-
ity/augmented reality devices [11], [12]. AI models are usually
loaded onto devices or directly implemented in hardware. The
accessibility of physical control and manipulations over these
devices provides opportunities for side-channel attacks (SCAs)
to steal sensitive information, such as model structures, hyper-
parameters, or even precise weights [13]. Moreover, the rise
of federal learning pushes AI computation to the edge and the
end [14], [15], thereby facilitating the SCA. Although some
existing works have investigated SCAs on AI models, there are
still some deficiencies in this field.

1) Incapability of quantifying and analyzing the SCA on
AI models. For SCAs on AI models in the intelligent
IoT, this incapability makes it impossible to depict the
amount of leaked sensitive information extracted from
side-channel signals. Existing research neglects to system-
atically quantify and describe the harmfulness of SCAs
on AI models. Thus, it is worthy to investigate the ex-
pression of the information leakage of SCAs theoreti-
cally.

2) Inability to design the time and computational resource-
efficient SCA algorithms for the AI model extraction.
Without the knowledge of the theoretical analysis and
estimations, it is difficult to devise the efficient and ac-
curate SCA algorithms. Therefore, it is urgently needed
to establish the analysis methods and design efficient
algorithms for SCAs on AI models.

1063-6706 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Temple University. Downloaded on February 27,2023 at 19:37:19 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0001-8093-3377
https://orcid.org/0000-0003-2483-6980
https://orcid.org/0000-0003-2601-9327
https://orcid.org/0000-0002-3472-1717
mailto:panqianqian@sjtu.edu.cn
mailto:jun.wu@ieee.org
mailto:lijh888@sjtu.edu.cn
mailto:dr.alikashif.b@ieee.org
mailto:jiewu@temple.edu
https://doi.org/10.1109/TFUZZ.2022.3172991


PAN et al.: SIDE-CHANNEL FUZZY-ANALYSIS-BASED AI MODEL EXTRACTION ATTACK 4643

To address the above problems, information theory is adopted
to establish the analysis method, and a fuzzy gray correlation-
based effective extraction algorithm is designed according to the
analysis. As the great communication theory, information theory
mainly studies information quantification, data transmission and
compression, etc. [16]. The SCAs on AI models are regarded
as the special signal transmission from the running intelligent
device to the adversary. Thus, it is feasible and suitable for
developing the information theory-based theoretical analysis.
Fuzzy theory is a powerful mathematical tool to reveal the
laws of fuzzy phenomena. Meanwhile, gray theory studies
and processes complex systems from the incompleteness of
information [17], [18]. These features make the integration of
fuzzy and gray theories promising for the design of AI model
extraction. Some works have investigated the information theory
analysis on classic cipher SCA and studied the fuzzy gray theory-
based correlation evaluation in multiple applications [18]–[20].
However, AI models are complex computation systems with
specific properties: 1) complex structure with intricate connec-
tions among neurons of multiple layers; 2) a large number of
AI model parameters, including hyperparameters and weights;
and 3) high precision needed for AI parameters (i.e., 32/64-bit
floating-point weights) [21]. The above properties make SCAs
on AI models different from traditional side-channel analysis
and attacks. The main challenge for the SCA on AI models
is that existing analysis methods cannot be adopted directly
to describe attacks accurately and design efficient extraction
algorithms.

All of the existing problems and the challenges in SCA
on AI models motivate our research. Based on our preview
work in [22], we investigate the theoretical analysis method
and effective algorithm of SCA on AI in the intelligent IoT in
this article. The main contributions of our work are listed as
follows.

1) The integrated SCA-based AI model extraction frame-
work is developed, where the power trace-based structure
extraction, execution time-enabled metaparameter extrac-
tion, and hierarchical weight extraction are investigated.

2) We establish the information theory-based analysis
method for SCAs on AI models, including three key
points: a) the mutual information-enabled quantification
method is proposed, mathematically describing the leak-
age amount of AI models through side channels; b) lower
and upper bounds of leakage amount are derived, provid-
ing attackers/defenders with theoretical estimations of the
leaked information amount; and c) the minimum number
of queries for weight extraction is investigated, which can
be utilized to estimate attack cost and time.

3) A fuzzy gray correlation-based multiple-microspace par-
allel SCA algorithm on AI weights extraction is designed,
which is based on the proposed information-theoretic anal-
ysis method to extract high-precision AI weights. In this
algorithm, the attack cost and success rate are estimated
with mutual information, entropy, and signal-to-noise ra-
tio (SNR), facilitating the efficiency and accuracy of SCAs
on AI.

4) Simulations and experiments are conducted to verify the
feasibility and effectiveness of our developed analysis
method and devised SCA algorithm. It is demonstrated
that our proposed analysis results are consistent with the

experimental results and are helpful for the design of
AI model extraction algorithms based on SCAs in the
intelligent IoT.

The rest of this article is organized as follows. In Section II,
we discuss the related work. The preliminary is presented in
Section III. The framework of SCAs on AI model extraction
is established in Section IV. The proposed information theory-
based analysis method is presented in Section V. A fuzzy gray
correlation-based multiple-microspace parallel SCA algorithm
on AI weight extraction is implemented in Section VI. Simula-
tions and experiments are shown in Section VII. Section VIII
discusses the countermeasures of SCAs based on the proposed
theoretical analysis method. Finally, Section IX concludes this
article.

II. RELATED WORK

The related work, consisting of the security and privacy of the
intelligent IoT, information theory on the SCA, and the fuzzy
theory on the intelligent IoT, is discussed in this section.

A. Security and Privacy of the Intelligent IoT

The security and privacy of the intelligent IoT have attracted
widespread attention [23]–[26]. Specifically, Butun et al. [23]
investigate the security of the IoT from the perspective of adver-
saries and defenders, which reviews the security attacks along
with detection and prevention technologies. Liu et al. [24] focus
on machine learning for IoT security, including user identifica-
tion and abnormal devices detection. Li and Song [25] propose
an attack-resistant management method for the Internet of Vehi-
cles, which has capabilities to detect as well as deal with attacks.
Song et al. [26] investigate the security of the cyber-physical
systems (CPSs) and provide its foundations, principles, and
applications. These works mainly study the traditional attacks
and mitigation solutions on the intelligent IoT. Although the
SCA is a serious threat, these works seem to ignore studying the
SCA on the intelligent IoT.

The security and privacy of the smart IoT are seriously threat-
ened by SCAs. Adversary recovers the sensitive and valuable
information of intelligent models based on side-channel obser-
vations, e.g., memory access mode, power traces, running time,
etc. [27]–[29]. Hua et al. [30] extract a convolutional neural
network architecture and parameters based on the memory and
timing side-channel signals. Batina et al. [31] investigate the
reverse engineering of AI models to recover their structure, ac-
tivation function, and weights based on the side-channel analysis
of electromagnetic emanation. Despite a large amount of efforts
that have been put in, the theoretical analysis of SCAs on AI
models in the intelligent IoT still remains blank.

B. Information Theory on SCA

Shannon’s information theory has been used to analyze the
SCA on the cipher system [32], [33]. Mizuno et al. [34] design
an information-theoretic evaluation method for the SCA, which
models the SCA as a communication channel to estimate leaked
information amount. De Cherisey et al. [35] propose an analysis
method for the embedded hardware system under the SCA
based on information theory, which derives lower and upper
bounds of attack amounts. Besides, the mathematical link of the
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success rate and the number of attacks is discussed in this article.
Santoso and Oohama [36] focus on the Shannon cipher systems
and establish the corresponding information theoretical security
model under SCA with high robust.

Although all of these aforementioned works study the leaked
information under SCA, they mainly investigate traditional ci-
pher systems. None of them can be used directly to describe
leaked information amount of SCA on AI models or guide the
design of SCA-based AI model extraction algorithms for the
intelligent IoT. Besides, according to the specific characters of
AI (i.e., complex structure and high-precision parameters), the
existing information-theoretic analysis cannot be applied to the
SCA on AI directly.

C. Fuzzy Theory on the Intelligent IoT

Some works have studied the fuzzy theory integrated with
the intelligent IoT and the CPS. Gu et al. [37] investigate the re-
silient control issue and design a memory-based event-triggering
mechanism for a fuzzy system in the CPS. Xu et al. [38] propose
a multirobot system based on artificial immune fuzzy optimiza-
tion, which is utilized to realize the formation control of robots
in CPS. Mrozek et al. [39] adopt the fuzzy technology in the IoT
to realize the combination of sensor data from asynchronous IoT
devices and reduce data volume for transmission and storage.

Some works investigate the fuzzy theory-based technologies
on the security and privacy of the intelligent IoT. Dong et al. [18]
propose a safety risk assessment method based on fuzzy gray
analysis, which is more sensitive to risk and more robust under
different cases. Guo et al. [40] study the content security of
the IoT and design a label smoothing-enabled fuzzy method for
spammer identification. Wu et al. [41] propose a data carrier
node selection protocol for vehicular ad hoc networks, where
fuzzy logic algorithms are utilized to implement instant decision
evaluation. Although these works study the fuzzy theory in
the IoT and its security issues, they seem to ignore the fuzzy
technology for SCAs on AI models.

III. PRELIMINARY

A. AI and Information-Theoretic Foundation

AI can be formulated as a function F : Xn → Ym, repre-
senting the mapping from the input Xn with n dimensions to
the output Ym with m dimensions. The connection weights
of the AI model with multiple layer is presented by the set
w = [w(1),w(2), . . . ,w(k)], where w(i) for i ∈ {1, 2, . . . , k}
denotes the weight of layer i. The activation function of layer i
is denoted as fi(·). The AI model is formulated as the following
function:

F (x) = fk(w
(k) · (fk−1(w(k−1) · · · f1(w(1) · x)))). (1)

In information theory, entropy is utilized to describe the
uncertainty of random variables. For X ∈ X with probability
distribution pX , its entropy is expressed as

H(X) = −Σx∈X px log px. (2)

Conditional entropyH(X|Y ) reflects the uncertainty ofX under
the given condition Y ∈ Y , formulated as

H(X|Y ) = −Σx∈X ,y∈Ypx,y log
px,y
py

(3)

for the probability distribution py and the joint probability dis-
tribution px,y . Mutual information is defined as the reduction of
information uncertainty onX as the existence of another random
variable Y , denoted as follows:

I(X;Y ) = H(X)−H(X|Y )

= Σx∈XΣy∈Ypx,y log
px,y
pxpy

. (4)

Mutual information has the following properties: 1) nonnegative,
i.e., I(X;Y ) ≥ 0; and 2) symmetrical about random variables
X and Y , namely, I(X;Y ) = I(Y ;X). Besides, I(X;Y ) = 0
if and only if X ⊥ Y .

Considering the Markov chain X → Y → Z, where the ran-
dom variable Z relies on Y merely and Y relies on X merely,
we have the data processing inequality I(X;Y ) ≥ I(X;Z).
This inequality demonstrates that operating on the data does
not improve the amount of information gained from data.

B. Threat Mode of the SCA on the AI System

When the target AI system performs on a hardware plat-
form, it inevitably results in unintentional physical leakage,
e.g., energy consumption, execution time, and electromagnetic
emanations released during data computation. Adversary mon-
itors these physical leakages at runtime through preset probes
and analyzes them to deduce sensitive information. AI models
consist of structure, metaparameters, weights, etc. Thus, the
extraction of AI models includes multiple types. With the phys-
ical control of the hardware, attackers extract the structure and
parameters of AI models running on the hardware based on the
multidimensional side-channel signals. Memory access patterns
and timing are commonly utilized side-channel signals to infer
AI model architectures [30], [42].

The side-channel attacker should first decide the attack target,
attack points, and observed physical phenomena. The attack
target could be something that can affect the observed physi-
cal phenomena, such as the register, memory, etc. The attack
points refer to somewhere to observe a side-channel signal. For
example, the output of the AI layers can be selected as attack
points. Physical phenomena are the side-channel information the
attackers observed. For the observed side-channel information
Z, it can be represented asZ = h(data) + noise, where data is
the logical value at the attack point, noise is interference caused
by other factors in the hardware, and h(·) denotes the mapping
function from logical values to measured side-channel signals.

The side-channel attackers in this article aim to extract AI
models according to the observation of side-channel informa-
tion. We consider that the attack scenario is the multiple-layer
AI model running on hardware. The investigated SCA on AI
models in this article is as generic as possible. There is no limit
to the type and size of the multilayer AI models that are attacked.
The target multiple-layer AI models can be equipped with any
type and size of input, output, weights, and metaparameters. The
adversary is malicious but passive. Side-channel attackers have
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Fig. 1. Comparison of AI under SCA and the classic communication model.

physical access to the hardware deploying AI models and ob-
serve side-channel signals, without the capability to manipulate
operations. Adversaries can control the execution of target AI
models by crafting their inputs. Then, the adversary observes
corresponding outputs and side-channel signals to obtain AI
models.

C. Feasibility of Information Theory-Based Analysis

To explain the feasibility of information theory-based analysis
for the SCA on AI models, we compare the SCA on the AI
system with the classic communication system in Fig. 1. In the
classic communication system, the information is modulated and
sent by the transmitter and transmitted to the receiver through
the channel. During the transmission, noise is mixed into the
signal. The receiver needs to distinguish the useful information
from the received signal with noise. In the SCA on the AI system,
the inputs are sent into the AI module, and some calculations
are executed where side-channel information is generated. The
side-channel information includes a useful signal and interfer-
ence caused by other factors. The attacker needs to distinguish
the useful signal and estimate the AI weights by analyzing the
measured side-channel signals of the attack target at the attack
points.

The similarity of the SCA on the AI system and the classic
communication system is also shown in Fig. 1. The AI module,
side channel, attacker, interference, and side-channel informa-
tion in the SCA on the AI system correspond to the transmitter,
communication channel, receiver, noise, and communication
information, respectively. Therefore, the SCA on the AI system
can be seen as a variation of the communication system. We can
analyze and model it by Shannon’s information theory.

IV. FRAMEWORK OF THE SCA ON AI SYSTEMS IN THE

INTELLIGENT IOT

The attack framework of the SCA on AI models is presented
in this section. As shown in Fig. 2, the SCA adversary crafts
the input sequence and feeds them to the AI model. Then, the
adversary extracts the AI structure, metaparameters, and weights
according to measured side-channel signals. The output of each
neural node at each layer is selected as the attack point. The
SCA-based structure and metaparameter extraction, and the AI
model weight recovery are presented in detail.

TABLE I
AVERAGE TIME DELAY OF DIFFERENT ACTIVATION FUNCTIONS

A. SCA-Based Structure and Metaparameter Extraction

The structure and metaparameters are the basic knowledge of
AI models, including the shapes and activation functions of each
layer. The adversary is able to extract these information based on
side-channel leakage, e.g., power traces and execution time [31].
Fig. 3 shows the power traces of a four-layer multilayer percep-
tron (MLP) neural network with dimensions (5− 6− 4− 2),
which we capture while the MLP is performing. All the power
traces captured during the preformation of MLP are presented in
Fig. 3(a), where three parts can be distinguished, representing the
operations of each layer. From the observation of power traces,
we can easily figure out the number of layers in the AI model.
Power traces of hidden layer 1 are shown in Fig. 3(b), where we
can obviously distinguish six neural nodes. The power traces
reveal the information of neural networks, and it is feasible to
extract the AI structure through power traces analysis.

We analyze the power traces of AI models to deduce the infor-
mation of the activation function. Commonly utilized activation
functions are investigated, i.e., rectified linear unit (ReLU),
sigmoid, and softmax. We analyze the execution time of these
activation functions from captured power traces. Table I shows
the average time delay of different activation functions, which
are implemented on the same AI structure and randomly selected
1000 inputs. From the statistical data in Table I, different activa-
tion functions have different execution time, where ReLU is the
fastest and softmax is the slowest. These phenomena result from
the different computational complexities of different activation
functions. The calculation of the ReLU is the simplest, thus
taking the least amount of time. Sigmoid needs to calculate ex-
ponentiation and division, so it costs more than ReLU. Moreover,
the softmax function has to execute multiple exponentiation
and division operations, which results in long processing time.
The experimental results of Fig. 3 and Table I are evaluated
mainly based on the ChipWhisperer hardware platform and the
server with Intel i5 4460s CPU, 8-GB RAM, and 500-GB disk.
Detailed information of experimental platforms and used tools
is presented in Section VII-A.

From the above analysis and results, it is feasible and practical
for the adversary to recover the AI structure and metaparameters
through SCA. The extraction of the AI structure and metapa-
rameters is much easier than the extraction of the AI weights.
Moreover, previous works have also done sufficient research on
the AI structure and metaparameter extraction [27], [29], [31].
Therefore, we mainly focus on the study of AI weight recovery
in the following of this article.

B. AI Weight Extraction Based on SCA

AI weights are key information for intelligent models. The
leakage of AI weights leads to the exposure of the intelligent
network and its behavior, thereby reducing the security and
privacy of the system. We consider a k-layer AI model with
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Fig. 2. Framework of SCA on AI models.

Fig. 3. Power traces of a four-layer MLP with dimensions (5− 6− 4− 2).
(a) All power traces with MLP running. (b) Power traces of hidden layer 1.

structure (L0 − L1 − · · · − Lk), where L0 is the input size and
Li is the ith layer size for i ∈ {1, 2, . . . , k}. The target AI
model has weights w = [w(1),w(2), . . . ,w(k)], where w(i) =

{w(i)
l,l′ }Li×Li−1 , and each weight is represented as a b-bit float

number. In order to get weights of AI models, the adversary
sends a series of query requests x = (x1,x2, . . . ,xq) to the AI,
where q denotes query counts. The input xj ∈ RL0 takes values
from the finite input setXL0 with probability pX(xj)xj∈XL0 for
j ∈ {1, 2, . . . , q}.

For the first layer of the AI model, its input is
denoted as x(1) = x. The multiplication output y

(1)
l,l′ =

w
(1)
l,l′ · x(1)

l′ ∈ Rq is calculated for l ∈ {1, 2, . . . , L1} and

l′ ∈ {1, 2, . . . , L0}, where x
(1)
l′ = (x

(1)
l′,1, x

(1)
l′,2, · · · , x(1)

l′,q) and

y
(1)
l,l′ = (y

(1)
l,l′,1, y

(1)
l,l′,2, · · · , y(1)l,l′,q). To extract the weightw(1)

l,l′ , the

side-channel information z
(1)
l,l′ of the output y(1)

l,l′ is observed and
measured by the adversary. The observed side-channel signal is
expressed as z

(1)
l,l′ = (z

(1)
l,l′,1, z

(1)
l,l′,2, · · · , z(1)l,l′,q) = h(y

(1)
l,l′ ) + n,

where n ∈ N q denotes the independent identically distributed

noise. Then, the mathematical function S is calculated by
the adversary to estimate the weight w(1)

l,l′ based on the input
sequence and the observed signal

ŵ
(1)
l,l′ = S(x(1)

l′ , z
(1)
l,l′ ) = argmax

ŵ
(1)

l,l′ ∈W

(
Pr(z(1)

l,l′ |x(1)
l′ , ŵ

(1)
l,l′ )

)
(5)

where ŵ
(1)
l,l′ is the estimated value of w

(1)
l,l′ and Pr(·) is the

probability.
Based on the estimated weight ŵ(1) = {ŵ(1)

l,l′ }L1×L0
, the

adversary extract AI model weights from the second to the
kth layer iteratively. According to estimated weights of previ-
ous (i− 1) layers, the adversary calculates the input of layer
i ∈ {2, 3, . . . , k} as x(i) = (x

(i)
1 ,x

(i)
2 , . . . ,x

(i)
q ), where

x
(i)
j = fi−1(ŵ(i−1) · (fi−2(ŵ(i−2) · · · f1(ŵ(1) · xj)))) (6)

for j ∈ {1, 2, . . . , q}. Then, weight w(i)
l,l′ of layer i is deduced by

ŵ
(i)
l,l′ = S(x(i)

l′ , z
(i)
l,l′) = argmax

ŵ
(i)

l,l′ ∈W

(
Pr(z(i)

l,l′ |x(i)
l′ , ŵ

(i)
l,l′)

)
(7)

for l ∈ {1, 2, . . . , Li} and l′ ∈ {1, 2, . . . , Li−1}. ŵ
(i)
l,l′ is the

estimated value of w
(i)
l,l′ . x

(i)
l′ = (x

(i)
l′,1, x

(i)
l′,2, · · · , x(i)

l′,q) and

z
(i)
l,l′ = h(y

(i)
l,l′) + n denote the input and side-channel signals,

respectively.
The AI weight extraction detail under the SCA of the ith

layer is presented in Fig. 4. Owing to the limited storage of
the chip where the AI model runs on, the weights and outputs
of the model are stored in the off-chip memory. When cal-
culating the ith layer, the processor accessed the weight w(i)

and the input x(i), and write the calculated output x(i+1) =

(f(w(i)x
(i)
1 ), f(w(i)x

(i)
2 ), . . . , f(w(i)x

(i)
q )) to the DRAM. The

attacker observes the leaked side-channel information z(i) =
{z(i)

l,l′ }Li×Li−1 . We assume that the noise in the side-channel
information measurements is additive white Gaussian noise
(AWGN) with variance σ2, which is commonly used in the
power analysis of SCA [35]. The proposed SCA on the AI
model extraction framework is applicable for systems in which
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Fig. 4. SCAs on a specific layer of the AI model.

intelligent IoT devices are equipped with multiple-layer AI mod-
els. Based on the proposed framework, information-theoretic
analysis and fuzzy gray correlation-based algorithm are inves-
tigated in Sections V and VI, respectively. We consider the
application scenario, where the adversary has physical control
over devices housing AI models in the intelligent IoT. In this sce-
nario, AI models are loaded onto lightweight devices or directly
implemented in hardware, e.g., smartphones and autonomous
vehicles.

V. INFORMATION THEORY-BASED ANALYSIS METHOD

An information leakage analysis method for the SCA on
AI weight extraction is proposed in this section, including the
capacity of the SCA on the AI system, the lower/upper bounds of
information leakage through side channels, the minimum query
counts for weight extraction, and the influence of the outputs.

A. Capacity of the SCA on the AI System

Based on the definition of the channel capacity, which is
measured by the maximum information amount transmitted per
second, the capacity of the SCA on the AI system is defined.
However, this traditional capacity definition cannot be directly
applied to the proposed SCA on the AI system, because side
channels are not designed to transfer signals but steal informa-
tion by feeding query samples. Therefore, we develop a method
to quantify the information leakage adapting to features of the
SCA on the AI system. We define the capacity of the SCA on AI
models as the maximum leaked information amount per query.
As mutual information means the reduction of information un-
certainty on one variable caused by other random variables, the
capacity of the SCA on the AI system can be written as

Definition 1: Capacity of the SCA on the AI system

Ci = max
X(i)

I(W (i);X(i),Z(i))

=

Li−1∑
l′=1

Li∑
l=1

max
X

(i)

l′
I(W

(i)
l,l′ ;X

(i)
l′ , Z

(i)
l,l′ ) (8)

where i ∈ {1, 2, . . . , k}, and {X(i)
l′ }Li−1 , {W (i)

l,l′ }Li×Li−1 , and

{Z(i)
l,l′ }Li×Li−1 denote the random variables of input, weight,

and the side-channel observations for the ith layer, respectively.
We assume that {W (i)

l,l′ }Li×Li−1 have same distribution and are
denoted as Wi.

The capacity of the SCA on AI models in the intelligent IoT
system is expressed as follows.

Theorem 1 (The capacity of the SCA on AI models): The
maximum information leakage of AI models through the side
channel per sample is given as

Ci ≤ LiLi−1
2

log

(
1 +

PWi

σ2

)
(9)

wherePWi
is the variance ofh(Wi) and the ratio

PWi

σ2 is regarded
as the SNR.

Proof: Based on the nature of mutual information, we have
I(W

(i)
l,l′ ;X

(i)
l′ , Z

(i)
l,l′ ) = I(Wi;Z

(i)
l,l′ |X(i)

l′ ) + I(Wi;X
(i)
l′ ). Since

the value of the weights Wi is nothing to do with the input X(i)
l′ ,

we have Wi independent with X
(i)
l′ , denoted as Wi⊥X

(i)
l′ . That

is a common assumption in SCA analysis [43], and we can derive
I(Wi;X

(i)
l′ ) = 0. Therefore, the defined capacity is expressed

as follows:

I(W
(i)
l,l′ ;X

(i)
l′ , Z

(i)
l,l′ ) = H(Z

(i)
l,l′ |X(i)

l′ )−H(Z
(i)
l,l′ |Wi, X

(i)
l′ ).

(10)

For the item H(Z
(i)
l,l′ |X(i)

l′ ) in (10), we have

H(Z
(i)
l,l′ |X(i)

l′ ) = H
(
h(WiX

(i)
l′ ) +N |X(i)

l′

)
= H (h(Wi) +N) (11)

where N is the random variable of noise. The item
H(Z

(i)
l,l′ |Wi, X

(i)
l′ ) in (10) can be expanded as

H(Z
(i)
l,l′ |Wi, X

(i)
l′ ) = H

(
h(WiX

(i)
l′ ) +N |Wi, X

(i)
l′

)
. (12)

Since h(WiX
(i)
l′ ) can be obtained from Wi and X

(i)
l′ , we have

H(Z
(i)
l,l′ |Wi, X

(i)
l′ ) = H(N |Wi, X

(i)
l′ ). Because the noise N is

independent of Wi and X
(i)
l′ , we obtain H(Z

(i)
l,l′ |Wi, X

(i)
l′ ) =

H(N). Then, I(W (i)
l,l′ ;X

(i)
l′ , Z

(i)
l,l′ ) is expressed as

I(W
(i)
l,l′ ;X

(i)
l′ , Z

(i)
l,l′ ) = H(h(Wi) +N)−H(N). (13)

The variance of h(Wi) +N is calculated as follows:

Var(h(Wi)+N) = VarWi
(h(Wi))+Var(N) (14)

which is because h(Wi) is independent of N . For ease of
expression, we denote the variance VarWi

(h(Wi)) asPWi
. Since

normal distributions maximize entropy for a given variance, we
obtain

H(h(Wi) +N) ≤ 1

2
log 2πe(PWi

+ σ2). (15)

Since the noise is assumed as AWGN, its entropy is H(N) =
1
2 log 2πeσ

2. Based on the entropy in (15) and H(N), we re-

arrange I(W
(i)
l,l′ ;X

(i)
l′ , Z

(i)
l,l′ ) ≤ 1

2 log(1 +
PWi

σ2 ). Therefore, we
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have

Ci =

Li−1∑
l′=1

Li∑
l=1

max
X

(i)

l′
I(W

(i)
l,l′ ;X

(i)
l′ , Z

(i)
l,l′ )

≤ LiLi−1
2

log

(
1 +

PWi

σ2

)
. (16)

�

B. Upper and Lower Bounds of Leaked Information Amount

Leaked information amount is one of our key concerns. To
measure the information leakage, we need to define the amount
of information leakage of the weights w(i) at each layer from
the observed side-channel information z(i) and the input x(i) for
i ∈ {1, 2, . . . , k} over q attack queries. Based on the definition
of mutual information, the information leakage can be written
as follows.

Definition 2: The information leakage of w = [w(1),w(2),
. . . ,w(k)] through SCAs over q attack queries is

Δ(W|X,Z) =

k∑
i=1

I(W(i);X(i),Z(i)) (17)

where I(W(i);X(i),Z(i)) is the leaked information amount of
layer i.

Combining the observations of multiple queries, the total
amount of leaked information in layer i is

I(W(i);X(i),Z(i))

≤ min{q · I(W (i);X(i),Z(i)), LiLi−1H(Wi)} (18)

where q denotes the query counts for the SCA on AI models, and
I(W (i);X(i),Z(i)) is the scalar of I(W(i);X(i),Z(i)). Based
on Theorem 1, the upper bound of leaked information amount
for the SCA on the AI system is expressed as follows.

Theorem 2 (Upper bound of the leaked information amount):
For the AI layer i, the upper bound of the amount of information
leakage through q queries is expressed as

I(W(i);X(i),Z(i))

≤ LiLi−1 ·min

{
q

2
log

(
1 +

PWi

σ2

)
, H(Wi)

}
. (19)

Theorem 2 indicates the upper bound of the leaked informa-
tion of the SCA on w(i). It is positively related to the SNR and
the number of queries and is bounded by H(Wi). The upper
bound of the leaked information amount inclines as the number
of queries under the given SNR increases.

Next, we study the lower bound of leaked information amount
at the ith layer of AI from the SCA as follows.

Theorem 3 (Lower bound of leaked information amount): For
layer i, the lower bound of information leakage through q queries
is given as

I(W(i);X(i),Z(i)) ≥ LiLi−1 (H(Wi)−H(Ei))

− Li

∑
l,′d

Pr(Ei=d)H(Wi|Ei=d, Ŵi,X
(i)
l′ ). (20)

Ei is the distance random variable between the weight Wi and
its estimation Ŵi.

Proof: Information leakage defined in (20) is expressed as

I(W(i);X(i),Z(i)) =

Li−1∑
l′=1

Li∑
l=1

I(W
(i)
l,l′ ;X

(i)
l′ ,Z

(i)
l,l′). (21)

Based on the nature of mutual information, I(W (i)
l,l′ ;X

(i)
l′ ,Z

(i)
l,l′)

is rewritten as

I(W
(i)
l,l′ ;X

(i)
l′ ,Z

(i)
l,l′) = I(Wi;X

(i)
l′ ) + I(Wi;Z

(i)
l,l′ |X(i)

l′ )

(a)
= I(Wi;Z

(i)
l,l′ |X(i)

l′ ) = H(Wi)−H(Wi|X(i)
l′ ,Z

(i)
l,l′) (22)

where (a) is because X
(i)
l′ ⊥Wi; thus, I(Wi;X

(i)
l′ ) = 0. The

variable Ei is used to evaluate the difference between the
estimated Ŵi and the true Wi, denoted as Ei = e(Ŵi,Wi),
where e(·, ·) is the error function. To prove the theorem, we
introduce an intermediate term H(Ei,Wi | Ŵi,X

(i)
l′ ), which

can be expanded as

H(Ei,Wi|Ŵi,X
(i)
l′ )

= H(Wi|Ŵi,X
(i)
l′ ) +H(Ei|Wi, Ŵi,X

(i)
l′ )

= H(Ei|Ŵi,X
(i)
l′ ) +H(Wi|Ei, Ŵi,X

(i)
l′ ). (23)

Since Ei is calculated based on Wi and Ŵi, we achieve
H(Ei |Wi, Ŵi,X

(i)
l′ )=0. The item H(Ei |Ŵi,X

(i)
l′ ) ≤ H(Ei)

because the conditions only reduce entropy. For the last item
H(Wi|Ei, Ŵi,X

(i)
l′ ), we have

H(Wi|Ei, Ŵi,X
(i)
l′ ) =

∑
d

Pr(Ei = d)

H(Wi|Ei = d, Ŵi,X
(i)
l′ ). (24)

Therefore, we obtain

H(Wi|Ŵi,X
(i)
l′ )

= H(Ei|Ŵi,X
(i)
l′ ) +H(Wi|Ei, Ŵi,X

(i)
l′ )

≤ H(Ei) +
∑
d

Pr(Ei = d)H(Wi|Ei = d, Ŵi,X
(i)
l′ ). (25)

According to the details of AI weight extraction, the
Markov chain (Wi,X

(i)
l′ )→ (Y

(i)
l,l′ ,X

(i)
l′ )→ (Z

(i)
l,l′ ,X

(i)
l′ )→

(Ŵi,X
(i)
l′ ) is derived. Thus, we adopt the data processing in-

equality and obtain

I(Wi; Ŵi,X
(i)
l′ ) ≤ I(Wi;Z

(i)
l,l′ ,X

(i)
l′ ). (26)

Then, we rearrange (26) as follows:

H(Wi|X(i)
l′ ,Z

(i)
l,l′) ≤ H(Wi|Ŵi,X

(i)
l′ ) (27)

which is based on the mathematical relationship between mutual
information and entropy. Combining (22), (25), and (27), we can
obtain

I(W
(i)
l,l′ ;X

(i)
l′ ,Z

(i)
l,l′) = H(Wi)−H(Wi|X(i)

l′ ,Z
(i)
l,l′)
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≥ H(Wi)−H(Ei)−
∑
d

Pr(Ei=d)H(Wi|Ei=d, Ŵi,X
(i)
l′ ).

(28)

Combining with (21), we have the result in Theorem 3. �
Lemma 1 (Lower bound of the information leakage for

Hamming distance function): When the error function of Wi

and Ŵi is defined as the Hamming distance, i.e., Ei =

e(Wi, Ŵi) = Wi ⊕ Ŵi, the lower bound is presented in (29),
where d ∈ D = {0, 1, . . . , b} and

∑
d∈D Pr(Ei=d) = 1.

I(W(i);X(i),Z(i)) ≥ LiLi−1

×
[
b+

b∑
d=0

Pr(Ei=d) log Pr(Ei=d)

−
b∑

d=0

Pr(Ei=d) log

(
b

d

)]
(29)

Proof: The entropy H(Ei) can be written as

H(Ei) = −
b∑

d=0

Pr(Ei=d) log Pr(Ei=d) (30)

and H(Wi|Ei, Ŵi,X
(i)
l′ ) is

H(Wi|Ei, Ŵi,X
(i)
l′ )

=

b∑
d=0

Pr(Ei=d)H(Wi|Ei=d, Ŵi,X
(i)
l′ )

≤
b∑

d=0

Pr(Ei=d) log

(
b

d

)
. (31)

Thus, when Ei is the Hamming weight of Wi and Ŵi, the lower
bound of information leakage for each weight is presented in
(32). Since log |W| = b and the derived (21), we obtain the lower
of information leakage in Lemma 1. �

I(W
(i)
l,l′ ;X

(i)
l′ ,Z

(i)
l,l′) ≥ log |W|

+

b∑
d=0

Pr(Ei=d) log Pr(Ei=d)−
b∑

d=0

Pr(Ei=d) log

(
b

d

)
(32)

Equation (32) is nonnegative for Pr(Ei=d), for d ∈
{0, 1, . . . , b} and

∑
d∈D Pr(Ei=d) = 1, and vanishes to 0 if and

only if Pr(Ei=d) =
(
b
d

)
/2b. We investigate the lower bound of

the leaked information amount over success rate, where the suc-
cess rate is the probability of Ŵi=Wi, i.e., Ps=Pr(Ŵi=Wi).
In this case, the error function Ei can be considered as binary,
shown as

Ei = e(Wi, Ŵi) =

{
0, Wi = Ŵi

1, Wi 	= Ŵi
. (33)

We obtain the corollary as follows.

Corollary 1 (Lower bound of information leakage for success
rate):

I(W(i);X(i),Z(i))≥LiLi−1
(
b−H2(Ps)−(1−Ps) log(2

b−1))
(34)

where H2(Ps) is the binary entropy function of Ps.
Proof: The entropies H(Ei) and H(Wi|Ei, Ŵi,X

(i)
l′ ) can be

written as

H(Ei) = −Ps logPs−(1−Ps) log(1−Ps) = H2(Ps) (35)

H(Wi|Ei, Ŵi,X
(i)
l′ )

= Pr(Ei=0)H(Wi|Ei=0, Ŵi,X
(i)
l′ )

+ Pr(Ei=1)H(Wi|Ei=1, Ŵi,X
(i)
l′ )

= (1− Ps)H(Wi|Ei=1, Ŵi,X
(i)
l′ )

≤ (1− Ps) log(|W| − 1). (36)

Thus, the information leakage is expressed as

I(W
(i)
l,l′ ;X

(i)
l′ ,Z

(i)
l,l′)

≥ log |W| −H2(Ps)− (1− Ps) log(|W| − 1)

= b−H2(Ps)− (1− Ps) log(2
b − 1). (37)

Combining (21) and (37), we have Corollary 1. �
b−H2(Ps)−(1−Ps) log(2

b−1) is nonnegative for Ps ∈
[0, 1] and equals 0 if and only if Ps =

1
2b

. When there is no
trace, I(W(i);X(i),Z(i)) = 0 and Ps =

1
2b

. That means the
adversary cannot achieve the success rate better than random
guess 1

2b
without additional information, which is similar to [43,

Lemma 3]. Each observed trace brings information for the AI
model extraction and increases the success rate.

C. Minimum Query Counts for Weight Extraction

To obtain the link the minimum query counts for weight
extraction, we combine the derived leakage bounds in
Theorems 2 and 3 and obtain the inequality (38) for the ith
layer.

LiLi−1 (H(Wi)−H(Ei))

− Li

∑
l,′d

Pr(Ei=d)H(Wi|Ei=d, Ŵi,X
(i)
l′ ) ≤

1

2
· qLiLi−1

log

(
1 +

PWi

σ2

)
(38)

Then, we arrange it as follows:

q ≥
H(Wi)−H(Ei)−

∑
l,′d Pr(Ei=d)H(Wi|Ei=d,Ŵi,X

(i)

l′ )

Li−1
1
2 log

(
1 +

PWi

σ2

) .

(39)
The minimum query counts for weight extraction is reflected by
(39). Particularly, we consider the minimum query counts when
the success rate Ps approaches 1, where H(Ei) and H(Wi|Ei=

d, Ŵi,X
(i)
l′ ) approache 0. Thus, we obtain the minimum query
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count as follows:

lim
Ps→1

qmin ≥ 2H(Wi)

log(1 +
PWi

σ2 )
(40)

which shows that the number of queries q needs to satisfy when
the adversary wills to estimate wi precisely. It also can be
utilized to estimate attack cost and time in practice.

D. Analysis of the SCA on the AI System With the Knowledge
of Outputs

In the SCA on the AI system, the adversary usually has the
knowledge of the inputs as well as the corresponding outputs.
In this subsection, we explore the influence of the knowledge of
AI outputs on the model leakage theoretically. The information
leakage Δ on W from the input X, the observed output Ỹ, and
side information Z is formulated as

Δ(W |X,Z, Ỹ) =

k∑
i=1

I(W(i);X(i),Z(i), Ỹ). (41)

The amount of leaked information in the layer i ∈ {1, 2, . . . , k}
is presented as

I(W(i);X(i),Z(i), Ỹ)

=

Li−1∑
l′=1

Li∑
l=1

I(W
(i)
l,l′ ;X

(i)
l′ ,Z

(i)
l,l′ , Ỹ)

=

Li−1∑
l′=1

Li∑
l=1

(
I(W

(i)
l,l′ ;X

(i)
l′ ,Z

(i)
l,l′) + I(W

(i)
l,l′ ; Ỹ|X(i)

l′ ,Z
(i)
l,l′)

)
.

(42)

Thus, the difference of leaked information between with and
without outputs is δ =

∑Li−1
l′=1

∑Li

l=1 I(W
(i)
l,l′ ; Ỹ|X(i)

l′ ,Z
(i)
l,l′). For

the difference, we obtain

I(W
(i)
l,l′ ; Ỹ|X(i)

l′ ,Z
(i)
l,l′)

= H(Wi)−H(Wi|X(i)
l′ ,Z

(i)
l,l′ , Ỹ)

(b)
= H(Wi)−H(Wi|X(i)

l′ ,Z
(i)
l,l′ , Ỹ, Ŵi)

(c)

≥ H(Wi)−H(Wi|Ŵi) (43)

where (b) Ŵi can be estimated by X
(i)
l′ , Z(i)

l , and Ỹ
(i)
l , and

adding the knowledge of Ŵi does not change the entropy.
(c) Conditions can only reduce the entropy. Based on Fano’s
inequality [44], we have

H(Wi|Ŵi) ≤ H(Ps) + (1− Ps) · log |W|. (44)

Then, we obtain

I(W
(i)
l,l′ ; Ỹ|X(i)

l′ ,Z
(i)
l,l′) ≥ H(Wi)−H(Ps)−(1−Ps) · b. (45)

Therefore, with the knowledge of the AI model outputs, more
information about the AI weights can be extracted than only
with the inputs and side-channel observations. The difference of
the information leakage between them is calculated as follows:

δ ≥ LiLi−1 (H(Wi)−H(Ps)−(1−Ps) · b) . (46)

VI. FUZZY GREY CORRELATION-BASED

MULTIPLE-MICROSPACE PARALLEL SCA ALGORITHM ON AI

A fuzzy gray correlation analysis-based multiple-micro-
space parallel SCA algorithm for extracting AI weights is pro-
posed in this section, which is based on the developed informa-
tion theory-based analysis method.

A. SCA Approach for AI Weight Extraction

The inputs/outputs and weights of AI models are stored in
off-chip memory since on-chip memory is constrained. The
processor on the device needs to load data to the data bus
when performing the AI models, where power consumption has
relations to the number of “1” bits in data. The mapping function
adopted in our work is Hamming weight in our work, a classic
model used in the SCA.

In the target device of the SCA, the inputs/outputs and weights
are usually represented by 32/64-bit floats. It is assumed that
all data are 32-bit float in our work. A 32-bit floating point
number includes three components (i.e., the sign, exponent,
and mantissa) based on the IEEE 754 [45]. Specifically, the
highest bit b31 represents the sign of the float number. b30 · · · b23
are the exponent basis, determining the magnitude of the float
number. The lowest b22 · · · b0 are the mantissa bits and reflect
the accuracy of the float number. A decimal float number DFN
can be represented by its 32-bit float storage as

DFN = (−1)b31 × 2(b30···b23)2−127 × (1.b22 · · · b0)2. (47)

Our proposed SCA approach on a well-trained neural network
is demonstrated as follows [46], [47], which can be divided into
three steps.

1) Build a query dataset based on query count prediction:
The query dataset x(i) for i ∈ {1, 2, . . . , k} consists of
multiple samples as the input to each layer of the target AI
network. The size of the query dataset is predicted based
on the minimum number of queries for model extraction
represented in (40). The size of the query dataset is for-
mulated as

q = α · qmin =
2α · b

log
(
1 +

PWi

σ2

) (48)

where α is the parameter of query dataset size.
2) Capture the power traces and form power trace

matrix: In this step, we observe side-channel information
of the multiplication y

(i)
l,l′ = w

(i)
l,l′ · x(i)

l′ for i ∈ {1, 2, . . . ,
k}, l ∈ {1, 2, . . . , Li}, and l′ ∈ {1, 2, . . . , Li−1}. Mean-
while, capture power traces V t = {V t

1, V
t
2, . . . , V

t
q} of the

target AI devices while it is performing the multiplica-
tion; V t

j is the jth power trace of the observation for
j ∈ {1, 2, . . . , q}. Each observed power trace has M trace
points and vt

j,p represents the pth trace point of the jth
power trace.

3) Fuzzy gray correlation-based multiple-microspace paral-
lel side-channel analysis: To process the captured side-
channel power signal, we propose a fuzzy gray correlation
analysis-based multiple-microspace parallel AI weight
extraction algorithm. This proposed algorithm is guided
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by the information theory-based analysis in Section V and
is discussed in detail in the next subsection.

B. Fuzzy Gray Correlation-Based Multiple-Microspace
Parallel Side-Channel Analysis

The fuzzy gray correlation-based multiple-microspace paral-
lel SCA algorithm is designed to extract the value of AI weights
represented in a 32-bit floating model. First, the multiplications
w̃

(i)
l,l′ · x(i)

l′ for every w̃
(i)
l,l′ in hypothetical weight space are calcu-

lated. Since we adopt 32-bit floating AI weights in our work, the
size of the hypothetical weight space is 232. To reduce search
space and extract AI weights efficiently, the multiple-microspace
parallel search method is utilized. Specifically, we divide the
32-bit floating hypothetical weight space into three microspaces,
i.e., sign microspaceWs, exponent microspaceWe, and mantissa
microspace Wm. The size of microspaces is 21, 28, and 223,
respectively. In practice, it is accurate enough to extract a 32-bit
floating AI weight with an 8-bit mantissa. Therefore, we reduce
the size of mantissa microspace to 28. We search the sign,
exponent, and mantissa microspaces separately to determine
corresponding components and obtain AI weights according
to the bit calculation rules in the IEEE standard 754. This
multiple-microspace parallel search algorithm greatly reduces
search space, saves computational resources, and decreases time
cost.

Then, we calculate hypothetical power vectors. For each mi-
crospace of the float weight, we traverse the microsearch space
and obtain the corresponding components of the multiplication
with samples in the query set. We convert the obtained compo-
nents to the float bit pattern and calculate the Hamming weights
as unique power feature vectors V s

w̃s
={vs

w̃s,1
, vs

w̃s,2
, . . . , vs

w̃s,q
}

for w̃s ∈ Ws, V e
w̃e

={ve
w̃e,1

, ve
w̃e,2

, . . . , ve
w̃e,q
} for w̃e ∈ We, and

V m
w̃m

={vm
w̃m,1

, vm
w̃m,2

, . . . , vm
w̃m,q
} for w̃m ∈ Wm.

After that, the values of AI weights are determined based
on fuzzy gray correlation analysis. Cosine similarity is utilized
to build the fuzzy correlation between the captured traces and
the calculated hypothetical power vectors [18]. As a useful
measurement of the similarity degree, cosine similarity reflects
the correlation between variables universally and fairly, which
is shown as follows:

rc,f
w̃f,p

=

∑q
j=1 v

t
j,pv

f
w̃f,j√∑q

j=1(v
t
j,p)

2
√∑q

j=1(v
f
w̃f,j

)2
(49)

for ∀f ∈ {s, e,m}, w̃f ∈ Wf, and p ∈ {1, 2, . . . ,M}. The gray
correlation between captured traces and calculated power vec-
tors is calculated as follows:

rg,f
w̃f,p

=

q∑
j=1

min
j,p

D(vt
j,p, v

f
w̃f,j

) + ρ ·max
j,p

D(vt
j,p, v

f
w̃f,j

)

D(vt
j,p, v

f
w̃f,j

) + max
j,p

D(vt
j,p, v

f
w̃f,j

)
(50)

for ∀f ∈ {s, e,m}, w̃f ∈ Wf, and p ∈ {1, 2, . . . ,M}. In (50),
D(·, ·) is the distance function and one-order norm distance is
adopted in this article and ρ is the coefficient of gray correlation.
Combining the fuzzy and gray correlation in (49) and (50), the
fuzzy gray correlation with the pth point is expressed as follows:

rf
w̃f,p

= γ · rc,f
w̃f,p

+
1− γ

q
· rg,f

w̃f,p

Algorithm 1: Fuzzy Gray Correlation Analysis-Based
Multiple-Microspace Parallel Search Algorithm for SCA on
AI Models.

1: function EstimateWeight(x, f)
2: for w̃f inWf do
3: Floating multiplication of x and w̃f

4: � hypothetical power vectors
5: V f

w̃f
= {vf

w̃f,1
, vf

w̃f,2
, · · · , vf

w̃f,q
}

6: Calculate rc,f
w̃f,p

and rg,f
w̃f,p

based on (49) and (50)

7: rf
w̃f,p
← γ · rc,f

w̃f,p
+ 1−γ

q · rg,f
w̃f,p

8: rf
w̃f
←∑M

p=1 βj · rf
w̃f,p

9: end for
10: w∗f ← argmaxw̃f r

f
w̃f

11: return w∗f
12: end Function
13: function Main
14: x(1) ← Select q query inputs from XL0

15: for i← 1 to k do
16: for l← 1 to Li do
17: for l′ ← 1 to Li−1 do
18: � Measure power consumption:
19: V t = {V t

1, V
t
2, . . . , V

t
q}

20: � AI weight Estimation:
21: Ws,We,Wm ←Microspaces determination
22: w∗s ← EstimateWeight(x(i)

l′ , s)

23: w∗e ← EstimateWeight(x(i)
l′ , e)

24: w∗m ← EstimateWeight(x(i)
l′ ,m)

25: w
(i)∗
l,l′ ← (w∗s << 31)||(we << 23)||w∗m

26: end for
27: end for
28: x(i+1)←(x

(i+1)
1 ,x

(i+1)
2 , . . . ,x

(i+1)
q ) based on (6)

29: end for
30: ŵ← Fine-tune w∗ with (x, ỹ)
31: return ŵ
32: end Function

∀f ∈ {s, e,m}, ∀w̃f ∈ Wf ∀p ∈ {1, 2, . . . ,M} (51)

where 0 ≤ γ ≤ 1 represents the combining parameter. Com-
pared with the traditional cosine similarity, the fuzzy gray cor-
relation combines the advantages of the fuzzy and gray correla-
tions and has better performance in similarity measurement [18],
[19]. Thus, the fuzzy gray is more suitable for the side-channel
analysis for extracting AI model weights. The fuzzy gray cor-
relation between captured traces and calculated power vectors
is

rf
w̃f

=

M∑
p=1

βj · rf
w̃f,p

∀f ∈ {s, e,m}, ∀w̃f ∈ Wf (52)

where
∑M

j=1 βj = 1. The correct value of the weight has a
higher fuzzy gray correlation than that of others. For the sign,
exponent, and mantissa components, the hypothetical values
with the largest fuzzy gray correlation are selected as the optimal
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solutions, denoted as w∗s, w∗e, and w∗m, respectively:

w∗f = argmaxw̃f r
f
w̃f
, ∀f ∈ {s, e,m}, w̃f ∈ Wf. (53)

Thus, the best guess weight can be expressed asw∗ = (−1)w∗s ×
2w

∗
e−127 × 1.w∗m.
Based on the theory analysis in Section V-D, the output ỹ of

the AI network with the inputx also leaks AI model information.
After estimating all the weights of the AI models by side-channel
observations, the input–output pairs are utilized as a training set
to fine-tune the reconstructed the AI network. AI input–output
pairs have been used to extract AI models in previous works [5].
In such attacks, the AI is viewed as a black box, and the
adversary obtains AI input–output pairs via query access, which
are utilized to extract equivalent AI models. The AI input–output
pairs contain additional information of the model, shown in
Section V-D, which is an effective complement to the SCA on the
AI system. Thus, we take a fine-tuned operation to assist the SCA
on AI models. Note that the AI model extraction attacks only
based on query access require a huge amount of input–output
pairs, resulting in higher cost and lower realizability.

The proposed SCA approach on AI weight extraction is shown
in Algorithm 1 in detail. We first form the query sample set and
then measure the power consumption of the query set when
performing AI and calculate the power vectors of all the hypo-
thetical weights with the microspace parallel search approach.
Next, fuzzy gray correlation is calculated to obtain the guess
weights, and input–output pairs are utilized to fine-tune the AI.
The complexity of our designed SCA algorithm is related to the
number of extracted AI weights w, the query counts q, and the
size of weight search spaces. Based on the proposed multiple-
microspace parallel search approach, the computing complexity
of Algorithm 1 isO(q · (|Ws|+ |We|+ |Wm|) ·

∑k
i=1 LiLi−1).

The designed microspace parallel AI weight analysis method
divides the AI weight search space into multiple microspaces and
executes the search method in parallel. Therefore, the proposed
AI weight extraction algorithm decreases the cost and improves
the efficiency. Moreover, the fuzzy gray correlation-based anal-
ysis integrates the advances of fuzzy and gray correlations,
thereby improving the accuracy of the AI weight extraction.

VII. EXPERIMENTAL EVALUATION

The effectiveness of the theoretical analysis method for the
SCAs on the AI system and the proposed AI weight extraction
algorithm is verified under a series of experiments. First, the
environment settings are discussed. Next, the evaluation of the
experimental results is reported.

A. Experiment Setup

The proposed theory analysis method and the AI weight
extraction algorithm are evaluated on software and hardware
platforms. We implement simulations and analysis experiments
on a platform with Intel i5 4460s CPU, 8-GB RAM, and 500-GB
disk. The operating system is Linux Ubuntu 18.04.1 LTS, and the
simulations and analysis are based on Python 3.6. Hardware ex-
periments are implemented on the ChipWhisperer Lite platform,
which is designed and widely used for SCA experiments [48],
[49]. As shown in Fig. 5, the hardware platform enables the

Fig. 5. Hardware experiments on the ChipWhisperer Lite development board.

execution of AI networks, the capture of power traces, and
the transmission of observed side-channel signals to a PC. The
AI models are deployed on the target board, and the main
board captures side-channel power traces while the models are
running. Then, signal processing technologies are adopted to
the observed side-channel signals, including filtering, low-noise
amplification, analog-to-digital conversion, parallel–serial con-
version, etc. After that, the AI power signal is transmitted to the
PC for further processing and analysis.

The hand-written digit dataset in Scikit-learn is utilized in
experiments, which includes a total of 1797 samples [50]. We
randomly split the dataset into two parts: a 1000-sample training
set and a 797-sample testing set. In the digit dataset, the size of
each image is 8× 8 and the size of the output is 10. Logistic
regression (LR) is one of the most popular binary classifica-
tion algorithms and is applied in various fields (e.g., medical
areas). The output of LR can be defined as y = f(wx), where
the activation function f(t) = 1

1+e−t . Owing to the features of
efficiency, simplicity, and popularity, we consider the LR as the
first case to evaluate our proposed SCA framework, theoretical
analysis, and extraction method. Then, we experimented with
MLP, one of the most widely used AI models. The structure
of the adopted MLP model is (64− 50− 10). Activation func-
tions of the hidden and output layers are ReLU and Softmax,
respectively.

The metrics we evaluate to verify the effectiveness of the
theory analysis are capacity, minimum query counts, and the
normalized information leakage through the SCA on AI models.
To evaluate the proposed fuzzy gray correlation-based SCA
algorithm, we investigate the metrics of average absolute error
(AAE), test loss, and test accuracy. The baselines applied are
theoretical analysis, numerical simulation, and hardware results.

B. Evaluation Results

Evaluation results of the capacity for the SCA on AI weights
and minimum query counts are shown in Fig. 6, which includes
theoretical analysis and numerical simulation. Fig. 6(a) and (c)
shows the capacities of the SCA on LR and MLP models,
respectively. The red curves in Fig. 6(a) and (c) are the theoretical
values of the capacity on each weight, and the blue curves are

Authorized licensed use limited to: Temple University. Downloaded on February 27,2023 at 19:37:19 UTC from IEEE Xplore.  Restrictions apply. 



PAN et al.: SIDE-CHANNEL FUZZY-ANALYSIS-BASED AI MODEL EXTRACTION ATTACK 4653

Fig. 6. Capacity and minimum query counts of SCAs on AI over SNR. (a) Capacity of the SCA on LR. (b) Minimum query counts of the SCA on LR.
(c) Capacity of the SCA on MLP. (d) Minimum query counts of the SCA on MLP.

Fig. 7. Normalized information leakage of the SCA on AI models over query
counts. (a) LR model. (b) MLP model.

the Monte-Carlo-enabled numerical estimation. As the SNR
increases, both the theoretical estimation and the Monte Carlo
simulation of the SCA capacities on AI increase. From these
evaluation results, the trend of the deduced theoretical capacity
is consistent with that of the simulated numerical capacity. Fur-
thermore, the theoretical capacity is higher than the numerical
capacity because the derived theoretical capacity has the largest
value.

To achieve the success rate close to 100%, minimum SCA
query counts on LR and MLP over different SNR are shown in
Fig. 6(b) and (d), respectively. The required minimum number
of queries decrease along with the increasing SNR. The the-
oretical value of minimum query counts drops faster than the
simulation value. Both the theoretical value and the simulation
value gradually converge as the SNR increases. The evaluation
in Fig. 6 shows the theoretical analysis and numerical simulation
results of AI weight extraction through the SCA and reveals the
rationality of the proposed theorems.

The leaked information amount of AI weight extraction
through the SCA is presented in Fig. 7, including evaluation
results from theoretical analysis, numerical simulations, and
hardware experiments. Fig. 7(a) and (b) presents the amount
of information extracted by the SCA on LR and MLP models,
respectively. The theoretical upper bound of the leaked infor-
mation amount through side channels is linearly related to the
query count, but is constrained by the entropy H(W ). In Fig. 7,
Monte Carlo-based numerical simulation results grow more
slowly than theoretical values but have better performance than
the hardware experimental results shown in yellow curves. The
evaluation results of theoretical analysis, numerical simulation,
and hardware experiments show similar trend and convergence
values, which reflect that the derived Theorem 2 is reliable.

Fig. 8. AAE in weights of LR, MLP hidden layer, and MLP output layer based
on the fuzzy gray correlation-enabled algorithm.

To quantify the performance of the proposed fuzzy gray
correction-based AI weight extraction algorithm through
the SCA, the AAE of AI weights is investigated. AAE
refers to the average of absolute errors between esti-
mated weights and true weights, expressed as RAAE(w, ŵ) =

1
∑k

i=1 LiLi−1

∑
i,l,l′ |ŵ(i)

l,l′ −w(i)
l,l′ |. AAEs of LR and MLP models

are shown in Fig. 8. The AAEs of the LR, MLP hidden layers, and
MLP output layers gradually decrease with the increasing query
counts and converge to 0.025, 0.029, and 0.038, respectively, at
the 60 000th query. When going through the same number of
queries, the AAE of LR is lower than that of MLP, because the
model complexity of LR is lower than that of MLP. Moreover, the
MLP output layer has higher AAE than that of the hidden layer
for specific query counts. The reason is that weight extraction
in the output layer relies on the estimation of the previous layer,
introducing additional errors and degrading performance.

Other measurements formulated to quantify the performance
of the proposed SCA approach on AI models are test loss
and prediction accuracy. Estimated weights of AI models ex-
tracted on the hardware platform are utilized to reconstruct
the AI model. Then, a test set, D, is used to investigate the
loss and the prediction accuracy. In Fig. 9, the loss and the
prediction accuracy of LR and MLP are presented. The loss
of the reconstructed LR and MLP is shown in Fig. 9(a) and (c),
respectively. For both the LR and MLP models, the test loss
decreases as the number of queries increases. Specifically, the
proposed SCA with fine-tuning for LR achieves the test loss
of 0.28 when the number of queries is 38 400, which is only
13.38% and 18.44% of the model extraction via query access
and the SCA methods, respectively. In addition, the test loss of
the proposed algorithm with fine-tuning for MLP is 0.38 after
64 000 queries, which is 20.84% and 38.79% of the baselines
query access and SCA methods, respectively. In Fig. 9(b) and
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Fig. 9. Test loss and prediction accuracy of the estimation LR and MLP based on the fuzzy-gray-correlation-enabled algorithm in hardware platform. (a) Test
loss of LR. (b) Prediction accuracy of LR. (c) Test loss of MLP. (d) Prediction accuracy of MLP.

(d), the prediction accuracy of the reconstructed LR and MLP
is shown, respectively. It is obvious that the prediction accuracy
of both the LR and MLP models increases as the number of
queries increases. For the LR, the fine-tuning operations improve
the prediction accuracy 400.33% and 25.29% higher than the
query access and SCA method, respectively, when the number
of queries is 38 400. Meanwhile, the prediction accuracy of
the proposed SCA with the fine-tuned approach for MLP is
86.95% after 64 000 queries, which is 104.70% and 33.01%
higher than query access and SCA methods. From the results in
Fig. 9, the proposed fuzzy gray correlation-based SCA on the
AI algorithm with fine-tuning is effective because the proposed
algorithm integrates the side-channel information and query
access to extract the weights of AI models.

VIII. DISCUSSION ON THE AI SYSTEM SIDE

According to the information theory-based analysis, we dis-
cuss the mitigations from the side of AI systems. The derived
theory analysis provides guidelines on the efforts the adversary
has to make to break the AI system. Therefore, the information
theory-based analysis can be utilized to build a more robust
intelligent model. To prevent such an SCA on the AI system,
countermeasures that can be taken at the AI system side are
presented as follows.

1) Introducing controllable noise or interference artificially:
According to the proposed theoretic model, a lower SNR
leads to less information leakage per attack query. Adding
controllable noise or interference artificially is a feasible
mitigation to reduce information leakage. An example of
this is masking, a radical and theoretically sound side-
channel countermeasure [51]. Sensitive operations are
split into secret shares with random values by masking
to remove dependencies of leaked data. Therefore, the
SCA on the AI system can be prevented by masking every
computation.
Another way to mask leakages with additional noise
is the privacy-preserving technology differential privacy
(DP) [52]. With DP, each input fed to AI models is injected
with artificial noise before AI operations to mitigate the
SCA. However, while the information leakage of AI is
reduced resulting from masking or DP mechanisms, it
is inevitable to introduce additional noise and results in
a performance penalty. The AI system should make a
reasonable tradeoff between the security and accuracy.

2) Limiting query counts: In SCAs on the AI system, the
adversary needs multiple attack queries, i.e., feeding the

targeted AI models with crafted inputs and observing
side-channel signals and outputs to infer AI models.
Section V-C reveals the minimum query counts that the
attacker has to take to extract the AI weights. To protect
AI models against these attacks, we can limit the query
counts in a period of time for each user, where the upper
query limit in a specific time span is no larger than the
minimum query counts derived in Section V-C.

IX. CONCLUSION

In this article, a side-channel fuzzy analysis-based frame-
work was proposed for AI model extraction in the intelligent
IoT. We established an analysis method with the information-
theoretic perspective for SCAs on intelligent model extraction.
In the method, we quantified the leaked information amount,
developed its capacity and lower/upper bounds, and built a
mathematical relationship between the minimum query counts
and the success rate. Then, a fuzzy gray correlation-based
multiple-microspace parallel algorithm was proposed for the
SCA on AI weight extraction, which is based on the established
information-theoretic analysis method. Moreover, experimental
evaluations demonstrated the effectiveness of the proposed in-
formation theory-based analysis method and the designed fuzzy
gray correction-based SCA algorithm. In the future, we will
investigate more effective analysis methods and extraction al-
gorithms for more complex AI models with multiple types of
side-channel signals. Besides, we will also study the defense
mechanism for the SCA on AI models and the corresponding
theoretic analysis.
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