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Abstract—Stochastic Multi-Armed Bandit (MAB) has recently
been studied widely due to its vast range of applications. The
classic model considers the reward of a pulled arm to be observed
after a time delay that is sampled from a random distribution
assigned for each arm. In this paper, we propose an extended
framework in which pulling an arm gives both an instant (short-
term) reward and a delayed (long-term) reward at the same
time. The distributions of reward values for short-term and long-
term rewards are related with a previously known relationship.
The distribution of time delay for an arm is independent of the
reward distributions of the arm. In our work, we devise three
UCB-based algorithms, where two of them are near-optimal-
regret algorithms for this new model, with the corresponding
regret analysis for each one of them. Additionally, the random
distributions for time delay values are allowed to yield infinite
time, which corresponds to a case where the arm only gives
a short-term reward. Finally, we evaluate our algorithms and
compare this paradigm with previously known models on both
a synthetic data set and a real data set that would reflect one of
the potential applications of this model.

Index Terms—Delayed feedback, learning theory, multi-armed
bandit, upper-confidence bound.

I. INTRODUCTION

The decision-making process is a crucial area to study
under uncertainty in many applications in computer science.
Reinforcement learning is the most prominent example of
having uncertain rewards for decisions. Furthermore, those
rewards are not often observed instantly in real settings [1, 2].
Some reinforcement learning models could have two related
feedback returns observed at two different times. The entire
problem of delayed rewards is one of the most challenging
in reinforcement learning [2, 3]. Many other applications are
reduced to a model in which rewards are observed at different
times, such as in some recommendation systems where some
feedback is observed instantly with the click of the customer
alongside a related delayed feedback that is considered for
events that reflect user retention. In addition, the time delay
until the long-term reward is observed would vary from one
advertisement to another. Hence, the algorithm running the
recommendation system has to account for those various
delays as well as the instant feedback [4–9].

This wide range of applications makes it imperative to
study the stochastic Multi-Armed Bandit (MAB) with delayed
feedback in which each arm has its own distribution for
time delay for the long-term reward where the distribution
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Fig. 1: Rewards of a pulled arm with index i. The short-term reward fi is
from a distribution Fi, the long-term reward ri is from a distribution Ri, and
the time delay di is from a distribution Di. Fi and Ri are related.

can yield a value of an infinite delay. Moreover, there is an
instant reward value that is observed from a distribution that is
related to the distribution of the long-term feedback according
to a previously known relationship. Another simple example
can be shown through internship and training programs in
society: if a company has different pools of candidates (those
pools are modeled as arms) to hire from for its internship
and training program, the revenue the intern produces for the
company during the internship period can be modeled as a
short-term reward, while if the intern decides to apply for
a full-time job and obtains it at the company, that would
be reflected as a delayed long-term reward that may never
come. There is obviously a relationship between the short-
term and long-term rewards as they can be considered to be
sampled independently from two reward distributions with a
predetermined relationship. The objective of the company is to
maximize the total rewards considering both the instantaneous
and delayed rewards, where the amount of delay can be infinite
for the long-term rewards.

This setup introduces many challenges in order to devise a
good strategy: the novel challenge is how to appropriately ac-
count for both the short-term and long-term rewards given the
relationship of the two reward distributions they are sampled
from. Another challenge is how to tackle the problem of the
missing information due to delayed feedback on the run while
actively learning from both the instantaneous feedback returns
and observed delayed ones. The challenge of the possibility
of not getting a long-term reward at all is possible as well.

In this paper, we set up a more general framework and
provide a comparison between the classic Upper-Confidence
Bound (UCB) algorithm performing under it, and two other
UCB-based algorithms that are modified to address the de-
terioration of the classic UCB strategy when run under the
circumstances of delayed rewards with the existence of short-
term rewards. This means that our work lies the bridge



between the typical MAB model in which all rewards are
observed instantly, and the typical stochastic MAB model in
which rewards are observed after a delay. Figure 1 shows an
illustration of the general framework. As seen there, pulling an
arm (indexed i) produces two independent feedback returns,
where one is instantaneous sampled from a distribution Fi,
and the other is delayed sampled from a distribution Ri.
The amount of time delay is sampled from the independent
distribution Di (to void redundancy, we call random variables
by distributions here).

From another perspective, our framework is a generalization
that would provide the ability to knob-tune the two previous
MAB models, which are the classic one with a short-term only
reward, and the delayed stochastic version in which rewards
are observed after a time delay from pulling the arm. Our
paradigm introduces a scaling factor κ that is tunable and can
determine how dominant each one of the two aspects is with
respect to the other one. This tunable parameter will play a
role in the regret bound guaranteed by the different strategies
shown in this work.

Lastly, it is worth mentioning how the previous model that
represents a stochastic MAB with delay times [10] is a special
case of the general framework introduced in this paper. On the
other hand, the classic MAB model [11] that includes only
instant rewards can be derived from this framework indirectly
by setting the tunable parameter κ to zero and setting the delay
distribution for all arms to be a simple Dirac delta function
at zero. In this case, since the strategies will be designed to
account for the learning of the delay distribution for each one
of the arms in the process, the regret is expected to suffer
more than the typical strategies for instant-reward models like
UCB. However, the general strategies designed for this model
do guarantee a reasonably-bounded regret in the case of having
all arms with a fixed zero delay.

Our new results in this paper can be summarized as follows:

• We propose a general framework that would include
typically-used settings whether with delayed feedback or
instantaneous feedback given that the relationship of the
distributions of the two feedback returns is known.

• We study the performance of different algorithms and
prove the near-optimality of two UCB-based algorithms
by providing the regret analysis for each one of them.

• We run extensive simulations on both synthetic and real-
world data in order to compare the performance of the
algorithms under this novel general model.

II. RELATED WORK

Classical MAB is thoroughly studied as it represents the ba-
sic abstraction of sequential decision-making processes under
uncertainty [12–14]. In the classic MAB, the observer pulls a
single arm at each round and gets a feedback return sampled
from an unknown distribution [13]. The natural exploration-
exploitation trade-off arises naturally in this problem, and
many basic strategies for it were introduced in the literature

Fig. 2: The illustration of the problem. Blue arrows represent the instantaneous
rewards. Red arrows represent the long-term rewards.

to address this trade-off. Some examples of those strategies
are UCB [11] and Thompson sampling [13, 15].

Delayed feedback with uncertainty in the process of learn-
ing is a widely-known problem with various applications,
including some applications in advertising, e-commerce, and
finance [16–18]. Hence, different variations of the model of
the problem were extensively studied under many assumptions
and cases of delays in the setting of delayed stochastic MAB.

The delayed stochastic MAB problem has been introduced
initially by Dudik et al. [19] with a strong assumption on the
delay of the arms. They studied the problem where all arms
yield the same fixed delay and they derived a bounded regret
under this setting. Furthermore, Joulani et al. [20] surprisingly
were able to reduce the delayed version of the problem with
the assumption of fixed delays applied to the classic non-
delayed MAB setting. An example for an additional layer of
hardness added to the stochastic MAB with delays is to make
the observer get feedback of exactly one value, which is the
total sum of rewards that arrive at the same round. This model
was introduced by Pike-Burke et al. [21].

To the best of our knowledge, the settings in which the
observer does not have the ability to know whether they have
not received any reward at all or they received a reward of
0 (typically happens in the case of Bernoulli MAB settings)
were introduced for the first time by Vernade et al. [22]. On
the other hand, their model provides the distribution of the
time delay for each one of the arms while restricting this
distribution with certain conditions. Some of those conditions
and assumptions on the distributions of time delays were
removed by Gael et al. [23] who added other soft assumptions
on those distributions that exclude the case where delays
are fixed. However, their model accounts for the case where
the delay distribution can yield an infinite time. Our case is
different as the observer distinguishes between not receiving
a feedback at all and receiving a feedback return of value 0.

In contrast to our work here, all those models put certain
restrictions on the time delay of the arms. Some other restric-
tions are introduced to the model in order to solve it in other
variations [24, 25]. However, the first to introduce a framework
that considers any time distribution without restriction with
the possibility of yielding an infinite time were Lancewicki
et al. [10]. Their paradigm is comprehensive as it includes
different unrestricted delay distributions for the arms that
can be dependent on the reward observed from the arm.
The difference of our more general framework here is the



TABLE I: Description of Commonly-Used Notation

Variable Description
K The number of arms.
T The time horizon.
ai The arm with index i.
µ̂t(i) Observed empirical average for arm i until t.
nt(i) The number of observed returns from arm i until t.
mt(i) The number of times arm i was pulled until t.
UCBt(i) Upper confidence bound of arm i at time t.
LCBt(i) Lower confidence bound of arm i at time t.
ft(at) Short-time reward observed at time t from at.
rt(at) Long-time reward observed at time t+ dt(at).
dt(at) Time delay for long-term reward from at.
di(q) Quantile function of arm i’s delay distribution.
κ Scaling factor from long-term to short-term.
E[.] The expected value.

fact that an arm yields two reward values that are sampled
independently from two distributions that are related.

Lastly, it is worth mentioning that although each one of
the arms in our model has two reward distributions for the
short-term and the long-term rewards, our model is completely
different from the various multi-objective MAB settings that
study the problem of designing algorithms that optimize over
more than one objective [26–30].

III. BACKGROUND AND PROBLEM FORMULATION

Our novel framework considers a variant of the classic
stochastic MAB problem with delays. At each round t =
1, 2, . . . , T , the observer pulls an arm at ∈ {1, 2, . . . ,K} and
observes an instant reward ft(at) and generates a delayed
reward rt(at) that will be observed after dt(at) rounds, or
more specifically, the delayed reward of pulling at is observed
at round t + dt(at). In addition, when the long-term reward
is observed, we know which arm it is from. However, we do
not need to know which exact pull (at which round) the long-
term reward was generated. Hence, the value of dt(at) is not
observed alongside rt(at) when it arrives at round t+ dt(at).

When an arm is pulled, the environment independently gen-
erates three values: the long-term reward rt(i) that is sampled
from the distribution Ri, the short-term reward ft(i) that is
sampled from the distribution Fi, and the time delay dt(i) that
is sampled from the distribution Di. The relationship between
the long-term and short-term reward distributions is that one
is a linear transformation of the other, with a transformation
factor of κ, where κ ∈ [0, 1] is the long-term to short-term
scaling factor that makes the rewards observed from an arm
reasonably related. This makes rt(i) ∈ [0, 1], ft(i) ∈ [0, κ].
Regarding the delay dt(i), its domain is N∪{∞}, which means
that the long-term reward rt(i) will never be observed when
the value of dt(i) is infinite. Further, µi denotes the mean
value of the long-term reward distribution of the arm with
index i, so the mean value of the short-term reward distribution
of the arm will be κµi. Figure 2 shows a basic example of
how the rewards in the model are observed.

Regarding a good metric to measure the performance of the
strategy employed by the observer, we consider an extended
metric of the regret derived from the one used by Gael et
al. [23] and Lancewicki et al. [10], unlike the one proposed
by Vernade et al. [22]. Our simple extended measure is the

difference between the strategy’s expected cumulative reward
and the expected total reward of the arm with the highest µi.
This arm is called the optimal arm and is denoted by i∗. This
measure is extended from the expected pseudo-regret. It is
defined formally as follows.

RT = max
i

E[ΣT
t=1(rt(i) + ft(i))]− E[ΣT

t=1rt(at) + ft(at)]

= (1 + κ)× (Tµi∗ − E[ΣT
t=1µat

]) = (1 + κ)× E[ΣT
t=1∆at

],

where ∆i = µi∗ −µi ∀i ∈ [1,K]. From now on in the paper,
we use the word regret interchangeably with pseudo-regret,
and we may abuse the notation to so that rt(at) is denoted by
rt and dt(at) is denoted by dt. Table 1 gives a description of
the commonly-used notation.

Furthermore, mt(i) denotes the number of times an al-
gorithm pulls an arm i before round t. In addition, nt(i)
represents the number of times a feedback was observed from
an arm i before round t, where mt(i) and nt(i) would not be
the same due to the delayed feedback returns. We set nt(i) set
to equal 1 both at the beginning and when the first feedback is
observed, after that, it would increment to reflect the number
of observations.

Now, consider µ̂t(i) to be the observed empirical mean of
the long-term rewards observed from arm i before round t,
defined as follows.

µ̂t(i) =

{
1

nt(i)
Στ :t>τ+dτ I{aτ = i}(rτ + fτ

κ ), κ ̸= 0
1

nt(i)
Στ :t>τ+dτ

I{aτ = i}rτ , κ = 0
,

where I{X} is 1 if X = true, and 0 if X = false. Moreover,
we introduce the typical [10] quantile function derived from
the delay distribution of arm i, Di, and represent it by di(q).
This means that if d̂i is the actual delay that arm i yields, then
the quantile function of the delay is defined as follows.

di(q) = min{β ∈ N | Pr[d̂i ≤ β] ≥ q}.

IV. SOLUTIONS OF THE PROBLEM

To reiterate, we study the case in which time delays of
the rewards are sampled independently from the rewards
given by the pulled arm. We start now with introducing a
slightly adjusted version of both UCB [11] and Successive
Elimination (SE) [31] to handle the two feedback returns and
the time delay associated for the second reward. Moreover, we
demonstrate the regret analysis of those modified versions of
the two strategies. Afterwards, a third strategy is introduced
and its regret analysis. This algorithm is derived from the
classic Phased Successive Elimination (PSE) [10].
A. The Classic UCB Algorithm

As widely known, the classic UCB algorithm adopts the
upper confidence bound of the arms as the sole criterion to
decide which arm to pull. The UCB of an arm is the value
that upper-bounds the actual mean with a high probability
derived from the Chernoff-Hoeffding inequality. This makes
the algorithm operate with optimism under uncertainty. The
algorithm is simple; it only pulls the arm with the highest
UCB value at each round.



Algorithm 1 UCB for Short-Term and Long-Term Rewards
Input: T , K. //Number of rounds and number of arms.
Output: The set of pulled arms at s.t. t ∈ [1, T ].
Initialization: t← 1. //Start from the first round.

Pull each arm i ∈ [1,K] one time.
Observe any incoming reward.
Let t← t+K.

1: While t < T do
2: for i ∈ [1,K] do
3: nt(i)← Στ :t>τ+dτ

I{aτ = i}.
4: µ̂t(i)← 1

nt(i)
Στ :t>τ+dτ

I{aτ = i}(rτ + fτ
κ ).

5: UCBt(i)← µ̂t(i) +
√

2 log(T )
nt(i)

.
6: Pull arm at = argmaxi UCBt(i).
7: Observe reward.
8: Let t← t+ 1.

We will first simply extend this algorithm to work under
our general framework considering the given relationship
between the short-term and long-term reward distributions.
Afterward, we will prove a lower bound for the regret that
this algorithm would suffer under a specific type of setting.
The UCB algorithm for our extended framework considers the
distribution of the long-term rewards and chooses the arm with
the highest corresponding UCB. However, the development
of the two terms of the upper confidence bound will be
typically faster as the short-term rewards would contribute
in the learning process. We were able to include both of
the feedback returns in the calculation of the UCB since
the relationship between the two distributions is linear. The
extension of the UCB algorithm for the general framework is
shown in Algorithm 1.

In contrast to the classic setting of having an instant reward
only, UCB is not optimal when some (or all) feedback is
delayed. We can see that clearly if we consider the simple
case of setting κ = 0, and the delay distributions of all the
arms to be simple Dirac delta function at a fixed time delay
df , that is Di = δ(t − df ) ∀i ∈ [1,K]. In this simple case,
Joulani et al. [20] show how the regret of UCB is bounded
by O(RMAB

T +Kdf ). Lancewicki et al. [10] showed that the
stochastic version with long-term delays only will guarantee
to suffer a regret of Ω(Kdf ) in a specific case with fixed delay
df . We will extend the argument of their proof to include the
general model. Consider the case in which the optimal arm
suffers a fixed delay of df1 , and all the other arms suffer a
fixed delay df2 such that df1 ≥ K+df2 . In this case, there will
be an additional minimum regret for Algorithm 1 of amount
Ω((df2 − df1)Σi ̸=i∗∆i). This is due to the fact that the UCB
strategy persistently pulls the arm with the highest UCB at
the time in a naive way so that it may take some time delay
(df2 − df1) for it to update properly to determine the best
arm. The following theorem shows this novel property that is
exclusive for our general framework.

Theorem 1. There exists an instance in which Algorithm 1
gives a regret of Ω((df2 − df1)Σi ̸=i∗∆i) in our model.

Proof. Consider the example in which κ is substantially very
small and where all the arms’ reward distributions follow the
Bernoulli distribution such that the average of the optimal arm
is µi∗ = 1, and for the other arm is µi = 0.5. The delay
distribution for the optimal arm gives a fixed delay df1 =
df2 +K+1, where df2 is the fixed delay of all the other arms.
We consider the case in which the index of the optimal arm
i∗ is the largest, which means i∗ = K. Now, we know that
UCB would initiate by going in a round-robin fashion over
all the arms. Let µ̂1(i) be the first observation of the long-
term reward from an arm i. Now, with a fixed probability, the
long-term reward of at least 0.25 of arms i < i∗ is exactly 1.
Chernoff inequality would yield

Pr(Σi≤i∗ µ̂1(i) ≥ K/4) ≥ 1− e−K/8 ≥ 1− e−1/8.

In other words, when the UCB value of the arms is eval-
uated given no more that one long-term reward is observed,
there will be at least K/4 arms with a UCB that is higher than
the optimal arm. Without loss of generality, we can consider
that those K/4 arms are the ones indexed starting from the
beginning of the arms.

Now, because K < (df2−df1), until time K+(df2−df1),
there will be two options, there will be either no observation
of any long-term reward until time (df2 − df1) + 1, or some
returns will be observed in a way that would typically be
shaped in a round-robin way from time (df2 − df1) + 1 to
K + (df2 − df1). Now, as the first long-term reward of arm 1
is 1, it will be the only arm pulled until time (df2−df1)+K.
That is because it has the maximum UCB for that time and
lowest index (we let UCB choose the arm with lowest index
when two arms have the same UCB value). Now, at time K+
(df2 − df1) + 1, a second long-term reward is observed from
arm 1, which would decrease the second term of its UCB.
Meanwhile, arm 2 will have the lowest index that has the
maximum UCB. Afterward, we pull it (df2 − df1) times until
time K+2(df2−df1), while there is no new long-term rewards
observed from any arm (beside arm 1 that was already pulled
multiple times before and that has lower UCB). After that,
we observe a second long-term reward from arm 2 at round
K + 2(df2 − df1) + 1. Then, let arm 3 will be the next to be
pulled. This pattern is repeated as we pull (df2 − df1) times
each one of arms i2, . . . , iK/4 in this order. Hence, the regret
of the UCB algorithm for this example would be

RT ≥
df2 − df1

4× 2× (1− e−1/8)
Σi ̸=i∗∆i=Ω(Σi ̸=i∗∆i(df2−df1)),

which concludes the proof.

B. Successive Elimination

SE keeps a set of active arms such that at the beginning,
all the arms are in the set of active arms. This strategy would
outperform UCB when there is a delay in some of the feedback
observations after pulling the arms. This is due to the reason
of giving more weight to more arms whose feedback was not
observed yet. The assignment of this weight follows a uniform
way over the active arms as it pulls all of them equally.
Moreover, an arm can be excluded from the set of active



Algorithm 2 SE for Short-Term and Long-Term Rewards
Input: T , K. //Number of rounds and number of arms.
Output: The set of pulled arms at s.t. t ∈ [1, T ].
Initialization: t← 1, S ← [1,K]. //Start from the first round.
1: While t < T do
2: Pull each arm i ∈ S.
3: Observe all incoming feedback.
4: Set t← t+ |S|.
5: for i ∈ [1,K] do
6: nt(i)← Στ :t>τ+dτ

I{aτ = i}.
7: µ̂t(i)← 1

nt(i)
Στ :t>τ+dτ

I{aτ = i}(rτ + fτ
κ ).

8: UCBt(i)← µ̂t(i) +
√

2 log(T )
nt(i)

.

9: ULBt(i)← µ̂t(i)−
√

2 log(T )
nt(i)

.
10: Update S by including all arms except all arms i such

that there exists j with UCBt(i) < LCBt(j).

arms when we can say that it is suboptimal with confidence.
Lastly, it is worth mentioning that an arm can be excluded
from an active set and then returned back to the set in some
extreme cases in which the high confidence that the arm is
suboptimal is significantly reduced. Algorithm 2 shows the
detailed pseudo-code of SE.

In addition, in order to pull S samples from K number
of arms, SE would need KS + df rounds, in contrast to the
UCB algorithm, that would need K(S + df ) rounds in some
scenarios like the one shown in the previous subsection. The
total regret of SE is derived using a combination of the previ-
ously known result from the delayed stochastic MAB version
[10], and the short-term regret [31], which we introduce. This
combination is shown in the following important bound.

Theorem 2. The regret of the strategy in Algorithm 2 is
bounded under our model. The bound is given by

RT ≤ min
q⃗∈(0,1]K

Σi̸=i∗40(log T/∆i)(1/qi + 1/qi∗)

+ log(K)max
i ̸=i∗
{(di(qi) + di∗(qi∗))∆i}}+ κ

√
KT log T .

(1)

Furthermore, we can get another incomparable different
bound for the regret, which is given by

RT ≤ min
q∈(0,1]

Σi ̸=i∗325
log T

q∆i
+4max

i
di(q)+κ

√
KT log T .

(2)

Proof. The regret here is a combination of the regret from
the short-term rewards, and the long-term rewards. We will
start by using an argument similar to the one used in the
delayed MAB version [10] for the long-term rewards and
then combine it with the regret resulting from the short-term
feedback. We can start by fixing the vector q⃗ ∈ (0, 1]K and
defining dmax = maxi ̸=i∗ di(qi), but we know that for arm
i, with a high confidence, the actual average value for the
reward distribution Ri lies within the confidence range, which
is the interval [LCBt(i), UCBt(i)]. This is true at all rounds.
However, as the time increases, the confidence increases.
Considering this, we can conclude with high confidence that

Fig. 3: Illustration of Successive Elimination Algorithm. Green colour repre-
sents active arms. Red colour represents inactive colour arms.

the algorithm may never eliminate the optimal arm. However,
in the extreme case in which the optimal arm is eliminated, it
will eventually be activated again. Now, for a suboptimal arm
i that was not excluded by time t from the active arms set, it
will hold for it that, UCBt(i) ≥ LCBt(i

∗), from which we
know with high confidence that

∆i

2
≤

√
2 log(T )

nt(i)
+

√
2 log(T )

nt(i∗)
.

Now, using Chernoff bound, we can demonstrate that the
number of times a long-time feedback return is observed from
arm j at time t can be expressed roughly as a fraction qj
from the number of times the arm was pulled until round
t − dj(qj), where dj(qj) is the quantile function of arm j’s
delay distribution. We can now bound both nt(i

∗) and nt(i)
in order to get the following expression.

mt−dmax(i) = O(
log T

∆2
i

(1/qi + 1/qi∗)).

To this point, we can formulate the total regret that results
from the long-term rewards. So, given that t is the last round
at which arm i was pulled, we get

mt(i)∆i = mt−dmax
(i)∆i + (mt(i)−mt−dmax

(i))∆i

≤ O(
log T

∆i
(1/qi + 1/qi∗)) +mt(i)−mt−dmax

(i),

where mt(i) − mt−dmax(i) represents the number of times
arm i was pulled in the interval between round t− dmax and
round t, and we can see that this is bounded by dmax as well.
However, because of the round-robin selection of the arms in
the active set S, we can divide this time by the number of
total active arms. Furthermore, the number of active arms is
K arms (all the arms) before the first time of elimination. The
second time will have at most K − 1 active arms, and so on,
until there are only two active arms before elimination. Hence,
we can add up the regret from the long-term rewards at all of
those stages of elimination to get the bound of

O(Σi̸=i∗
log T

∆i
(1/qi + 1/qi∗)) + log(K)max

i
di(qi),

where we made use of the inequality logK ≥ 1/K+1/(K−
1) + · · · + 1/2. By that, we successfully demonstrated the
first two terms of regret shown in Equation 1. The third term
comes from a known result about SE [31] that the instant
rewards have a regret bounded by

√
KT log T , and given the

aforementioned definition of the pseudo-regret, we are able to



derive the total regret from the regret produced by the long-
term and the regret produced by short-term rewards to get

RT = O(Σi ̸=i∗
log T

∆i
(1/qi + 1/qi∗))

+ log(K)max
i

di(qi)+ κ
√

KT log T ,

The argument for Equation 2 would be similar but with
restricting the choice of different quantiles for each arm to a
single quantile for all the arms.

A straightforward implication of Theorem 2 is that if
all arms have fixed delay df for their long-term reward,
the regret of the algorithm would add up to a result of
RT = O(RMAB

T + df ) + κ
√
KT log T .

C. Phased Successive Elimination with Delays

We now introduce the slightly modified version of the
Phased Successive Elimination presented by Lancewicki et
al. [10] as well as the corresponding regret. This version of
the Successive Elimination algorithm was motivated by the
common use of phased versions of different algorithms [32].
PSE does not pull the arms in the naive round robin way as the
SE algorithm, rather it dynamically keeps a balanced amount
of long-term rewards to be observed at each phase. Hence,
the dependency on the delay of the optimal arm is alleviated.
However, the dependency on the delay of other arms remains
present. This algorithm would typically outperform the normal
SE algorithm because of the assignment of extra weight to
pulled arms that did not have their feedback observed is a more
dynamic way following a certain granularity that depends on
the phases. This means that the near-uniform bias introduced
in the SE algorithm would change over the phases to give less
weight to the arms with long-delayed feedback.

PSE strategy is shown in detail in Algorithm 3. At each
one of the phases of PSE, denoted by ℓ, the arms that were
not deleted in a previous phase are first pulled in the same
naive round-robin way similar to SE. However afterwards,
if an arm has its long-term reward observed 16 log(T )/2−2ℓ

times or more, we don’t pull it anymore in the phase. On
the other hand, the algorithm keeps pulling the other active
arms. The process persists until enough long-term observations
are made from all the active arms in S. After that, S is
updated with the same rule of update in the SE algorithm.
Then the next phase ℓ+1 starts and the same process is applied
again with the new set |S|. Similar to the approach shown in
Theorem 2, we devise the following new regret bound for our
bound by seamlessly combining the regret bound of the long-
term rewards and short-term rewards. That is shown in the
following Theorem.

Theorem 3. The regret of the strategy in Algorithm 2 is
bounded under our model. The bound is given by

RT ≤ min
q⃗∈(0,1]K

Σi̸=i∗290 log(T )/qi∆i

+ log(T ) log(K)max
i ̸=i∗

di(qi)∆i + κ
√

KT log T .
(3)

Algorithm 3 PSE for Short-Term and Long-Term Rewards
Input: T , K. //Number of rounds and number of arms.
Output: The set of pulled arms at s.t. t ∈ [1, T ].
Initialization: t← 1, S ← [1,K], ℓ← 0.
1: While t < T do
2: Let Sℓ ← S, ℓ← ℓ+ 1. //Phase counting.
3: While Sℓ ̸= ∅ do
4: Pull each arm i ∈ Sℓ, observe incoming feedback.
5: Set t← t+ |Sℓ|.
6: for i ∈ [1,K] do
7: nt(i)← Στ :t>τ+dτ

I{aτ = i}.
8: µ̂t(i)← 1

nt(i)
Στ :t>τ+dτ I{aτ = i}(rτ + fτ

κ ).

9: UCBt(i)← µ̂t(i) +
√

2 log(T )
nt(i)

.

10: ULBt(i)← µ̂t(i)−
√

2 log(T )
nt(i)

.

11: Eliminate all arms that were observed at least log(T )
2−2ℓ−4

times from Sℓ.
12: Update S by including all arms except all arms i such

that there exists j with UCBt(i) < LCBt(j).

Proof. Similar to the argument used in the proof of Theorem
2, we start by fixing a vector q⃗ ∈ (0, 1]K . Then we follow an
argument for the long-term rewards similar to the one in [10]
with slight modification. To this end, we start by defining two
failure events A1 and A2 in the following manner:

A1 = {∃t, i : |µ̂t(i)− µi| >
√
2 log(T )/nt(i)},

A2={∃t, i :mt(i)≥32log(T )/qi ∩ nt+di(qi)(i) < qi/2mt(i)},

and then we define the negation of those failure events by
defining B = ¬A1 ∩¬A2. Directly from the Chernoff bound,
we get Pr(B) ≥ 1− 3T−2.

Now, we denote the last round of phase ℓ by tℓ. We know
that if an arm i is not eliminated by round tℓ, by definition of
the algorithm, we will get

LCBtℓ(i
∗) ≤ UCBtℓ(i),

consider this arm i to be removed at round tℓ+1. This positive
event will give for the long-term rewards

∆i = (µi∗ − µi) ≤ 2
√

2 log(T )/ntℓ(i) + 2
√
2 log(T )/ntℓ(i∗)

≤4
√
2 log(T )/(16 log(T )/2−2ℓ)≤

√
22−ℓ=2

√
2×2−1−ℓ, (4)

such that the last inequality can be derived since the phase
ℓ ends at the time when all arms i were observed at least
16 log(T )/2−2ℓ. Now, define τ ′i to be the last round at which
arm i was pulled. We get nτ ′

i−1(i) < 16 log(T )/2−1−ℓ2. Next,
we assume that

mτ ′
i−di(qi)−1(i) > 32 log(T )/qi, (5)

so now given the positive event B occurs, we will get

mτ ′
i−di(qi)−1(i) ≤

2nτ ′
i−1(i)

qi
≤ 32 log(T )

qi2−2−2ℓ
≤ 256 log(T )

qi∆2
i

,

which holds by Equation 4. On the other hand, that would
hold in a trivial way given the condition in Equation 5 does



not hold. Hence, we can conclude that the total regret from
long-term rewards of arm i will reduce to the formula shown
in [10], which is

mτ ′
i
(i)∆i =mτ ′

i−di(qi)−1(i)∆i+(mτ ′
i
(i)−mτ ′

i−di(qi)−1(i))∆i

≤ 256log(T )/qi∆i+(mτ ′
i
(i)−mτ ′

i−di(qi)−1(i))∆i

= 256 log(T )/qi∆i +Σ
τ ′
i

t=τ ′
i−di(qi)

I{at = i}∆i.

To this end, we need to sum up over all the arms to get a
total regret from the long-term rewards

Σi̸=i∗256
log T

qi∆i
+Σi̸=i∗Σ

τ ′
i

t=τ ′
i−di(qi)

I{at = i}∆i

+ T Pr(¬B) ≤ Σi ̸=i∗257 log(T )/qi∆i

+Σi ̸=i∗Σ
τ ′
i

t=τ ′
i−di(qi)

I{at = i}∆i = Σi ̸=i∗257
log T

qi∆i

+Σi ̸=i∗257 log(T )/qi∆i +Σi ̸=i∗Σ
τ ′
i

t=τ ′
i−di(qi)

I{at = i}∆i

+ΣL
ℓ=1Σ

K
i=1Σ

T
t=1I{at= i,t ∈ [τ ′i−di(qi),τ ′i ] ∩ [tℓ−1+1,tℓ]}∆i,

(6)

given that L is defined to be the total number of phases.
Starting from Sℓ to include all the arms i, such that some
rounds in [τ ′i − di(qi), τ

′
i ] are in phase ℓ. In other words

Sℓ = {i ∈ [1,K] : [τ ′i − di(qi), τ
′
i ] ∩ [tℓ−1 + 1, tℓ] ̸= ∅}.

Define ϕℓ(i) to be the number of arms active at phase ℓ by
the round min{τ ′i , tℓ}. We will get

ΣK
i=1Σ

T
t=1I{at = i, t ∈ [τ ′i − di(qi), τ

′
i ] ∩ [tℓ−1 + 1, tℓ]}∆i

= Σi∈Sℓ
ΣT

t=1I{at= i,t∈ [τ ′i−di(qi), τ ′i ] ∩ [tℓ−1+1,tℓ]}∆i

≤ Σi∈Sℓ
[(di(qi) + 1)∆i/(ϕℓ(i)) + 1]

≤ Σi∈Sℓ
max
i ̸=i∗

(di(qi) + 1)∆i/ϕℓ(i) + |Sℓ|

≤ (log(K) + 1)max
i̸=i∗

di(qi)∆i + log(K) +K. (7)

Equation 7 holds because the summation of the indicators
is zero when the arm i /∈ Sℓ. In addition, the first inequality
there can be reduced to |[τ ′i−di(qi), τ

′
i ]| ≤ di(qi)+1 and that

at least ϕℓ(i) arms are to be pulled in a round-robin fashion.
The second inequality is derived from the fact that

Σi∈Sℓ
ϕℓ(i) ≤

1

|Sℓ|
+

1

|Sℓ| − 1
+. . .+1 ≤ 1+log |Sℓ| ≤ logK+1.

By substituting Equation 7 in Equation 6, and making use
of the maximum possible number of phases in terms of the
time horizon, which is log2(T ), we have for the long-term
reward a regret bound of

Σi̸=i∗
290 log(T )

qi∆i
+ log(T )(log(K) + 1)max

i ̸=i∗
di(qi)∆i.

Combining that with the short-term regret bound the al-
gorithm guarantee as it would work the same as SE for the
short-term, which is κ

√
KT log T , we get

RT ≤ Σi̸=i∗
290 log(T )

qi∆i
+ log(T )(log(K) + 1)max

i ̸=i∗
di(qi)∆i

+ κ
√

KT log T ,

which concludes the proof.

In other words, in a similar way of Theorem 2’s proof,
both Algorithms 2 and 3 exclude arm i roughly when√
log T/nt(i) +

√
log T/nt(i∗) = ∆i.

From another perspective, when we consider the long-term
rewards, PSE will keep minimizing the first two terms at
the same pace evading the dependency on the time delay
distribution, specifically on qi∗ , in the first term of Equation 3.
On the other hand, in SE, the algorithm’s regret is dependent
on log(K) introduced by the long-term rewards part. That
is due to the reason that the strategy keeps pulling all arms
in S at the same rate, reducing a term scaling in the order
of logK. For PSE, this is not what happens as the pulling
of the arms happens in the round-robin fashion. This pulling
process would happen over all of the (log T ) phases such that
the number of pulls is O(Σi∈Sℓ

ϕℓ(i), which is bounded by
O(logK). This will give a term of order O(log T logK) in
the regret, which appears in the second term of Equation 3.

An example of a distribution of time delays for the arms
in which PSE outperforms SE is when the long-term re-
ward either arrives immediately with probability pi or that
the long-term reward never arrives with a probability of
(1 − pi). Under those settings, the regret of SE will yield
to a O(Σi̸=i∗ log(T )/∆i × (1/pi + 1/pi∗)) regret bound.
However, PSE will have a better regret that is bounded by
O(Σi̸=i∗ log T/(∆ipi)). Those regret bounds are comparable.
Notice especially when pi∗ is close to zero, the PSE will
significantly be better than SE in this case. That is because of
two reasons, the first is how the short-term rewards favor PSE
more in improving its performance. In addition, it is because
PSE dynamically determines how much to pull arms that get
enough feedback returns.

Regarding future work, it would include relaxing the con-
dition of having a linear transformation between the reward
distribution for the short-term and the long-term rewards. This
relaxation would include a version in which κ is an unknown
random variable that is being learned in the process. The
model can be further modified so that it would include multiple
long-term rewards for pulling an arm once, where each one
of those observed rewards has its own distribution of reward
and distribution of time delay.

Lastly, the characterization of the relationship between the
reward values can be different so that it is represented by
an unknown probability distribution that follows a certain
class of distributions. In this case, the process of learning
needs to learn an additional distribution, which is the one that
represents the relationship between the short-term and long-
term reward. Tackling this additional layer of hardness is a
potential for future work as adding it can likely be embedded
into our analysis in this paper.

V. SIMULATIONS

A. Experimental Settings

In our simulation, we use two different settings, the first
one is a synthetic one that we comprise, the other one is



Fig. 4: The basic metrics for default values (synthetic data).

from real-world data. The real-world data [33] represents an
application of sparse learning of incomplete traffic speed data
that is given. We consider some of those data to be missing
where we try to learn them using our different strategies. We
consider an instant reward to be accredited for a decision that
is related to how close the guess is with the actual value. The
long-term reward is observed whenever there is a collective
of data and the accreditation of this collective reward is given
proportionally to the decisions such that our model of the
κ-scaling still holds. Maintaining this condition is sufficient.
The traffic speed data represents vehicle mobility information,
i.e., the GPS records of vehicles, which are collected from
Beijing. This dataset considers a number of road segments
for the traffic speed covered by more than 32, 000 taxis that
generated the trajectories. On the other hand, the synthetic
data represents K = 20 arms under Bernoulli settings. Pulling
an arm would yield to either a zero reward or κ reward
for the short-term feedback, and would yield to either a
zero reward or 1 reward for the delayed feedback after a
delay that is sampled from a distribution that follows the
truncated exponential distribution with a mean delay of 100
(unless stated otherwise). The mean of the long-term reward
distribution is randomly sampled from [0.25s, 0.75s], where s
is a tunable factor such that s ∈ [0, 1].

B. Algorithm Comparison

Under both the synthetic and real-world data settings, we
study how our three algorithms perform. That includes the
classic UCB, SE, and PSE that are presented in Algorithms
1-3. Furthermore, we compare those results to the classic UCB
when it operates under the same settings where only the long-
term is observed. In order to make the comparison fair, we

Fig. 5: The basic metrics for default values (real data).

scale up this long-term reward by (1+κ). By that, we are able
to observe the advancement of the learning process itself given
the short-term reward, and without this short-term reward,
which comprises the novelty of our work in comparison
to the existing frameworks. The different algorithms would
perform slightly differently under both the synthetic and real-
world data settings, we see how our three algorithms behave.
Moreover, we contrast the results and performance of the
classic UCB when it operates under the same settings where
only the short-term is observed.
C. Experimental Results

The first observation that we can make is the order of
the performance of the algorithms under various different
parameters set. As shown in Figure 4, the best algorithm
performing under our Bernoulli distribution is PSE as its regret
is bounded following Equation 3. This regret grows following
that formula that keeps performing better than SE.

In addition, Figure 4 (b) shows a case in which SE would
perform badly at the beginning even after comparing it to the
classic UCB algorithm performing by simply choosing the
arm with highest UCB without consideration of delay. This is
due to the fact that low s values, and hence lower values of
rewards, are detrimental to the performance of SE initially as
it starts by naively going through the arms in a round-robin
fashion before the exclusion of some arms starts.

Figure 5 shows how the different algorithms perform differ-
ently under various settings. Plots (a) and (b) are particularly
interesting as they show the regret over a span of ranges of
the parameters κ and s. From there, we can see how the
three algorithms perform under settings where the short-term
rewards are dominant (κ is high) or the settings where the
long-term rewards are dominant (κ is low).



Fig. 6: The effect of various parameters on total regret (real data).

Figure 6 shows more how various time delays for the
long-term reward affects the performance of the different
algorithms. We can see clearly from plot (d) that the regret
grows more steeply as the value of s is high to guarantee
higher reward values for the arms. Interestingly enough, plots
(e) and (f) of Figure 6 show how the delay means is crucial
when the value of κ is high. However, when the value of κ is
small, the average time will not have the same effect.

D. Simulation Summary

We were able to observe how SE and PSE were both
robust against different time delays when the long-term reward
is weighted more with respect to the short-term rewards.
Furthermore, we saw how for relatively-low time delay, SE
behaves in a superior way in this model, especially for low
values of κ, which confirms our theoretical results. In addition,
we saw how the regret of UCB increases in a near-linear way
at the beginning, to be more specific, for roughly the first
K × df rounds. On the other hand, SE does not kick off
with a linear regret like the case of UCB that imitates the
uniformly-random way. It only selects the set of active arms
even though they are weighted uniformly for it in terms of
importance. Hence, although SE can not avoid pulling each
one of the non-optimal arms for df

K times, it never exceeds
the minimum bound of arm selection needed so that the
strategy can eliminate sub-optimal arms. Figures 7-8 show
the performance of the different algorithms under different
configurations of parameters. From what we see from the plots
in Figure 8, we notice how our SE algorithm outperforms the
classic UCB by around 21% on average for different κ values.
For different values of the reward distribution mean values, the
PSE algorithm outperforms the classic UCB by around 37%.

Fig. 7: The effect of various parameters on the total regret (synthetic data).

Fig. 8: The effect of κ on the total regret (synthetic data).

VI. CONCLUSION

The problem of stochastic Multi-Armed Bandit (MAB) is
extensively studied due to its vast range of applications. The
classic model of this problem considers the reward of a pulled
arm to be observed after a time delay that is sampled from a
random distribution assigned for each arm. In this paper, we
studied a generalized framework in which pulling an arm gives
both an instant (short-term) reward and a delayed (long-term)
reward at the same time. The distributions of reward values for
short-term and long-term rewards are related with a previously
known relationship. The distribution of time delay for each
one of the arms is independent from the reward distribution
of the arm. This time can be infinite, which would mean that
the reward is never observed. In our work, we devised two
near-optimal-regret UCB-based algorithms after introducing
the simple UCB algorithm that would work for this new
framework. We provided the corresponding regret analysis
for each one of the three discussed algorithms. Finally, we
evaluated the performance of our algorithms and compared
this model with previously known models on both a synthetic
data set and a realistic data set that would reflect one of the
potential applications of this model. The first UCB-based near-
optimal algorithm was Successive Elimination (SE), which
empirically outperformed the old algorithm by around 21%
on average for different parameter values. Lastly, the last
algorithm introduced, which is Phased Successive Elimination
(PSE), outperforms the old algorithm by around 37% on
average under this new model.
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