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Abstract—Sign language is important since it permits insight
into the deaf culture and allows more opportunities to com-
municate with those who are deaf or hard of hearing. In this
paper, we show that Wi-Fi signals can be used to recognize
sign language with sparsely labeled training dataset. The key
intuition is that sign language introduces different multi-path
distortions in Wi-Fi signals and generates different unique
patterns in the time-series of Channel State Information (CSI)
values. Based on these observations, we propose a sign language
recognition system called WiSign. Different from existing Wi-
Fi signal-based human activity recognition systems, WiSign
only requires a sparsely labeled training dataset. Two solutions
based on transfer learning and semi-supervised learning are
proposed to reduce the number of required labeled instances.
We implemented WiSign using a TP-Link TL-WR1043ND Wi-
Fi router and a Lenovo X100e laptop. The evaluation results
show that WiSign can achieve a mean prediction accuracy of
87.01% and 87.38% for the transfer learning-based approach
and semi-supervised learning-based approach, respectively.

Keywords-human recognition systems, machine learning, sig-
nal processing.

I. INTRODUCTION

Sign language is important since it lends us insight into
the deaf culture and bestows more opportunities to com-
municate with those who are deaf or hard of hearing. Since
sign language mainly uses manual communication to convey
meaning, we can use Human Activity Recognition (HAR)
techniques to recognize them. Various systems have been
designed for HAR using different devices and techniques,
like camera, low-cost radar, and wearable sensors. However,
they all have some limitations when applied in practice.
For example, camera-based approaches need a line-of-sight
and sufficient lighting. Camera-based approaches may also
breach human privacy in some scenarios (e.g. in the bath-
room). The operation range of the low-cost radar is limited
to just tens of centimeters, which limits its deployment in a
large room. Wearable sensor-based approaches can achieve a
high accuracy with a low cost, but they ask the users to wear
their sensor during the recognition, which is inconvenient
and not practical in some applications (e.g. rescue scenarios).

In the past few years, researchers find that Wi-Fi signals
can be leveraged to recognize various human activities. The
key intuition is that different human activities will introduce
different multi-path distortions in Wi-Fi signals and generate

different patterns in the time-series of CSI values. With
modified driver, we can collect these CSI estimations from
the hardware. Also, thanks to the high data rate supported by
modern commercial Wi-Fi devices, we can capture enough
CSI measurements during each human activity. Based on this
observation, researchers have proposed various systemsto
recognize different human activities. For instance, CARM
[1], proposed by Wang et al. can recognize different human
activities based on spectrum analysis. Li et al. proposed
WiFinger [2], which can achieve number text input in Wi-
Fi devices by recognizing finger-grained gestures. Wang et
al. proposed WiHear [3], which can trace mouth movements
and recognize different words that people say. These systems
follow the general structure of machine learning-based sys-
tems and generally have four stages: data collection, noise
removal, feature extraction, and classification.

However, all existing Wi-Fi based approaches have some
limitations. Some systems, like WiWho [4], could recognize
different people with a high accuracy, but they are based on
the generative model, like the decision tree. Such models
have the potential requirement that the label distributions
in the training dataset and the testing dataset should be the
same. In real human activity recognition applications, this
requirement is usually hard to satisfy. Generative models
also tend to produce a significant number of false positives,
which is particularly true for activities that are similar. The
discriminative model is more practical in these cases since
it enables the construction of flexible decision boundaries
and does not require the same label distribution, which
results in classification performances often superior to those
obtained by purely probabilistic or generative models [5–
7]. Several Wi-Fi based human activity recognition systems,
like WiFall [8], have adopted the SVM model which is
a discriminative model, but all of these systems support
just two labels (e.g. falling down or not). In a real human
activity recognition application, at least 3 activities should be
supported. Moreover, most of the current machine learning-
based systems require a large amount of labeled training
dataset that is usually hard and expensive to get in practice.

In this paper, we propose a sign language recognition sys-
tem using Wi-Fi signals called WiSign. WiSign can support
basic sign language recognition like “Yes” and “Good Bye”.



Figure 1. Sign language [9]

Different from existing Wi-Fi signal-based human activity
recognition systems, WiSign only requires a small labeled
training dataset and avoids the potential risk of adopting the
generative model. WiSign consists of two commercial Wi-
Fi devices. One of them is used as a transmitter that keeps
emitting signals and the other one is used to keep receiving
those signals. When a user performs a specific hand or arm
movements within the range of WiSign, WiSign recognizes
the meaning based on the analysis of the variety of CSI
waveforms. Two solutions based on transfer learning and
semi-supervised learning are designed to reduce the number
of required labeled instances. We consider two cases in
which the new user can only provide a small labeled dataset.
If the user can provide enough unlabeled training datasets,
then we can use the idea from semi-supervised learning to
leverage the knowledge in labeled instances to label those
unlabeled samples; If the new user cannot provide extra
unlabeled dataset, we can use the idea of transfer learning,
which transfers the knowledge of other users to train a
classifier for a new user. Based on the experimental results,
our system can achieve similar even better sign language
accuracy with sparsely labeled dataset. Besides, since our
system leverages the knowledge from unlabeled data and
others’ similar datasets, the new classifier is still robust
enough for the new user.

The key contributions of our proposed solutions can be
summarized as follows:

• Our semi-supervised learning-based solution makes full
use of unlabeled data to improve the performance of
learning. Unlabeled instances are easy to obtain since
they do not require humans’ annotation efforts. In
our system, a semi-supervised learning framework is
adopted to label those unlabeled instances using the
knowledge from labeled instances.

• Our transfer learning-based solution makes full use
of auxiliary data collected from others. When training
instances are very scarce, supervised learning is diffi-
cult. Besides, auxiliary instances (e.g. others’ training
datasets) are often available in our application. In
our system, we calculate the similarities between two
labeled instances and choose auxiliary data which are
similar to the new user’s training data.

The remainder of this paper is organized as follows:
In Section II, we will introduce some existing wireless
signal-based human activity recognition systems which use
special hardware, Received Signal Strength (RSS), or CSI.
In Section III, we will discuss the challenges we faced
and the structure of WiSign. Signal preprocessing, feature
extraction, and classification algorithms will be discussed in
Sections IV, V, and VI. In Section VII, we will introduce
our experiment implementation and analyze the evaluation
results. The final conclusion and future work will be given
in Section VIII.

II. RELATED WORK

A. Wi-Fi based human activity recognition system

Existing wireless signal-based human recognition systems
can be divided into 3 categories: Special hardware-based,
RSS-based, and CSI-based.

1) Special hardware-based: Some systems have been
proposed that use high-frequency wireless radio signals
and special antenna alignment to improve the performance
of human recognition systems. For example, in order to
extract small Doppler shifts from OFDM Wi-FI transmis-
sions to recognize human gestures, WiSee [10] uses USRP
as wireless devices and utilizes communication on a 10
MHz channel at 5 GHz. Adib et al. proposed WiTrack [8],
which leverages specially designed Frequency Modulated
Carrier Wave (FMCW) to get accurate Time-of-Flight (ToF)
measurements. In their settings, directional antennas, which
are arranged in a “T”, are also used in WiTrack to help
recognize human gestures through walls.

2) RSS-based: Various systems use RSS collected from
commercial Wi-Fi chipsets for human activity recognition
[11] and human localization [12, 13]. Abdelnasser et al.
proposed WiGest [11], which uses RSS waveforms to detect
different gestures over the laptop. In SpotFi [12] (proposed
by Kotaru et al.) and Wideo [13] (proposed by Joshi et
al.), RSS is used to calculate the distance between the
transmitter and the target. However, RSS values collected
from commercial Wi-Fi devices only provide coarse-grained
channel variation information. Furthermore, they cannot
utilize multi-path effects of indoor Wi-Fi signals. As a result,
most systems only use RSS for macro-movement recognition
and distance estimation.

3) CSI-based: Compared with RSS, CSI can provide not
only fine-grained channel status information, but information
about small scale fading and multi-path effects caused by
micro-movements. Most wireless signal-based systems use
CSI values as data source, and their approaches either follow
the structure of machine learning systems [1, 14, 15] or find
some common patterns among different people [16, 17].

Ali et al. proposed Wikey [14], which can recognize
keystrokes of different users in an indoor environment. The
key intuition is that different keystrokes generate differ-
ent CSI waveforms, and different waveforms can be used



as features. CARM [1], proposed by Wang et al., has
two theoretical underpinnings: a CSI-speed model, which
quantifies the correlation between CSI value dynamics and
human movement speeds, and a CSI-activity model, which
quantifies the correlation between the movement speeds of
different human body parts and a specific human activity. By
these two models, they quantitatively build the correlation
between CSI value dynamics and a specific human activity.
Wang et al. proposed WiHear [3], which recognizes mouth
movements and “hears” people talk within the radio range.
Han et al. proposed WiFall [18] which can recognize the fall
of the target in an indoor environment. Li et al. proposed
WiFinger [2], which can use ubiquitous wireless signals to
achieve number text input in Wi-Fi devices by recognizing
finger-grained gestures. The system designed in [19] can
extract human gait information and individual specific fea-
tures from spectrograms. These systems follow the general
structure of machine-learning based systems and have four
stages: noise removal, feature extraction, classification, and
evaluation. Different feature extraction and classification
models are used in these systems, such as KNN, SVM,
HMM, and so on.

Some other systems are not based on machine learning. In
[16], Zou et al. found that CSI values distribute more widely
and change more drastically when there are more moving
people. They designed Electronic Frog Eye to count the
number of people in a crowd based on this observation. Sun
et al. found that if the user’s hand blocks a signal arriving
along a specific Angle-of-Arrival (AoA), the RSS of this
signal will experience a sharp drop. Then, we can localize
hands by monitoring RSS changes of signals with different
AoAs [17].

While most of the existing CSI-based human activity
recognition systems focus on recognizing human activity to
provide more human-computer interfaces, such as gestures,
lip movements, and keystroke, Wi-Fi sensing technolo-
gies have the potential to be used in health monitoring
and rescue situations. In addition to being influenced by
macro-movements, Wi-Fi signals are influenced by micro-
movements, such as chest movements. There are already
some works which use CSI to monitor vital signs, such as
[20] and [21].

III. SYSTEM OVERVIEW

A. Challenges

To reduce the required number of labeled instances, three
technical challenges need to be addressed in our system.
The first challenge is how to use the knowledge in the
labeled dataset to label those unlabeled instances. This is
challenging since the labeled data is noisy and not enough
to train a robust classifier. Besides, the unlabeled data may
also contain some noisy samples, so not all the unlabeled
data can be used as auxiliary data. Our solution is to use
the labeled data to train multiple classifiers with multiple

Data collection and 
preprocessing

Data 
collection

Low-pass 
filter

Subcarrier 
selection

Spikes 
removal

Sign language 
recognition

Feature 
extraction

Semi-supervised 
learning based 

approach

Transfer 
learning based 

approach

Fine-grained sign language recognition

Figure 2. System structure

models. Then, we use these multiple classifiers to predict
those unlabeled instances. An unlabeled instance is labeled
as yi if and only if the predicted labels of all classifiers are
yi.

The second challenge is how to transfer the others’
knowledge to the new user in order to train a new robust
classifier under the new setting. In practice, human recog-
nition systems could just get a few labeled instances of
the new user without unlabeled instances, since the labeling
progress tends to be inconvenient and expensive. Moreover,
the others’ labeled instances cannot be used as training
instances for the new user directly. Due to the different
floor plans and furniture placements, even the same human
activity may introduce different multi-path distortions in Wi-
Fi signals, and different human activities may still generate
the same CSI waveform. In our system, we will calculate the
similarity between new user’s instances and others’ instances
based on their feature distributions and labels. We choose the
labeled instances that are quite similar to existing labeled
instances of the new user and add them into new user’s
training dataset. Our results show that the extended training
dataset is large enough to train a robust classifier for the
new user.

The third challenge is finding proper and efficient kernel
functions. Due to a complex instance distribution on the
feature hyperplane, it is usually hard to use a simple linear
function to split the instances in SVM model. Based on
the experimental results collected from our testbed, we
define two kernel functions that can maximize the margin
of the instances of different labels. Considering that our
system supports three human gestures, we design a two-
stage classification model with two kernel functions.
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B. System structure

The main idea of our system is to recognize sign language
based on CSI waveform analysis. The system flows are
illustrated in Fig. 2. After we capture CSI waveforms from
commercial Wi-Fi devices, we choose a subcarrier that is
most sensitive to human gestures. We then apply a spikes
removal filter on the raw signal to remove those samplings
which are far away from their neighbor’s samplings. Con-
sidering sign language is mostly low frequency, we apply a
low-pass filter on the CSI waveform to remove noise which
is at a high frequency. The filtered CSI waveform can then
be used for feature extraction and classification.

Eight features are used in our system: the average am-
plitude, the maximal amplitude, the average median ab-
solute deviation (MAD), the maximal MAD, the average
normalized standard deviation (STD), the maximal STD, the
average velocity, and the maximal velocity. Furthermore,
not all of these eight features can be used to classify
human gestures, so we further chose two features which can
represent gestures effectively.

After feature extraction, each waveform Xi (or instance)
can be represented as a vector Xi = (x1, x2, · · · , xn), where
xi means a predefined feature. If the new user only has
a few labeled instances, we will use the transfer learning-
based method to improve the recognition performance with
the help of auxiliary data. Here, auxiliary data is obtained
from others’ labeled instances.

IV. PREPROCESSING

In this section, we describe how we choose proper sub-
carrier and remove noise from the raw signal.

A. Subcarrier selection

The IWL5300 provides us 802.11n channel state infor-
mation in a format that reports the channel matrices for
30 subcarrier groups. At each subcarrier, the fine-grained
CSI describes how a signal propagates from the transmitter
to the receiver with the combined effect of, for example,
scattering, fading, and power decay with distance. Based on
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collected data, we find that different subcarriers have dif-
ferent sensitivities to different human activities. In order to
obtain a robust sign language estimation, a proper subcarrier
needs to be chosen. Considering 3 activities supported in our
system, we choose CSI waveforms of the fifth subcarriers of
the channel between the first transmit antenna and receive
antenna.

B. Noise removal

The raw CSI waveform collected from commercial Wi-Fi
devices is usually noisy so that it cannot be used directly
for feature extraction. In our system, we first use a median
filter to smooth the waveform. Due to the poor performance
of the median filter with high-frequency noise, we further
apply a low-pass filter on the CSI waveform to remove the
high-frequency component that cannot be caused by human
hand and arm movements. Since 3 activities supported in
our system are performed at a low frequency, these two
filters can still effectively remove noise and keep useful
information. Fig. 3 illustrates the effectiveness of our data
preprocessing by comparing the CSI waveform before and
after data preprocessing.

V. FEATURE EXTRACTION

Proper features are important for classification. In our
experiments, we find that the patterns of two users may
be not the same. Since the wavelength of the 2.4GHz
Wi-Fi signal is about 12 centimeters, the shapes of two
waveforms can be quite different. For instance, in Fig. 4,
both waveforms represent “Yes”, but it is not easy to find
a common pattern between them. This means we cannot
directly use the shape of the waveform as the feature.

To differentiate among different gestures, we try to find
proper features that can uniquely represent different sign
languages. In our system, we extract eight key waveform fea-
tures from the filtered signal: (1) mean amplitude of filtered
waveform, (2) maximal amplitude of filtered waveform, (3)
the average median absolute deviation (MAD) value, (4) the
maximal MAD value, (5) the average normalized standard
deviation (STD) value, (6) the maximal STD value, (7) the



average velocity of the signal change, and (8) the maximal
velocity of the signal change. However, not all 8 features can
be used in the classification. We find that we cannot easily
distinguish sign language based on some features, such as
the average velocity of the signal change or the average STD.
Based on our experimental results, the average amplitude
of the filtered waveform and average MAD value are more
useful for classification.

VI. CLASSIFICATION

After extracting useful features from the raw CSI wave-
form, suitable classification models and methods should be
determined for the best prediction. Here, we consider two
cases. In the first case, the new user has a lot of data,
but only a few are labeled. In the second case, the new
user only has a few labeled instances, while our system
has saved a lot of labeled instances from other users and
different environments. Our system prefers using a semi-
supervised learning-based solution for the first case, which
is described in detail in Section VI-A. The transfer learning-
based approach discussed in Section VI-B will address the
second case.

A. Semi-supervised learning-based solution

In many machine learning-based approaches adopted by
existing HAR systems, the target function is estimated using
labeled data. However, labeled instances are often very time
consuming and expensive to obtain. The new user may only
be able to label some instances, while most instances stay
unlabeled. Semi-supervised learning aims to address this
issue. Along with labeled instances, it exploits unlabeled
ones to improve learning performance. Co-training is an
efficient semi-supervised learning paradigm, which trains
two classifiers through letting them label the unlabeled
instances.

In our system, we adopt a similar idea which is used in
classic co-training [22] and En-Co-training [23]. In order
to reduce the cost on feature extraction, we only adopt
one feature view here. Here we consider a basic binary
classification example. In the beginning, all the labeled data
will be used to train two classifiers based on SVM and KNN,
respectively. These two classifiers are then used to predict
possible labels of unlabeled instances. For instance ui, if the
predicted labels y1i and y2i of SVM and KNN are the same,
then ui is labeled as y1i . Instance ui is then added to the
labeled instances set to train the SVM and KNN classifiers
again. The detailed algorithm is listed in Algorithm. 1.

The reason we use two classifiers here is to make the
prediction more accurate. For instance, if we just use the
SVM classifier, a small prediction error in the first iteration
may cause irreparable errors after several iterations. By
introducing a KNN classifier, we can avoid this to a large
degree while still keeping a good prediction performance.
Moreover, since different features have different units and

Algorithm 1 Semi-supervised learning-based: source code

Input: a set of labeled instances L, a set of unlabeled data
U , label space Y , the number of iterations k

Output: a set of labeled instances, L′.
1: while k > 0 do
2: use L to train two classifiers M1 and M2 based on

SVM model and KNN model.
3: for ui ∈ U do
4: use M1 to predict ui and get a predicted label y1i
5: use M2 to predict ui and get a predicted label y2i
6: if (y1i = y2i ) then
7: label ui as y1i and move ui to L

ranges, we use normalized feature values to replace absolute
feature values on all the dimensions.

B. Transfer learning-based solution

To use the transfer learning-based approach, we first need
to find those useful instances from existing large labeled
data (collected from other users). Here, useful instances
mean those instances which can be directly used as labeled
instances in the classification of a new user, and the set of
useful instances is called the auxiliary set.

Given two instances xi and xj with labels yi and yj ,
we need to determine whether these two instances are quite
similar to each other. Since all the feature values we have
are continuous, it is hard to find two instances that are the
same as each other. Moreover, since the average amplitude
and average MAD have different units and ranges, we
cannot use the geometric distance directly to measure the
distance of two instances on the hyperplane. Based on these
observations, we discretized all the feature values in both
dimensions. The feature value after discretization on each
dimension is calculated by the following equation:

Fd(i, j) = d(F (i, j)−Min(i))/τe
i = 1, . . . , Nf j = 1, . . . , Ns

where Nf is the number of selected features, Ns is the
number of instances, Min(i) represents the minimum value
of all instances on the ith features, F (i, j) is the absolute
value of the jth sample for the ith feature, and Fd(i, j) is
the absolute value of jth sample for the ith feature after
discretization. Here, τ is the unit of discretization.jjjjj If the
discrete feature values are the same on all dimensions for
two instances and their labels are the same, then we argue
that these two instances are quite similar. We use this method
to find all similar instances in the others’ training dataset
and include those instances into the training dataset of the
new user. The knowledge transfer results are illustrated in
Fig. 5(a). We can observe that our method can increase the
number of training instances effectively and does not change
the original instance’s distribution.



Here, we use the same formulation of the SVM classifier
with the auxiliary dataset in [24]. A typical SVM has the
following form:

y =

{
1,

∑
j αjyjK(xj , x) + b ≥ 0

0, otherwise

where the αj and b are the learned parameters and the
function K(xj , x) is a kernel function that we designed
based on the instance distribution on the feature hyperplane.

The values of both α and b are learned by solving a
convex optimization problem. In this paper, we consider a
linear programming SVM since it encourages sparser solu-
tions than the usual SVM quadratic regularization penalty.

Minimize
∑
j

αj + C
∑
i

ξi

s.t. yi(
∑
j

yjαjK(xj , xi) + b) + ξi ≥ 1 ∀i

αj ≥ 0 ∀j
The

∑
j αj penalizes the complexity of the classifier, and the

C
∑

i ξi measures how poorly the classifier fits the training
data. The slack variables ξi will be positive precisely for
those training examples where the classifier does not classify
correctly with a margin of at least 1.

For the instances in the auxiliary dataset, they can be used
as support vectors or included in constraints. Those instances
with index i are used as support vectors, and instances with
index j represent those that are included in constraints. Then,
we will have following optimization problem:

Minimize
Np∑
j

αp
j +

Na∑
j

αa
j + Cp

Np∑
i

ξpi + Ca
Na∑
i

ξai

subject to ypi (

Np∑
j

ypjα
p
jK(xpj , x

p
i ) + sumNa

j yajα
a
jK(xaj , x

p
i )

+ b) + ξpi ≥ 1 i = 1, . . . , Np

ypi (

Np∑
j

ypjα
p
jK(xpj , x

a
i ) + sumNa

j yajα
a
jK(xaj , x

a
i )

+ b) + ξai ≥ 1 i = 1, . . . , Np

αp
j ≥ 0 j = 1, . . . , Np

αa
j ≥ 0 j = 1, . . . , Np

As illustrated in Fig. 5(a), although we have included
auxiliary data, it is still hard to use classic linear SVM to
classify all the instances in the feature hyperplane. Moreover,
traditional SVM classifiers only support two labels, so more
than one SVM classifier should be trained to distinguish
three sign languages. In our system, we use a two-stage
classification with three classifiers to recognize these three
sign languages. Firstly, we use a Polynomial function as the
kernel function to classify “Thanks”, and the result is illus-
trated in Fig. 5(b). Then, we remove all the instances that are

labeled as “Thanks” from the training set. For the other two
sign languages, we also adopt a polynomial function as the
kernel function to classify them. The classification contour
and support vectors are illustrated in Fig. 5(c).

VII. EVALUATION

In this section, we describe our hardware setup and data
collection of WiSign. Then, system performance is well
evaluated different settings.

A. Hardware setup

We implement our system using two Commercial off-the-
shelf (COTS) Wi-Fi devices. Specifically, we use a Lenovo
X210 laptop with Intel Link 5300 Wi-Fi NIC as the receiver
to record the CSI measurements. The laptop has a 2.13
GHz Intel CoreTM I3 processor with 2GB of RAM and
Ubuntu 14.04 as its operating system. We use a TP-Link
TL-WR1043ND Wi-Fi router as the transmitter and set the
router in AP mode at 2.4 GHz. Since the modified driver
can only get CSI measurements from 802.11n packets,
we modify the network configuration to make sure that
packets are sent under the 802.11n protocol. To increase
the sampling rate, we set up an FTP server on a Macbook
pro laptop in the same local area network and let the receiver
continuously download a large file via the transmitter. Based
on the experimental results, the average sampling rate of our
system is about 125 CSI measurements per second. All the
CSI measurements are collected from Intel 5300 NIC using
a modified driver developed by Halperin et al. [25]. In our
testbed, we have three antennas for the transmitter and two
linearly assigned antennas for the receiver, so we can get
totally 3×2×30 = 180 different CSI waveforms on different
subcarriers for each measurement.

B. Data collection

To evaluate the performance of the transfer learning-based
and the semi-supervised learning-based approaches proposed
in our system, we collected training data and testing data
from seven users in the same room. None of these users
have experience or knowledge on Wi-Fi signal-based human
recognition systems before these experiments. The Wi-Fi
transmitter and receiver are placed in a straight line on a
desk at a distance of about 0.2 meters. The distance between
the participant and the receiver is about 0.2 meters during
all experiments. The FTP server is placed on the other side
of the receiver on the same straight line at a distance of
about 0.13 meters. Each participant is asked to repeat each
gesture at least 60 times under different experiment settings.
The locations of all the furniture and devices are not changed
during all experiments.

We evaluate the sign language prediction performance
of WiSign for our two solutions and compare their results
with the traditional training method that only uses the SVM
learning model with the kernel function. To evaluate the



The average amplitude
2 4 6 8 10 12 14

T
h

e
 a

v
e

ra
g

e
 M

A
D

0

0.5

1

1.5

2

2.5
Thanks
Yes
Goodbye

(a) Instances distribution after knowledge transfer

The average amplitude
2 4 6 8 10 12 14

T
h

e
 a

v
e

ra
g

e
 M

A
D

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

-1
1

(b) Classification result for “Thanks”

The average amplitude
9 10 11 12 13 14

T
h

e
 a

v
e

ra
g

e
 M

A
D

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2
-1
1

(c) Classification result for “Good bye” and “Yes”
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Figure 6. Evaluation results

performance of the transfer learning-based approach, 15
labeled instances (5 instances for “Good Bye”, 5 instances
for “Thanks”, and 5 instances for “Yes”) from the dataset
of one participant are used as the primary training dataset.
The other labeled instances from the other six participants
are used as the possible auxiliary dataset. To evaluate the
performance of the semi-supervised learning-based solution,
we only use instances from one user. The same 15 instances
are used as the labeled dataset, L, in Algorithm 1, and
the rest of the instances are used as the unlabeled dataset.
For comparison, we use the same 15 instances to train a
classic SVM classifier without leveraging extra knowledge.
We further evaluate the influence of different τ and the
number of iterations in our two approaches. We also study
the distribution of the sampling rate in our testbed and
explore the system’s performance under an extremely low
sampling rate.

C. Prediction accuracy vs. different classification methods

In this experiment, we use the same initial training dataset
for the three approaches and explore their performances on
the same testing dataset. Fig. 6(a) illustrates the prediction
performance of our two solutions and the classic SVM
approach on one user. We can observe that both the transfer
learning-based solution and the semi-supervised learning
solution achieve better prediction accuracies than the classic

SVM approach. Since the instance cluster of “Thanks” is far
away from the other two clusters on the feature hyperplane,
all three methods can achieve a good prediction performance
of 99.74%. For “ Good Bye” recognition, our two methods
can achieve a mean prediction accuracy of 72.21% and
74.81%, respectively. While the classic SVM classifier can
only provide a low prediction performance of 62.5%, our
two methods improve the accuracies of “Yes” prediction by
4.94% and 1.3%, respectively. These results show that our
semi-supervised learning-based and transfer learning-based
methods can improve the prediction accuracy by leveraging
the knowledge from unlabeled data and the others’ training
dataset.

D. Mean prediction accuracy vs. different participants

We further studied the mean prediction accuracy of
WiSign among all involved users. We can still observe from
Fig.6(b) that our two solutions still have a better mean
prediction accuracy compared with the classic SVM method.
More specifically, our transfer learning-based approach and
semi-supervised learning-based approach achieve the mean
prediction accuracies of 79.39% and 76.97% for user 1,
while the mean accuracy of the classic SVM is only 70.3%.
Since the patterns of the first user’s activities are quite
different from the other 6 users, only limited knowledge
can be leveraged by our methods. Similarly, the instance
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Figure 7. Evaluation results

distributions of the third and the fifth users differ from the
other users, but our methods still improve the prediction
accuracy by at least 1.22%. The mean accuracies of our
solutions for the second user are 92.12% (transfer learning-
based approach) and 89.7% (semi-supervised learning-based
approach), while the classic SVM has the mean accuracy of
only 86.67%. In some cases, the semi-supervised learning-
based approach may have better results than the transfer
learning-based approach due to the instance distribution on
the feature hyperplane. For example, for user 7, the semi-
supervised learning-based approach has a mean accuracy
of 98.18%, which is better than that of transfer learning
(97.58%). If two users have the very similar pattern of
supported activities, the transfer learning-based approach can
achieve a better performance. For the sixth user, the transfer
learning based approach can achieve a mean accuracy of
99.39%, which is better than that of the semi-supervised
learning based approach (97.58%). The results show that
WiSign can really improve the recognition accuracy even if
the participants have different speeds and ranges of same
gesture.

E. Mean prediction accuracy vs. different sampling rates

In this subsection, we evaluated the influence of different
CSI sampling rates. Instead of downloading a large file
from an FTP server, we let the receiver keep pinging the
transmitter every 0.05 seconds. Based on the experimental
results, the average sampling rate is about 23.2 samples per
second. Under a low sampling rate, most waveform details
have been lost, and the extracted features can be easily
influenced by noisy measurements. We collected the dataset
under a low sampling rate from the first user with the same
size of the dataset and compared the mean accuracy with
that under a high sampling rate. We observe from Fig. 6(c)
that the mean prediction accuracy drops rapidly when the
sampling rate decreases. The mean prediction accuracies of
the transfer learning-based approach and semi-supervised
approach decrease to 46.06% and 43.64%, respectively. The
high sampling rate can provide us with more information
about the channel state within the same time duration. In

the future, we will try to improve the sampling rate to more
than 2000 samples per second and study whether the mean
accuracy will further increase.

F. Prediction accuracy vs. different τ

In transfer learning-based approach, how to determine the
value of τ is a serious issue. In our experiments, we evaluate
the recognition performance of “Good Bye” of the sixth
user under different τ , and the results are illustrated in Fig.
7(a). We can observe that the recognition performance does
not always improve with the increase of τ . For example,
the waveform fluctuates between 69.09% and 87.27% when
τ < 1.6, but most accuracies are still better than that without
knowledge transferred (τ = 0). The prediction accuracy
keeps increasing when 1.6 ≤ τ ≤ 2. This is because more
useful instances in others’ training data set can be properly
used for local classification. When τ = 2, the prediction
accuracy reaches 98.18%, which means our system is robust
enough in practice.

G. Sampling rate distribution

To evaluate the sampling rate performance of our data
collection, we study the sampling rate distribution across all
the collected data. We present the distribution using Cumu-
lative Distribution Function (CDF) graph that is illustrated
in Fig. 7(b). We can see that more than 90% instances have
sampling rates that are higher than 80 samples per second.
At least half of the total data has sampling rates that are
higher than 130 samples per second. Most of the sampling
rates are between 90 and 160 samples per second. The results
show that ost of our collected data has enough sampling rates
to provide sufficient information for following classification
and prediction.

H. Prediction accuracy vs. different number of iterations

There is a trade-off on determining the number of itera-
tions. If the number of iterations is small, we can reduce
the overhead of data processing, while limited unlabeled
data can be used for a better classification. If the number of
iterations is too large, we can ensure a good performance



from our semi-supervised learning-based method, but we
need more computing resources. In order to estimate what
may be the best number of iterations, we study the influence
of a different number of iterations on prediction accuracies
of 2 users, which is shown in Fig. 7(c). We can observe that
the recognition accuracy increases with the increase of the
number of iterations for both users at the beginning. After
that, the recognition performance keeps steady no matter
how many iterations we run for. Based on these experimental
results, we set the number of iterations as 5 to get the
best recognition performance while reducing the computing
overhead.

VIII. CONCLUSION

In this paper, we propose WiSign, a Wi-Fi signal-based
indoor sign language recognition system. We propose two
approaches based on transfer learning and semi-supervised
learning to reduce the required number of labeled instances
in the classification stage. In the transfer learning-based
solution, existing similar knowledge from others’ labeled
datasets are used to act as the auxiliary dataset. In the semi-
supervised learning-based solution, we exploit unlabeled in-
stances to improve the learning performance. We implement
our system using a Lenovo X210 laptop with Intel Link 5300
Wi-Fi NIC as the receiver and a TR-Link TL-WR1043ND as
the transmitter. Our experimental results show that WiSign
can achieve the mean prediction accuracies of 87.01% (the
transfer learning-based approach) and 87.38% (the semi-
supervised learning-based approach) for all participants.
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