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Safetv Levels-An Efficient Mechanism for 
Achieving Reliable Broadcasting in Hypercubes 

Jie Wu 

Abstrucf-We consider a distributed broadcasting algorithm for in- 
jured hypercubes using incomplete spanning binomial trees. An injured 
hypercube is a connected hypercube with faulty nodes. The incomplete 
spanning binomial tree proposed in this paper is a useful structure for 
implementing broadcasting in injured hypercubes. It is defined as a sub- 
tree of a regular spanning binomial tree that connects all the nonfaulty 
nodes. We show that in an injured n-dimensional hypercube with m 
faulty nodes, there are at least 2“ - 2”’ source nodes (called I-nodes), each 
of which can generate an incomplete spanning binomial tree. A method is 
proposed to locate a large subset of the I-node set using the concept of 
safety level. The safety level of each node in an n-dimensional hypercube 
can he easily calculated through n - 1 rounds of information exchange 
among neighboring nodes. An optimal broadcast initiated from a safe 
node is proposed. When a nonfaulty source node is unsafe and there are 
at most n - 1 faulty nodes in an injured n-dimensional hypercube, the 
proposed broadcasting scheme requires at most n + 1 steps. 

Index Terms-Binomial trees, broadcasting, fault tolerance, hyper- 
cubes. 

I. INTRODUCTION 
Efficient broadcasting [3] of data is one of the keys to the per- 

formance of a hypercube system. Basically, broadcasting is the proc- 
ess of transmitting data from one node, called the source node, to all 
the other nodes once and only once. Broadcasting provides basic 

functions to implement distributed agreement, clock synchronization, 
and broadcast-and-aggregate type of algorithms. We define an in- 
jured hypercube [2] as a connected hypercube with faulty nodes. 
Broadcasting in an injured hypercube is defined as successful broad- 
casting of a datum to all the nonfaulty nodes. The concept of incom- 
plete spanning binomial tree is introduced to implement the broad- 
casting process. An incomplete spanning binomial tree in an 
n-dimensional injured hypercube is a connected subgraph of an n- 
level spanning binomial tree with the same root node that connects 
all the nonfaulty nodes in the cube, and its root node is called 1-node. 

Lee and Hayes [5] proposed the concept of safe node which re- 
quires a stronger condition than the one that defines 1-nodes. 
(Therefore, the safe node set is a subset of the 1-node set.) The safe 
node set can be decided in O(n2) rounds of information exchange 
among neighboring nodes. However, the broadcasting algorithm 
based on this definition of safe node is applicable to injured hyper- 
cubes with no more than [$] node failures. That is, there are cases 

when no safe nodes exist in an injured hypercube with more than [$I faulty nodes. Wu and Fernandez [ 101 gave a refined definition 

of safe nodes by relaxing certain conditions and hence increasing the 
size of the safe node set and raising the degree of fault tolerance. The 
process that identifies the node status needs fewer founds than the 
one in [5] in general. However it still requires U(nA) rounds in the 
worst case. 

In this paper, we propose the concept of safety level, which is an 
enhancement of the safe node concept by further weakening its 
definition. Each node in an n-dimensional hypercube is assigned an 
integer within the range of 0 to n .  A node with safety level n is still 
called safe node. The safety level is an approximate measure of the 
number and distribution of faulty nodes in the neighborhood, rather 
than just the number of faulty nodes. We provide a process that 
identifies the node status in n - 1 rounds of information exchange 
among neighboring nodes. Simulation results show that the safe node 
set is very close to the 1-node set when m < n. A broadcasting scheme 
is proposed which uses the safety level of each node. It is shown that 
broadcast from a safe node is both time and trafic optimal [4], where 
time is measured by the number of hops (or steps) required to com- 
plete a broadcasting and traffic is a measure of the total number of 
messages transmitted from one node to another in the broadcasting 
process. Moreover, it is proved that, for each nonfaulty but unsafe 
node, there is at least one safe neighbor when m < n. The same 
broadcasting scheme can be used by selecting a safe neighbor as the 
source node. A total of n + 1 steps is required in this case. 

The proposed method differs from the existing fault-tolerant 
broadcasting methods which are based on either local information [6]  
or global information ([ 11, [7 ] ,  [9 ] ) .  Local-information-based broad- 
casting algorithms normally require routing history as part of mes- 
sage to be broadcast, and results are not optimal. Global-information- 
based broadcasting algorithms, although having their merits of sim- 
plicity and optimality, require a process that collects global informa- 
tion. The broadcasting based on limited information is a compromise 
of the above two schemes. In the proposed method limited global 
information is captured in the safety level associated with each node. 
Since this type of information is easy to update and maintain and the 
optimality is still preserved, this method is more attractive than the 
existing ones. 

formation in terms of the distribution and the number of faults, rather 
than just in terms of the number of faults. In a separate paper, we 
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multicasting [ 1 11 in an injured hypercube. 
We make the following assumptions for the techniques used in 

this paper: 1 )  All the node faults are fault-stop, Le., there are no ma- 
licious faults. 2 )  Fault detection and diagnosis algorithms exist, but 
we do not require such an algorithm to be perfect. We do assume that 
each node know exactly the safety status of all its neighbors. Due to 
the limitation of space, several lengthy proofs of theorems are not 
shown in this paper. The reader may refer to [8] for detail. 

11. NOTATION AND PRELIMINARIES 

The n-dimensional hypercube (or n-cube) Q, is a graph having 2" 
nodes labeled from 0 to 2" - 1. Two nodes are joined by an edge if 
their addresses, as binary integers, differ in exactly one bit. More 
specifically, every node a has address a,  a,-l ... all with a, E (0 ,  1 ), 
1 5 i I n,  and a; is called the ith bit (also called the ith dimension) of 
the address. We denote node a' the neighbor of a along dimension i. 
Every m-dimensional subcube Q,,, (or m-subcube) has a unique ad- 
dress q,, qn.l ... qo with qi E (0 ,  1, *), 1 I i 5 11, where exactly n~ bits 
take the value *, a don't-care symbol representing either 0 or 1. An n- 
level binomial tree B, is constructed out of two B,_,s by adding an 
edge to make the root of one become the leftmost offspring of 
the root of another BI contains only one node. Clearly, a B, has 
the same number of nodes as a Q,,, and B, is a subgraph of Q,. 
DEFINITION 1. An incomplete spanning binomial tree in an injured n- 

dimensional hypercube is a connected subgraph of an n-level 
spanning binomial tree with the same root node which connects 
all the nonfaulty nodes in the cube. A node is 1-node i f i t  is a root 
node of an incomplete spanning binomial tree. 

THEOREM 1. The number of 1-nodes in an injured n-dimensional hyper- 
cube with m (< n) faulty nodes isxn, m) t ?" - 2'". 

It is conjectured that the determination 1-node status of a node is 
NP-hard. Instead we assign a safety level to each nonfaulty node. The 
safety level associated with a node is an approximate measure of the 
number and distribution of faulty nodes in the neighborhood, rather 
than just the number of faulty nodes. Let S(a) = k be the safety status 
of node a,  where k is referred to as the level of safety, and a is called 
k-safe. A faulty node is 0-safe which corresponds to the lowest level 
of safety, while an n-safe node (also referred to as a safe node) corre- 
sponds to the highest level of safety. A node with k-safe status is 
called unsafe if k f n. 

DEFINITION 2: Let (So, SI ,  Sa ..., Sn-.l), 0 I S, I n, be the ascending 
safety-level sequence of node a ' s  n neighboring nodes in an n- 
cube, such that Si <: Si+I. 0 I i 5 n - 1. The safety level of node a is 
defined as: i f(& SI, S2. ..., SE-,) t (0, 1, 2. ._., n - 1 )2 then S(a) = 
n else if(S,,, S I ,  Sz, ..., Sei) 2 (0, I ,  2. ..., k - 1) A (Sk= k - 1 )  then 
S(U) = k. 

It can be proved that a safe node is a root node of an incomplete 
spanning binomial tree, and therefore it is an l-node; however, in 
general, the converse is not true. For example, in an injured Q, with 
faulty nodes 1001,001 1,0100. and 01 10. Node 0000 is an 1-node but 
not a safe node (it is a 2-safe node). We will show that for most cases 
an 1-node is a safe node in an injured hypercube with m (< n)  faults. 
Therefore, we can use the safety level to approximate the l-node 
status of each node in an injured hypercube. The following algorithm 
(GS) calculates the safety level of each node in an n-cube. 

2 seql 2 seqz if and only if each element in seql is greater or equal to the 
corresponding element in seq2. 

A L G O R ~ H M  GLOBAL-STATUS (GS) 

{Initially all nonfaulty nodes are n-safe and round = 1. ] 
begin 

while round I A 
parbegin 

parend 
round : = round + 1 

end. 
Procedure NODE-STATUS (a( i ) )  
begin 

NODE-STATUS(a(i)), 0 I i 5 2" - 1 

at node a(i) determine the ascending status sequence of neigh- 
boring nodes (So, S I ,  S2. ..., s,-~) 
if (So, SI, S2. ..., Sn-l)  t (0, 1, 2, _... n - I ) 

if ((So, S I ,  S2.  .... 
then mark a(i)  as n-safe (or safe); 

then mark a(i)  as k-safe; 
t (0,  I ,  2. ..., k - 1)) A = k - 1) 

end. 

Fig. 1 shows the safety level of each node in a faulty 4-cube with 
five faulty nodes (represented as black nodes). Based on the safety 
level definition, the safety levels of all the nodes that have two (or 
more) faulty neighbors will be changed to 1 after the first round, as in 
the case for nodes 0001, 0110, 0111, 1011, LIOO, 1101 in Fig. 1. 
That is, the effect of 0-safe status of faulty nodes will first propagate 
to their neighbors, then neighbors' neighbors, and so on. For exam- 
ple, after the second round the safety level of node 1001 changes to 
2 ,  because this node has three 1-safe neighbors. The safety level of 
every node remains stable after two rounds, and each value represents 
the safety level of the corresponding node. 

0000 

0001 

1111 1011 0111 J 0011 

Fig. 1. A 4-dimensional injured hypercube 

THEOREM 2. The GS algorithm identi$es a k-safe (k  # n )  node of an 
n-cube in k rounds, i.e., at the kth round this node reaches a sta- 
ble status. 

PROOF. We prove this theorem using mathematical induction on k, 
the safety level of a node. When k = 1, clearly there are at least 
two faulty (0-safe) neighboring nodes for any I-safe node. This 
node can identify its safety level in one step. Suppose for all k-safe 
nodes, k 5 i, exactly k rounds are required for these nodes to sta- 
bilize their status. Based on Definition 1 an ( i  + 1)-safe node can 
identify its status once all its neighbors, which have a safety level 
lower than i + 1, have the stable status. By the induction assump- 
tion, exactly after the ith round all those neighbors are stabilized, 
and i t  takes one extra step for this ( i  + ])-safe node to be 

L: stabilized. 
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COROLLARY. To identib the status of all the nonfaulty nodes in any 
faulty hypercube (which might be a disconnected hypercube), the 
number of rounds (A in GS) is 11 - 1, where n is the dimension of 
the faulty hypercube. 

111. INJURED HYPERCUBE BROADCASTING 

In this section, we consider an optimal broadcasting scheme using 
the incomplete spanning binomial tree structure. Before proceeding, 
we look at another definition of incomplete spanning binomial trees 
(and for regular spanning binomial trees). A B, can be constructed 
from B,,, Bn.2. ..., B,, Bo by using a nodes (the root node) to connect 
the root nodes of these trees. To construct B,, in an injured n-cube, 
each B j  should be an incomplete spanning binomial tree of an 
i-subcube. More specifically, Bn_2, ..., B, ,  Bo are incomplete 
spanning binomial trees in injured subcubes Q-,,  QiU2, ..., Q;, Qh, 
QO = s ,  respectively, where these subcubes constitute a partition of 
Qn. The above partition can be generated following procedure: Q, is 
split into two (n  - 1)-subcubes, Q,.l (s E Qn..,) and Q,'-,(s P Q,,-,), 
along the d$ dimension. e,_, is further divided into two (n - 2)- 
subcubes along the d:h dimension. This process continues until Ql is 
divided into two 0-subcubes, Q(; and Q,, = s, along the df-l dimen- 
sion. The dimension sequence d(d1  ... d,. I that determines the parti- 
tion is called the coordinate sequence (cs). The set 
{QA-,, ..., Q(;, Q, = s) is a partition of en. For example, the 
splitting process of Q3 = *** at s = 010 with coordinate sequence 
d d l d 2 =  213 can be described as follows: 

***(e,) = *1*(Q2) + *o*(Q;) 
*I*(Q2) = *lo(QI) + *ll(Q;) 

*lo(Qi) = OlO(€$) + llO(QX) 

Clearly, {Q;, Q;, a;, Q,, = s) = (*O*, *I 1, 110, 010) forms a parti- 
tion of Q3 = ***. The above process can be continuously applied to 
each subcube (which is not a single node) in the partition using ap- 
propriate coordinate sequences until each subcube is partitioned into 
a set consisting of single node only. 

Let di, 0 5 j I n - I ,  be the dimension along which the source 
node s connects the root node ( s d J )  of By dodl ... d, I is the coordi- 
nate sequence at node s. A j-safe node can generate an incomplete 
spanning binomial tree for any injured j-subcube. Therefore, it is 
sufficient to require each sdJ in charge of generating a Bj to have a 
safety level of no less than j .  Based on the definition of safety level, 
the above condition can always be satisfied if s is safe, because a safe 
node is a root of an incomplete binomial tree. More specifically, sup- 
pose (SO, SI, S2, ..., is the s's status sequence of neighboring 
nodes in an ascending order and (do, d,,  d2, ..., is the correspond- 
ing neighbor dimension sequence. Then we use the neighbor dimen- 
sion sequence as the coordinate sequence to partition the cube, that 
is, each sdl is responsible for generating a HI in a j-subcube. Obvi- 
ously, if s is safe, then based on Definition 2 each neighbor sdJ has a 
safety level of no less than j ,  and this guarantees a successful genera- 
tion of an incomplete spanning binomial tree in a j-subcube with 
node sdl being the root node. The same procedure can be recursively 
applied to generate those Bis in each injured j-subcube. 

To implement a broadcasting algorithm using neighbors' status, 
two sequences--ascending status sequence (S,,, SI, Sz, ..., S,J and 
corresponding neighbor dimension sequence (do, d l ,  d2, ..., d, 1)- 

should be kept at each node. Both sequences are available at each 
node after one application of the GS algorithm. The coordinate se- 
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quence can be directly derived from the ascending status sequence. 
An n-bit control word LABEL is used to represent a subcube in the 
partition, where each bit is a binary number with each 1 representing 
an * in the subcube. 

ALGORITHM INJURED-HYPERCUBE-BROADCASTING (IHB) 

(At the source node, LABELlj] = 1 , 0  I j < n.) 
begin 

for j = 11 - 1 downto 0 
if LABEL[dl] # 0 and S, # 0 /* if SI = 0 then the neighbor 
along dimension d1 is faulty */ 

then begin 
LABEL[dl] := 0; 
send the broadcast data and LABEL to the neigh- 
bor along the d,'h dimension; 
end 

end. 

Table I shows the ascending status sequence (ass) and the corre- 
sponding neighbor dimension sequence (nds) for each node in the 
injured Q4 of Fig. 2. Note that when two or more neighbors have the 
same safety level, there is more than one possible corresponding 
neighbor dimension sequence. Table I shows only one possible order 
for these cases. 

THEOREM 3. The IHB algorithm generates an incomplete spanning 
binomial tree in an injured Q, with a safe node being the source 
node, i.e., it sends broadcast data from a safe node to every non- 
faulty node along a shortest path. 

TABLE I 

THE uss AND nds FOR EACH NODE IN THE INJURED e4 OF FIG. 1 - 
node 

0000 

0010 

0100 

0110 

1000 

1010 

1100 

1110 

- 

- 

node ass nds 

0001 (0,0,2,4) (2,3,4,1) 

0011 (1,1,1,4) (2,3,4,1) 

0101 (O,l,l,l) (1,2,3,4) 

0111 (0,0,0,1) (2,3,4,1) 

1001 (1,1,1,4) (2,3,4,1) 

1011 (0,0,2,4) (3,4,2,1) 

1101 (0,1,1,2) (2,4,1,3) 

1111 ( O , l , l , l )  (1,2,3,4) 

U 
S , u  

U 
S 

l S  

Fig. 2. Safe nodes in an injured Q4 using different definitions. 



IEEE TRANSACTIONS ON COMPUTERS, VOL. 44, NO. 5. MAY 1995 705 

PROOF. We prove a stronger statement: The IHB algorithm generates 
an incomplete spanning binomial tree in a Q, if the source is an 1 
(2 k)-safe node. Obviously, this theorem is a special case of the 
above statement. We prove this statement by induction on k. It is 
clear that the statement is true for k = 1 ,  2. We assume that the 
statement is true for all k < i. For the case that k = i, we partition 
Qi into (e:-,, e,’_*, ..., Q;, Qh, Q, = s) using a coordinate se- 

quence d(d, ... Obviously, each sdJ , the neighbor of s along 
dimension dj, 0 I j I i - 1, has a safety level greater than or equal 
to j .  Therefore, using the induction assumption, each sdJ can gen- 
erate an incomplete spanning binomial tree in Qi.  Using the 

definition of binomial tree, we can construct an incomplete span- 
ning binomial tree in Qi with s being the root node by connecting s 

0 
The IHB algorithm not only guarantees time optimality in terms of 

the number of steps but also traffic optimality in terms of the number 
of links. In this scheme, destination addresses are completely 
“compressed,” and each nonfaulty node receives an address together 
with the broadcast data once and only once. 

THEOREM 4. Any broadcasting tree generated by the IHB algorithm 
is a special type of incomplete spanning broadcasting trees, where 
all the faulty nodes are leaves in the tree. 

The proof of this theorem is straightforward and is based on the 
definition of incomplete spanning broadcasting trees and the IHB 
algorithm. 

Fig. 1 shows how the IHB algorithm works on a Q4 with five 
faulty nodes. By using the GS algorithm, we derive that nodes 0000, 
0010, 1000, and 1010 are safe nodes among the nonfaulty nodes. 
Suppose 0000 is the source node with a LABEL = [ 11  1 I ] .  Among all 
the neighboring nodes, 0010 and 1000 are safe, 0001 is I-safe, and 
0100 is 0-safe. Therefore, at node 0000 the ascending status sequence 
is (0, 1 ,  4, 4) with two possible neighbor dimension sequences: 
(3, 1 , 2 , 4 )  and (3, 1 ,4 ,2) .  Suppose sequence (3, 1, 2.4) is used as in 
Table I, then the neighbor along dimension 4, node 1000, receives 
the 3-cube 1 ***, which is represented by the LABEL = [OI  1 I ] .  Node 
0010, the neighbor along dimension 2, receives the 2-cube 
0*1* represented by LABEL = [ O I O I ] .  The unsafe node 0001, the 
neighbor along dimension 1, receives the I-cube 0*01 represented by 
a LABEL = [OIOO]. The faulty node 0100, the neighbor along di- 
mension 3, does not receive any data. In the next step, node 0010, 
which has subcube O* I * and has (0, I ,  4 , 4 )  and (1, 3, 2,4) as its ass 
and nds, sends 01 1 *, represented by LABEL = [OOOI], to neighbor 
01 10 along dimension 3 (dimension 3 precedes dimension 1 in nds), 
and the remaining faulty 0-cube 001 1 is discarded. No data are sent 
from node 0001 to the faulty node 0101. In the same step, node 1000, 
which has subcube I*** and has ( I ,  2 , 4 ,  4) and (3, 1. 2. 4) as its ass 
and nds, sends ]* I* ,  represented by a LABEL = [OlOI] to node 
1010, 1*01 represented by label [OIOO] to node 1001, and 0-cube 
1100 represented by label [OOOO] to node 1100. In the third step, 
0-cubes represented by [OOOO] are sent from node 01 I O  to node 01 11, 
from node 1001 to node 1101. The I-cube 1*11 represented by 
[OIOO] is sent from node 1010 to node 101 1. No data are sent from 
node 1010 to the faulty node 11 IO. In the last step, since node 11 11 
is faulty, no data are sent to it. Assume that each message transmis- 
sion takes one time unit. The total broadcasting time for the above 
example is 3. 

THEOREM 5. In an injured n-cube with fewer than n faulty nodes, 
every unsafe node has at least one safe neighbor. 

In the injured 4-cube of Fig. 2 with four faulty nodes, (001 1, 

to the root node sdJ of each subcube Ql. 

lolo),  (0101, I I O O ) ,  (0011,0101), ( 1010, 1100) are safe neighbor 
sets for unsafe nodes 001 0, 0100, 01 I I ,  and I 110, respectively. Sup- 
pose unsafe node 0010 is the source node and node 001 1 is the se- 
lected safe neighbor to be new source node. The broadcasting can be 
completed in five steps as shown in Fig. 2. Therefore, a broadcast 
from an unsafe node requires one extra step. 

It is clear that the safe node set is a subset of 1-node set. An unsafe 
node is either an /-node or a non 1-node. The union of the safe node 
set and the unsafe equals the union of the 1-node set and the non 1- 
node set. Based on Theorems 4 and 5, we conclude that for any in- 
jured Q, with less than n faulty nodes, a broadcasting from an 1-node 
requires n steps if this node is safe or n + 1 steps if this node is un- 
safe. A broadcasting from any non l-node (which is unsafe) requires 
n + 1 steps. 

IV. COMPARISONS 
In this section, we compare the proposed method with other ap- 

proximations of 1-nodes using the concept of a safe node. The follow- 
ing two measures are used: 

I )  The number of steps required to determine the status of a node. 
2 )  The size of the subset of l-nodes identified as safe nodes. 

The following are two other definitions of safety status of a node: 

1) (Lee and Hayes [ 5 ] )  A nonfaulty node is unsafe if and only if 

2) (Wu and Femandez [IO]) A nonfaulty node is unsafe if and 
there are at least two unsafe or faulty neighbors. 

only if either of the following conditions is true: 

(a) There are two faulty neighbors or 
(b) there are at least three unsafe or faulty neighbors. 

In general, i t  is difficult, if not impossible, to compare the size of 
safe node sets because each safe node set depends on the distribution 
of faulty nodes. However, it is clear that, for each distribution of 
faulty nodes, the safe node set obtained using the definition in this 
paper contains the set using the definition in [IO], which in turn 
contains the set using the definition in [ 5 ] .  The example in Fig. 2 can 
be used to illustrate this point. We use U and S to represent unsafe 
and safe status of each node, respectively. Each node has three safety 
statuses based on three different definitions (with the status based on 
the one in [5] at the top, the one in [ IO]  at the middle, and the one in 
this paper at the bottom). The 1-node set in this example is (0001, 
0011, 0101, 1000, 1001, 1010, 1011, 1100, 1101). Using the safety 
definition proposed in this paper, we obtain the safe node set which 
is the same as the 1-node set. Using the definition in [lo], we have 
{OOOI, 0011. 0101, 1000, 1001, 1010, 1011, I l O l }  as the safe node 
set with the absence of node 1100. The safe node set is empty using 
the definition in [5]. 

A simulation study was conducted on ens and Q7s, with the num- 
ber of faulty nodes ranging from 1 to IO. The size of the safe nodes 
set under different definitions is compared with the size of the 
1-node set. Table I1 lists the average percentages of 1-nodes identified 
as safe nodes under three different definitions. The numbers under 
the columns Wu, Wu-Fe, and Lee-Hayes represent the percentages of 
1-nodes identified as safe nodes under the definition in this paper, the 
Wu and Femandez’ definition, and the Lee and Hayes’ definition, 
respectively. The simulation results show that when the number of 
faulty nodes is smaller than the dimension of the hypercube, the size 
of the safe node set under the safety definition in this paper is very 
close to the size of the I-node set. The safety definition used in this 
paper is superior to the ones in [5] and [IO] in terms of the size of the 
safe node set 
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faults 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 
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Wu 

100.000 

100.000 

99.942 

99.836 

99.216 

98.109 

96.576 

93.604 

88.544 

80.989 

TABLE I1 
THE PERCENTAGES OF I-NODES IDENTIFED AS SAFE NODES IN 

(a) Qns AND (b) Q7s 

faults 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Wu 

100.000 

100.000 

99.827 

99.824 

99.820 

99.491 

99.048 

98.744 

97.889 

96.636 

Wu-Fe 

100.000 

100.000 

99.943 

99.836 

99.001 

96.699 

91.158 

79.236 

59.897 

45.461 

Wu-Fe 

100.000 

100.000 

99.827 

99.824 

99.820 

99.323 

98.431 

96.591 

91.997 

82.503 

Lee-Ha yes 

100.000 

100.000 

95.642 

66.694 

27.110 

10.398 

4.380 

2.226 

0.790 

0.426 

Lee-Ha yes 

100.000 

100.000 

98.741 

88.769 

53.685 

22.492 

8.302 

2.890 

1.250 

0.696 

V. CONCLUSIONS 
In this paper, we have studied distributed broadcasting in injured 

hypercubes using incomplete spanning binomial trees. We have de- 
termined a lower bound on the number of l-nodes, each of which can 
generate an incomplete spanning binomial tree. A method has been 
proposed to locate a large subset of the /-node set using the concept 
of safety level. An optimal broadcasting initiated from a safe node 
has also been proposed. When this scheme is applied to an unsaPe 
source node and there are at most n - 1 faulty nodes in an injured 
n-cube, at most n + 1 steps are required to complete a broadcast. 
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