
MB-CIM: A Multi-round Budgeted Competitive
Influence Maximization

Nadia Niknami and Jie Wu
Department of Computer and Information Sciences

Temple University, Philadelphia, PA, USA
(nadia.niknami, jiewu)@temple.edu

Abstract—Social networks often serve as a medium for the
diffusion of ideas or innovations. The maximizing influence
spread through a social network has attracted significant research
interest recently. Influence maximization is trying to select a
small set of seed users in the social network to maximize
the spread of influence. An individual’s decision to adopt a
product or innovation will be highly dependent on the choices
made by the individual’s peers or neighbors in the social
network. Competitive Influence Maximization (CIM) addresses
the competition where multiple competing sources propagate in
the same network. Competitors need to decide which nodes in the
given social network would be an influential one and how many
resources should be allocated to the potential social network
member so that identifying the best algorithm for the influence
maximization under budget constraint has become a demanding
task. Understanding, predicting, and controlling social influence
and its diffusion is an exciting topic in social network analysis.
Most previous works on CIM focus on the same budget allocation
for different seed nodes. Also, they consider a single-shot game
where competitors select potential members in one round. We
are interested in multi-round CIM where each competitor needs
to decide the location and the amount of budget to invest in the
most influential members simultaneously and repeatedly under
a given total budget. The object of competitors is maximizing
the total number of activated nodes. This paper proposes a tree-
approximate game-theoretical framework and introduces the new
measurement as a dynamic node weight. We demonstrate through
simulation that our approach works well in a multi-round and
learning-based CIM problem.

Index Terms—budget allocation, game theory, reinforcement
learning, social networks, multi-round influence maximization.

I. INTRODUCTION

Viral marketing [1] is one of the most effective marketing
tactics in advertising. Facebook and YouTube are two social
networks that help promote products [2]. Influence of social
networks among individuals plays an essential role in viral
marketing. The growth of online social networks has enabled
them to spread quickly [3]. Influence maximization is one of
the most fundamental algorithms in social influence analysis.
Over the last decade, significant effort has been put into the
development of efficient algorithms for influence maximiza-
tion [4]–[10]. The main objectives in the IM problem are
to discover which potential members, seed set, to select and
how many resources to allocate to these potential members to
maximize the competitors’ influence. In the IM problem, all
the nodes in seed set ξ are activated directly, and the remaining
nodes are inactive. According to some probability distribution,

(a) S = {v1, v2, v3} (b) No winner in v3 (c) Red wins v3

Fig. 1: Budget allocation in case of tie in the CIM.

when a node is activated at timestamp i, it may activate its out-
neighbors at timestamp i+1. When no node can activate any
other node, the influence propagation ends. In the real world,
there are many competitors at the same time implementing
their strategies to find a considerable influence on the same
social network. Actually, each rational player tries to spread
its influence as maximal as possible and make its opponents
as minimal as possible. That is why Competitive Influence
Maximization (CIM) [11]–[15] has received a lot of attention
recently. A CIM problem involves selecting the most effective
seeds based on decisions made by other competitors in order
to maximize their influence. The CIM model allows the
influences of each player to cascade simultaneously throughout
the social network, which can interfere with each other.

Considering a competitive game with two competitors, Red
and Blue, in the given social network G(V,E, P ), where V
is the vertex set, and E is the edge set. P is a set of
edge propagation probabilities, where p(u, v) represents the
influence probability of the edge between u and v, where∑
u p(u, v) < 1. When there is no edge between u and v,

p(u, v) = 0. The given social network is defined as a
network of connections and interactions among entities. Nodes
can take on one of the following states: activated by Red,
activated by Blue, and inactive. First, competitors identify the
nodes with the most influence. They compete for only these
influential nodes based on the amount of budget each of them
allocates to each node. After activation of a node, its influence
propagates with a certain probability to their not yet activated
neighbors. At each step t, each node u activated at step t− 1
activates its neighbor v with probability p(u, v). Once acti-
vated, they stay activated. Influence maximization under both
independent cascade (IC) [4] and linear threshold (LT) [16],
[17] models are NP-hard. These propagation models satisfy



TABLE I: Main notations
Symbol Meaning
B1/B2 Total budget of player 1/2
B1(u)/B2(u) Allocated budget of player 1/2 on node u
T Total number of rounds
N(u) Neighbor set of node u
V Set of nodes in the network
V 1/V 2 Set of activated nodes by player 1/2
w(u) Weight of node u
w′(u) Estimated total influence weight of node u
p(u, v) Influence probability of edge between u and v
R(u, v) Influence value of the MRIP between u and v
ξ Seed set
s State of network in reinforcement learning
π(s) Policy in state s
rt Reward in round t in reinforcement learning
a1/a2 Player 1/2 ’s action
V(s) Value of state s in reinforcement learning

two important properties, submodularity, and monotonicity, in
terms of their influence spread function. We will use IC in this
paper. The key characteristic of this model is that diffusion
events associated with every edge in the given social graph
are mutually independent, and the success of the seed node u
to influence one of its inactive neighbors v only depends on
the propagation probability of the edge from u to v.

Consider the social network in Fig. 1(a). Players Red and
Blue compete over the nodes of this network. These players
select v1, v3 , and v8 as the most influential members in this
network. Red player allocates ($2, $2, $2) and Blue player
allocates ($1, $3, $2) on members v1, v3 , and v8, respectively.
The winning probability is proportional to the budget alloca-
tion of two parties. Red player wins v1 with the probability
of 2/(1 + 2) = 2/3. Blue player wins v3 with the probability
of 3/(3 + 2) = 3/5. Players have the same budget allocation
on v8. Fig.1(b) presents the result of this competition until
this step. If player Red adds more money, say $1 extra on
his investment over v8, his chance to win this node will be
3/2 + 3 = 3/5. By doing so, he wins v8. After finding these
seed nodes, the propagation process which is based on the
influence probability of relations or links between seed nodes
and their friends in the given network will start. The player
finding the maximum number of influenced members would
be the winner of this game.

Such a scenario can be modeled by the multi-round Com-
petitive Influence Maximization. The goal of each player in the
competitive environment is to find an optimal combination of
strategies to utilize their budget efficiently. The idea is to take a
more realistic and practical setup, rather than selecting seeds
only in the first round. In a multi-round CIM, players keep
selecting seed nodes according to the current network state and
the expected reactions of other players within given rounds. In
addition, each player can spend a limited amount of budget in
all rounds on seed nodes. Nodes with the greatest influence in a
given network are selected according to different strategies. In
each round, players choose a seed node ξt, decide the amount
of budget that should be allocated to this seed node, then

wait until the end of the propagation process. This assumption
can be extended to multiple seed nodes in each round. Note
that during each round, players take action simultaneously, but
there are sequence rounds (Fig. 2). As influence maximization
is NP-hard, we introduce a new notation of Most Reliable
Influence Path (MRIP) as an approximation.

The value of influencers varies, and competitors want to
find the best value for their overall social advertising budget.
It is obvious that an equal budget at each round does not
sufficiently model the willingness to choose a cost-efficient
seed set. Indeed, we see that the choice to use a fraction of
the budget for round t is crucial: a too large budget allocation
translates into a waste of budget, and a too small budget
allocation translates into a waste of time (a whole round
is used to influence only a few users). To circumvent this
issue, instead of a budget per round, in our framework, we
allow the agent to have the competition of the most influential
nodes at each round under an overall budget constraint. In
this paper, compared to the conference version [18], we make
a set of extensions in the case of explaining the approach
and evaluation. We evaluate our proposed approach under
different parameters such as different amount of total budget,
various network structures, different densities, and different
competition strategies. The contributions of this paper are
summarized as follows:

• We define a new measurement called dynamic weight for
nodes. Considering both fixed and dynamic weights in
selecting seed nodes helps players have a more accurate
selection.

• We discuss the influence spread in the social network by
considering the Most Reliable Influence Paths (MRIP)
for each node in the process of seed selection as an
approximation. MRIP is inspired by the notion of a
critical path in the scheduling community.

• We consider three new features maximum weight of
inactive nodes, the ratio of budget, and the weight of
nodes, in case of reachability to describe the state of the
network in reinforcement learning.

• We propose a CIM model which selects the winner of
the node in case of breaking tie based on the budget
proportion, rather than randomly. Players can compete
on the given node by increasing their investment in this
node to increase their chance.

• We evaluate the effect of our model experimentally using
real datasets and some synthetic ones.

Organization. The remainder of the paper is organized as
follows. Section II briefly surveys the related works. In Sec-
tion III, we describe some preliminaries. Section IV presents
details of seed selection, budget allocation, and our proposed
algorithm. Section V demonstrates experiment results on the
proposed model in the case of different important parameters.
Finally, Section VI offers conclusions and some directions for
future work.



II. RELATED WORK

In this section, we review related research efforts on the
CIM problem, which analyzes the implications of competing
products interfering with each other. In addition, we review
some reinforcement approaches in the CIM problem.

A. Competitive Influence Maximization

Competitive IM aims at finding strategies that maximize
one’s influence while minimizing his opponents’ influence in
a social network [19] [20]. There are different extensions of
the IC model and the LT model to accommodate multiple
competing ideas in social networks instead of focusing on
spreading a single ideas [9] [11] [21]. Li et al. [22] consider
a model for competitive IM. According to a graph G and
diffusion model, the strategy space comprises all IM algo-
rithms that players can adopt. For each player, the objective is
to find a Nash equilibrium strategy that maximizes his own
influence. In [23], authors addressed a multi-stage version
of the Influence Maximization problem. They provided a
new formulation and compared their approaches in terms of
accuracy and computation run time.

B. Reinforcement Learning

An important line of work that uses RL to solve NP-hard
optimization problems on graphs is [24] [25]. Lin et al. in
[26] model a multi-party CIM problem and propose a different
model with the help of RL and based on the Multi-Round
CIM method. Authors in [27] propose a novel deep RL-
based framework to tackle the MRCIM problem considering
the network community structure under a quota-based ε-
greedy policy. K. Ali et al. [28] propose a deep reinforcement
learning-based model to tackle the CIM on unknown social
networks. In [29], by using automatically learned node and
graph representations that encode important network structural
properties, H. Kamarthi et al. propose a RL framework for
discovering effective network sampling heuristics. K. Ali et al.
in [30] propose a novel RL-based framework that is built on a
nested Q-learning algorithm. They derive the optimal solution
in both budget allocation and node selection that results in the
maximum profit with time constraints.

C. Resource Allocation Against Opponents

Parties in a competitive influence maximization problem
perform like a player in a Colonel Blotto game. Colonel
Blotto games (CBG) are a class of two-player zero-sum
games, in which both players need to allocate limited resources
over several objects simultaneously. Authors in [19] focused
on competitive influence when players need to decide on
resource allocation against their opponents. They proved that
competition’s price is unbound in such a Colonel Blotto
game. Authors in [31] address the budget allocation scenario
in maximization influence problem. Companies can allocate
different budgets to nodes in the network, and nodes will be
attracted to companies whose products offer a higher value. In
this case, companies compete by allocating a certain amount

Fig. 2: A Multistage game with two competitive players.

of budget to each node in the network. A Nash equilibrium-
based model is proposed by Masucci et al. [13] to compete
for obtaining more customers in online social networks. Unlike
most of the existing works, in this paper, we study the problem
of Multi-round Competitive Influence Maximization within
budget constraints and while considering the remaining budget
of opponents. We consider a different approach from the Blotto
game for budget allocation strategy. There is a dependency
between targets, and players can continue their investment in
case of tie-breaking. In addition, there is propagation after any
activation. In comparison with ML approaches, we consider
new features to describe the state of the network.

III. PRELIMINARIES

A social network can be modeled with a weighted and
directed graph G(V,E, P,W ), where we define W as a set of
weights associated with each vertex in V . Activating a node
u in G means accepting an idea from the player i. Once a
node u accepts the idea of being occupied by a player i, it
cannot change occupation to another party. If the given node
does not accept any idea, it means that the state of the node
u is inactive.

A. Competitive Influence Maximization.

In a multi-stage CIM problem, competitors need to select
seed nodes simultaneously in each of the sequence stages.
Suppose that there is a CIM game with two players, 1 and 2,
and n nodes in a social network G. Player 1 has a budget of
size B1, and player 2 has a budget size of B2. Each node u
has a value, W (u) > 0, which can be regarded as the reward
of taking this node for players. The total value of n nodes
in this social network is W =

∑
u∈V W (u). The winner

of this game would be the player who can obtain the most
reward by influencing the more important nodes. Players have
competition with the amount of budget they allocate in seed
nodes (the most influential nodes).

In this game, three types of competition can occur. The
first competition is players’ competition on seed nodes by
the amount of allocated budget, which can be called Node-
Node competition. The second one is Link-Link, which is
the competition of influence when two different links with
different influences try to activate the given node in their favor.
The last one is Node-Link. This will happen when one of
the competitors allocates some budget on the given node, and
the influence of another competitor reaches this node by the
influence of the link.

1) Nod-Node influence competition: Considering a Node-
Node competition on the node u. Suppose that B1(u) and
B2(u) are the amount of budget that players 1 and 2 have



Fig. 3: Approach during training process.

allocated to node u. The winning probability of player 1 for
this competition is as follows:

B1(u)

B1(u) +B2(u)
(1)

2) Link-Link influence competition: Link-Link influence
competition will happen after the budget allocation process
and determining the winner of this stage in the case of taking
the given seed node. During the propagation process, suppose
that node u has the influence of player 1 from one of its
neighbors with p1 = p(v, u). In addition, node u has influence
of player 2 from another neighbor, node w, with p2 = p(w, u).
The probability that node u would be activated by player 1 is
as follows:

p1
(p1 + p2)

× (1− p1p2), (2)

where (1 − p1p2) considers the probability of activation of
node u by at least one of the players. The probability that
node u would be activated by player 2 is as follows:

p2
(p1 + p2)

× (1− p1p2) (3)

3) Node-Link influence competition: In a multistage com-
petition, competitors are able to allocate a budget at the same
moment at the beginning of each stage rather than during the
stage. At the beginning of each stage, competitors decide on
their budget allocation, then influence propagation starts. At
the end of the propagation, competitors can start the next stage
and make a decision about new budget allocation. Therefore,
there is node-node competition at the beginning of each stage
and link-link competition during each stage. Consequently,
we will avoid considering the link-node competition for the
multistage CIM problem.

B. Multi-agent Reinforcement Learning.

In sequential games, players need to look forward and
reason back to find the best decision. In simultaneous games,
players look for the best response when they cannot see the
other side’s strategy. Therefore, players need to learn more
about the strategies of opponents. Reinforcement learning (RL)
is a subfield of machine learning that addresses the problem of
learning optimal decisions over time. In RL, the agent keeps
interacting with the environment to find the optimal policy π
to maximize his expected accumulated rewards [32]. The goal
of an RL is to learn a policy π(s) to determine which action
to take given a specific environment represented by state s.

The reward obtained by an agent should reinforce his
behavior. Reward reflects the success of the agent’s recent

Algorithm 1 RL

1: Q(s, a)← initial value
2: while training is not terminal do
3: st ← s0
4: while st is not a terminal state do
5: Determine Qt(st, at)
6: Take strategy at based on Qt(st, at)
7: Simulate opponent’s action
8: Propagate influence to obtain reward rt+1

9: Compute next state st+1 based on network features
10: Update Q(st, at)
11: st ← st+1

activity and not all of the successes achieved by the agent so
far. The agent’s objective is to learn the policy that maximizes
the expected value of the return. The return is the measure of
future cumulative reward during the rounds.

rt+1 + γrt+2 + γ2rt+2 + ... =
∑∞

k=0
γkrt+k+1. (4)

RL formulates the expected accumulated rewards of a state
which is called the V function. Also, it formulates the expected
accumulated rewards for each state-action pair which is called
the Q function. Q function estimates how efficient the policy
π is at maximizing the accumulated reward rt. The V function
Vπ(s) associated with a policy π tells the agent how good the
policy is. The state-value function is defined as:

Vπ(s) = Eπ{rt|st = s} = Eπ{
∑∞

k=0
γkrt+k+1|st = s},

(5)
where γ is the discount factor. The action-value function
Q(s, a) is expected return starting from action a in state s,
and then following policy π:

Qπ(s, a) =Eπ{rt|st = s, at = a}

=Eπ{
∞∑
k=0

γkrt+k+1|st = s, at = a}. (6)

The state value and action value in equations (5) and (6)
can be learned through the interaction of agents with the
environment. The optimal policy π(s) can be obtained given
the Q function and find the maximum value. Fig. 3 displays
the details of RL for a multi-round CIM. According to this
diagram, at the end of each round, players can see the result of
the competition in terms of reward and the current state. Then,
they update their learning, compute new policy against the
opponent’s strategy, and select a new seed set. In algorithm 1,
we can see this process step by step. In the case of multi-
agent RL, agents learn the policies through experience in the
environment and interaction with each other. We assume that
there are only two parties that compete with each other. We
need first to define the environment, the reward, the action,
and the state.

In the given social network, considering V 1 and V 2 as the
total number of activated nodes by players 1 and 2 respectively.
The multi-round CIM can be considered as a zero-sum game



(a) Original graph (b) Constructing Tv2 (c) Calculating w′

Fig. 4: Computing shortest paths and influence weights.

TABLE II: Computing R(v) from source node v2
A N(A) R(s)* p(s,v) R(v)
{v2} v1 1 ∗ 0.2 = 0.2 R(v8)

1*0.4=0.4
{v2, v8} v1 1 ∗ 0.2 = 0.2 R(v7)

v5 0.4 ∗ 0.1 = 0.04
v7 0.4*0.7=0.28

{v2, v8, v7} v1 1*0.2=0.2 R(v1)
v5 0.4 ∗ 0.1 = 0.04

{v2, v8, v7, v1} v1 0.4 ∗ 0.1 = 0.04 R(v3)
v5 0.2*0.5=1

0.2 ∗ 0.4 = 0.08
{v2, v8, v7, v1, v3} v1 0.4 ∗ 0.1 = 0.04 R(v5)

v5 0.2 ∗ 0.4 = 0.08
1 ∗ 0.1 = 0.1
1*0.3=0.3

{v2, v8, v7, v1, v3, v5} v4 1 ∗ 0.1 = 0.1 R(v6)
v6 0.3*0.4=0.12

{v2, v8, v7, v1, v3, v5, v6} v4 1*0.1=0.1 R(v4)
v9 0.12∗0.2 = 0.024

{v2, v8, v7, v1, v3, v5, v6, v4} v9 0.12*0.2=0.024 R(v9)

for players 1 and 2 since (V 1 − V 2) + (V 2 − V 1) = 0,
where V 1 − V 2 and V 2 − V 1 are the goals of players 1
and 2, respectively. In such a game, the Nash equilibrium
is guaranteed to exist with mixed strategies. The MINMAX
theorem would be useful to find the equilibrium [33].

IV. METHODOLOGY

Traditional RL has been successful in dealing with multi-
round CIM [26]. Nevertheless, this approach did not address
the effect of budget on player seed selection strategy. In our
approach, we integrate seed selection and budget allocation
into the RL model. In the budget allocation phase, we con-
sider convincing influential nodes to act as seeds, as well as
selecting seed nodes. The player in this framework learns how
to maximize the value of accumulated rewards by choosing
the optimal policy π. The first step is identifying influential
nodes within the network. Players then compete over only the
selected nodes, rather than the entire network, depending on
the budgets they allocate to each influential node. During each
round t, the agent observes a set of features representing the
network state st ∈ S, and selects one of the legal actions from
the set at. In each round, the agent selects a seed set, ξt ⊂ V ,
based on its past observations. Note that ξt is the seed set
selected by π at round t. The goal for the agent is to follow
a learning policy π maximizing the total number of activated
nodes. When no budget remains or no node can be added to
the seed set ξ, the algorithm terminates.

Algorithm 2 Finding seed set by MRIP

1: S ← ∅
2: for all u ∈ V do
3: w′(u)← 0
4: for u ∈ V do
5: Construct Tu via Alg. 3
6: for each leaf v in reverse Tu do
7: z ← parent(v)
8: while v 6= u do
9: Compute w′(z) = w′(z) +R(v)× w(z)

10: v ← z
11: z ← parent(v)
12: new seed← argmaxu∈V/ S w

′(u)
13: S ← S ∪ {new seed}
14: VA ← Activated nodes by new seed node
15: Constructing G′ with vertex set V − VA
16: Recalculate T and w′ in G′

Algorithm 3 Computing Tu
Require: G(V,E, P ), source node u

1: A = {u}, R(u) = 1
2: while A 6= V do
3: Find node v ∈ N(A) and v ∈ V −A such that
4: R′(v) = max(s,v):s∈A,v∈V−AR(s)× p(s, v)
5: R(v) = R′(v)
6: A = A ∪ {v}
7: Set s as the parent of v in spanning tree Tu
8: return Tu

Definition 1. (Budgeted Multi-round CIM) Given the net-
work G, each player chooses seed nodes in turn, and then
influence propagation is performed at round t. Players compete
based upon the budgets they allocate to the most influential
nodes in order to win these nodes as seed sets. The objective
of each player is to maximize its overall relative influence V i

after T rounds, where V i is the difference among activated
nodes of different players.

A. Selecting Seed Nodes and Propagation Model

Consider a static social network G and B1 and B2 for
players as their fixed budget. Each round, one seed node will
be chosen. The goal of each player is to reach and activate as
many nodes as possible within their total budget. Each player
can decide to implement the specific strategy to maximize its
overall influence in G. The strategy refers to how the player
spends their budget on selecting the seed nodes at each round.
Maximal influence with a spanning tree restricts node u’s
influence diffusion to a local tree structure rooted at u. The
influence of a node in a tree can be calculated efficiently and
precisely. Note that the conflict rule is slightly different from
other works. In contrast to other approaches, which prioritize
one of the players or select the winner of conflicting randomly,
our approach allows players to increase their investment in



case of tie-breaking. The winner will be determined with the
help of budget proportion.

B. Most Reliable Influence Path (MRIP)

Since influence maximization is NP-hard, we use the idea of
the critical path in the scheduling community. Following the
style of Dijkstra and Prim’s greedy algorithm, an inactive node
will get a chance to become active only through the shortest
path from the initially active nodes. In order to find the shortest
path in a maximum influence problem, we can consider
the maximum influence probability of edges. The distance
between node u and v can be computed as the logarithm of the
inverse of the influence probability of edge (u, v). Influence
propagates through the most probable paths, and the notion of
the Most Reliable Influence Path (MRIP) can be considered as
an approximation. It is helpful to estimate the local influence
of nodes for seed selection. The influence of each node when
considering the most reliable paths that originate from the
given node can be regarded as a new measurement for ranking
nodes. This paper calls this value the weighted influence of
each node u, w′(u). Considering R(v) as the influence value of
the most reliable path on node v originated from the source u,
we construct a spanning tree T with the most reliable paths
helps us to find w′ for all nodes.

In fact, Prim’s algorithm allows us to determine the
spanning-tree Tv rooted at v such that each node is reached
from the source node v via MRIP. The value of R(v) for any
two nodes u and v in V is the value of the shortest path from
node u to v, where Pu,v = (u = u1, u2, ..., um = v), and there
is no duplicate nodes. The probability that node v is activated
by u through the path Pu,v is calculated as

∏m−1
i=1 p(ui, ui+1).

All nodes along the path from u to v need to be successfully
activated, then node v would be activated. As an extension,
to more efficiently compute the increased influence spread
within the tolerance of error, we can use an influence threshold
to filter out the insignificant maximal influence paths whose
values are less than due to having a very small impact on the
influence spread computation.

For all v ∈ V in the G, we need to find T . For simplicity, we
explain the process of computing w′ just by considering node
u as the tree’s root node. Suppose that R(u) = 1, among all of
the neighbors of node u finding the edge (u, v) with maximum
R(u)× p(u, v) is the first step. This is a greedy algorithm. In
each step, we consider all of the edges that the source of
them is in the explored node set A, and its destination is in
V − A. We continue this process until A includes all of the
nodes in V . Algorithm 3 represents these steps in detail. After
constructing the spanning-tree Tu, we compute the influence
weight of each node by traversing this tree reversely. For each
node v, the parent of v is u, and the weight of node u, which
is illustrated as the weighted influence, will be measured by:

w′(u) =
∑
∀v∈V

R(v)× w(u), (7)

where w(u) is the weight of node u and R(v) presents the
value of shortest originated from u to v. If we consider w(u) as

Fig. 5: Correctness of MRIP algorithm.

the fixed weight for node u, which can be show the importance
of node in the case of degree or centrality, w′(u) can be
called dynamic weight of this node. Considering the example
in Fig. 4, for any pair of nodes u and v, we need to find the
maximum influence path from u to v and construct a spanning
tree T . Fig. 4 shows the process for node v2. Table II presents
some early steps of finding R(v) for each nodes when v2 is the
source node. Using the calculated R(v) and reverse traversing
the Tv2 in Fig. 4(b), the influence weights of all nodes are
shown in Fig.4(c). The intuition behind the proposed algorithm
comes from Dijsktra’s algorithm. We can prove the proposed
algorithm can find the most reliable path correctly.

Theorem 1. If Ts is the spanning tree selected by MRIP’s
algorithm for source node s in the social network G =
(V,E, P,W ), then Ts is a most reliable influence tree rooted
in s in G and R(v) for each node v ∈ V shows the influence
value of the most reliable path on node v.

Proof: In Fig. 5, the gray area includes the explored nodes.
Suppose that w is the next vertex added to T and P ∗ be
the path from source s to destination w through node v.
Considering any other path P from s to w, node x be the
first node on path outside T . Path P is already as long as P ∗

as soon as it reaches x by greedy choice. Thus, R(w) is the
length of the most reliable path from s to w. This completes
the proof. �

Algorithm 2 presents the processes of selecting the seed
node based on the influence weight of nodes. After finding Tv
for each node v in algorithm 3, by considering w(v) of
nodes as the weight of node or ranking measurement in the
case of the importance of node and R(v) as the value of
the most reliable path, the influence weights w′(v) of all of
the nodes can be calculated. The node with the highest w′

would be selected as the seed node in each round. After
choosing a seed node and propagating its influence, the next
step is to recalculate T and the weighted influence of nodes
in the graph G′ with V − VA nodes, where VA is the set of
activated nodes. Therefore, after selecting any seed node and
the propagation process, there are new w′s for nodes. That is
because we called this weight as dynamic weight.

The time complexity of Dijkstra’s algorithm is O(|E| ·
log|V |), but here we need to find the shortest paths for all pairs
of nodes. Now, the time complexity becomes O(|E|2 ·log|V |).
After selecting a seed node, we need to remove the activated
nodes, VA, from G and consider a new social network G′
including the set of nodes V − VA to recalculate Tv for each



TABLE III: Q-table for strategies

State Budget Q-Value
33311001 Unit 0.7
33311001 All 0.2

State Seed Q-Value
333110010 Degree 0.26
333110010 Weight 0.24
333110010 MRIP 0.3
333110010 Compete 0.6
333110011 Degree 0.26
333110011 Weight 0.24
333110011 MRIP 0.3
333110011 Compete 0.6

(a) Budget-allocation (b)Seed-selection

node v as well as new weight w′. Therefore, the total number
of nodes in these paths should be considered in the algorithm’s
time complexity as well.

C. Reinforcement Learning Settings.

As we are considering a multi-round scenario, the op-
ponent’s past decisions can be taken into account, but the
opponent’s future decisions are not known. There are several
parameters we need to define in order to implement rein-
forcement learning. The propagation of influence is treated
as an environmental effect, whereby activated nodes spread
their influence to their neighbors and activate new ones. The
reward we receive after T steps is the number of nodes that
have been influenced in the entire graph. Through Q-function
updates, rewards are propagated back to previous states.

Action. Players can allocate different amounts of budget
to nodes in G. Competition is based on how much budget
each player allocates to each node. The possible actions are
allocating budget on new seed nodes or feeding an activated
seed node to increase its influence on neighbors. We use
the idea of meta-learning [26] [30] in RL. We consider the
following actions: (1) Selecting a new seed node and (2)
feeding a node in case of tie. Selecting seed nodes can include
Max-degree, Max-weight, Centrality, Randomly, Voting, and
learning-based strategies. In case of investment, we consider
investing $1 or all of the remaining budget.

State. In order to represent the network and environment
status, we must model the state. The design of features will
reflect both the current status of the network and the current
occupation status. Correlations with rewards, the choice of
actions, and the condition of networks require certain features.
Below are the features we have designed:

1) Number of inactive nodes
2) Summation of degrees of all inactive nodes
3) Maximum degree among all inactive nodes
4) Summation of the weight of the edges for which both

vertices are inactive
5) Summation of the inactive out-edge weight for nodes

which are the neighbors of player i
6) Maximum sum of the inactive out-edge weight of a node

among all nodes
7) Ratio of budgets
8) Weight of nodes in case of reachability
Features 1 to 5 help players find the condition of network

in terms of the status of nodes as well as the weight of edges.

TABLE IV: Social Networks
Name Nodes Edges Description
Facebook 4,039 88,234 Facebook social network
Ca-HepTh 9,877 51,971 Arxiv High Energy Physics
Cit-HepPh 620 827 Paper citation network
Synthetic 100 500 Randomly generated network

TABLE V: Evaluation of different features
Dataset Reward Dataset Reward

Fa
ce

bo
ok

OPT-F6 %49

Sy
nt

he
tic

OPT-F6 %45
OPT-F7 %52 OPT-F7 %53
OPT-F8 %55 OPT-F8 %50

OPT-F6F7 %58 OPT-F6F7 %48
OPT-F7F8 %56 OPT-F7F8 %58
OPT-F6F8 %58 OPT-F6F8 %51

OPT %65 OPT %68

Features 6, 7, and 8 are new ones to describe the states of the
network. These features help players to learn more about the
environment, as well as the opponent’s strategy. As a result of
the dependence between some features, not all combinations
of states are possible. There is a correlation between the candi-
date strategies we use to choose our actions and these features.
The player continually updates both Q-tables, that is, seed-
selection, and budget-allocation Q-tables, during the training.
Meanwhile, it updates its policy throughout the training in
order to find an optimal policy for budget utilization from
budget-allocation and seed-selection Q-tables.

V. EXPERIMENTS

We conducted experiments to evaluate the efficiency of
the proposed models in terms of influence spread to other
algorithms. Also, we evaluate our algorithm for different
datasets with different densities.

A. Experiment Setup

We used the igraph Python library to represent the graphs
and the shortest path calculations. The datasets consist of
two real-world social networks and two synthetic ones. We
used the IC as the diffusion model. The edge weights are
set randomly in a range between 0 and 1. In order to check
the impact of influence propagation, we consider normal
distribution, with the same µ = 0 and different σ2. We train
the model by doing 1000 runs and then selecting the best
result as the final result of the model. We use the random tree
generation algorithm, as discussed in experimental settings.

B. Comparison Methods

To find the performance of our approach, we consider
different baseline IM methods and the state-of-the-art multi-
round competitive approach, which is called STORM [26].
OPT is the name of the current paper’s approach, which selects
seed nodes based on both the fixed and dynamic weight of
nodes. We consider the following approaches:

• STORM: a reinforcement learning-based algorithm that
finds an optimal seed selection using Q-learning.



(a) Fixed player 1 budget 10 (b) Fixed player 2 budget 10 (c) Fixed player 1 budget 10 (d) Fixed player 2 budget 10

Fig. 6: Evaluation of player 1’s reward with varying budget setting in synthetic dataset with different height.

(a) Facebook (b) Ca-HepTh (c) Cit-Hepph (d) Average all networks

Fig. 7: Evaluation of player 1’s reward with varying budget setting in real datasets.

• Max-Degree: traditional influence maximization strategy
as the algorithm selects nodes with the highest degree in
the network as seed nodes.

• Centrality: this strategy select seed nodes based on the
location of nodes in the network.

• Max-Weight: one of the baseline methods that finds the
seed node based on the maximum summation of out-edge
weights.

• Random: this strategy is a baseline algorithm that ran-
domly chooses one of the seed selection methods.

• Voting: this method lets the other three strategies vote for
a node as the seed node.

• MRIP: the algorithm selects seed nodes based on both
the node’s fixed and dynamic weight.

• OPT: our proposed learning-based approach

C. Experiment Results

We compare the influence spread of different algorithms on
real-world datasets. Table IV shows the details of these real
datasets, which are accessible from [34]. Each round is defined
as players choosing a seed node and propagating influence.
The number of active nodes after the diffusion process is
used to evaluate the effectiveness of influence maximization
algorithms. We consider the evaluation of our approach in
the cases of different budgets, network structures, competing
strategies, and ranges for the weight of the edges. Table V
shows the evaluation of approaches in the case of different
combinations of features. OPT-F6 is the approach that we
do not consider features 7 and 8. Similarly, others show the
approaches with different features. It can be seen from the
table V with the three features 6, 7, and 8 there is the best
result in real datasets. We call our approach as OPT.

1) Evaluation on Budget Setting: In the first experiment,
we examine the effectiveness of the proposed models’ per-

formances in terms of reward by assuming players have a
different budget. We consider a fixed budget for one of the
players, then analyze the result of competition with a varied
amount of budget for the opponent side. Clearly, the larger
the budget, the more the increase of spread. Parts (a) and (b)
in Fig. 6 show the result of this experiment for the network
with a topology that is like a tree. Parts (c) and (d) display
the result in a network with a fat-tree topology. Figs. 6(a)
and (c) illustrate the effect of varying budget for player 2
when player 1 has a fixed budget of $10 for three algorithms
of Random, STORM, and OPT. Moreover, Figs. 6(b) and (d)
present the effect of varying budget for player 1 while player 2
has a fixed budget of $10 on the spread of player 1’s influence.
It should be noted that we have trained the models by assuming
both parties have the same budget. It can be seen from the
figures that OPT achieves better performance in comparison
with other models.

2) Evaluation Based on Different Topologies: We examine
the effectiveness of the proposed models’ performances on
different networks in terms of reward by assuming players
have different budgets. We consider a fixed budget for one of
the players, then analyze the competition result with a varied
budget for the opponent side. Clearly, the larger the budget,
the more the spread increases. It should be noted that we have
trained the models by assuming both parties have the same
budget. It can be seen from the figures that OPT achieves
better performance in comparison with other models. Also,
we illustrate the performance of the proposed framework on
networks with different structures. It can been seen from Fig. 7
that in different real datasets with different topologies, OPT
has better results than STORM. In addition, OPT can find more
rewards when a player has a higher amount of budget.



(a) Edge weights in (0.4.0.7) (b) Edge weights in (0.1,0.4) (c) Edge weight U(0,0.2) (d) Edge weight U(0,1)

Fig. 8: Evaluation of player 1’s reward with different influence distributions in average all network.

(a) Facebook (b) Ca-HepTh (c) Cit-Hepph (d) Average all networks

Fig. 9: Evaluation of player 1’ s reward with competing strategies in case of different budget.

3) Evaluation on Edge-weight Setting: We analyze the
effect of different edge-weight settings on the proposed model.
We consider the weight of the edges in the range of [0.1, 0.4]
and [0.4, 0.7]. In addition, the weight for edges are randomly
sampled from the normal distribution of U(0, 0.2) and U(0, 1).
In addition, we consider different densities for the network
to evaluate the performance of the approach in the case of
the sparsity of the network. From Fig. 8 can observe that
the influence will diffuse more nodes when there are higher
weights for edges. That happens because seed nodes can affect
mode nodes. Also, the results show that OPT performs better
if there is a high-density network.

4) Evaluation on Different Competing Strategies: We eval-
uate our approach for player 1 against a competitor with a
different strategies such as Degree, Weight, MRIP, as well as
the learned-based strategy STORM. In this part of experiment,
we consider some baseline strategies such as Degree, Weight,
MRIP, as well as the learned-based strategy STORM. For
example, in the second to last column in Fig. 9, the blue one
shows the result of the competition when players 1 and 2
have STORM approach, and the red one shows the result of
the competition when player 1 uses OPT and player 2 uses
STORM approaches. The blue one in the last column in Fig. 9
shows the results when player 1 uses STORM and 2 uses
OPT approach. The red one shows the result when players 1
and 2 has OPT approaches. We can conclude from Fig. 9
that OPT has the best performance against all the competing
strategies, even against the STORM which is the learned-based
model. According to the result of this experiment, based on
the network structure, there are different results with baseline
competing strategies.

In summary, according to the results of experiments con-
sidering the new extra features to describe the state of the

environment when there is a budget constraint for the players
would be helpful to find better final rewards. In the case
of different datasets with different topologies and different
numbers of nodes and edges, MRIP helps players have max-
imum influence against the opponent’s propagated influence.
Considering the total amount of budget, density of dataset,
weight distribution of edges, and competitions strategies as
the different parameters of simulations illustrate this learning
approach is helpful in different network structures, influence
probabilities distributions, and different amounts of budget for
players.

VI. CONCLUSION

In this work, we propose a reinforcement learning frame-
work to tackle the multi-round CIM problem considering
budget ratio for players. A large body of related research did
not focus on the impact of different budgets for players in
a CIM problem. We look into identifying the set of seed
nodes to maximize the spread by considering opponents’
capabilities. In fact, our framework considers the combination
of seed-selection and budget-allocation strategies to invest
the budget efficiently to achieve better rewards considering
budget constraints. To summarize, our main contribution is
designing and evaluating a budgeted learned-based framework
that handles the multi-round CIM. Our experimental results
show that our approach successfully increases the influence
on the given network compared to some known baseline
approaches and a learned-based CIM approach. One possible
future research is to investigate whether it is possible to
accelerate the process of learning and study which parameters
have significant in fact in the speed of learning. We also plan
to study the partial-observed MDP (POMDP) algorithms to
handle the players’ partial information about the environment,
opponents’ strategies, and diffusion process.
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