
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, MONTH YEAR 1

Supplemental Material of “Virtual Network Embedding
with Opportunistic Resource Sharing”

Sheng Zhang, Student Member, IEEE, Zhuzhong Qian, Member, IEEE, Jie Wu, Fellow, IEEE,
Sanglu Lu, Member, IEEE, and Leah Epstein

F

1 THE WIN-WIN SITUATION OF OPPORTUNISTIC RE-
SOURCE SHARING

In this section, we aim to provide some intuitive insights
on how opportunistic resource sharing can lead to a win-
win situation—service providers’ costs are lowered, while
infrastructure providers’ revenues increase, as well.

In a network virtualization environment [1], service
providers lease substrate resources from infrastructure
providers to deploy virtual networks and offer value-added
services to end users. As we mentioned earlier, service
providers often overbook substrate resources to cater for
potentially high requirements, thus, service providers waste
part of the purchased resources when there are only normal
resource requirements. On the other hand, the amount of
substrate resources that belong to an infrastructure provider
is limited and constant over a relatively long time. To
maximize its revenue, an infrastructure provider should
make efficient use of the precious substrate resources, and
accept as many virtual network requests as possible.

Consider an infrastructure provider InP1 that has a
substrate link with a bandwidth capacity equal to 20 slots,
and there are three service providers, SP1, SP2, and SP3.
Each of the service providers wants to lease 8 slots in the
substrate link for its own virtual link. Without opportunistic
resource sharing, it is clear that InP1 can only accept two
requests, since 8 × 3 = 24 > 20. If InP1 charges 1 dollar
for 1 slot per hour, then the cost of an accepted request is
8 dollars/h, and InP1 can get a revenue of 16 dollars/h.

Next, let us apply opportunistic resource sharing to this
example, and see whether there is any change in the cost
and the revenue. After profiling experimentations, the ser-
vice providers find that the 8 slots requirement is composed
of a basic sub-requirement of 6 slots, and a variable sub-
requirement of 2 slots, which are needed with probability
0.3. If this is the case, InP1 can accept all of the three
requests by means of resource sharing. InP1 assigns 18
dedicated slots to the basic sub-requirements, and lets the
variable sub-requirements share the remaining 2 slots. The

• S. Zhang, Z.Z. Qian, and S.L. Lu are with the State Key Laboratory
for Novel Software Technology, Nanjing University, Nanjing 210093,
China. Z.Z. Qian is the corresponding author.
E-mail: zhangsheng@dislab.nju.edu.cn, {qzz,sanglu}@nju.edu.cn.

• J. Wu is with the Computer and Information Sciences Department,
Temple University, Philadelphia, PA 19122, USA.
E-mail: jiewu@temple.edu.

• L. Epstein is with the Department of Mathematics, University of Haifa,
Haifa 31905, Israel.
E-mail: lea@math.haifa.ac.il.

collision probability can be easily obtained by:

1− 0.8× 0.8× 0.8− 3× 0.8× 0.8× 0.2 = 0.104

Since there are collisions for the variable sub-
requirements, InP1 decreases the corresponding charge,
e.g., 0.1 dollar for 1 slot per hour. Therefore, the cost of an
accepted request is (6+ 0.1+ 0.1) = 6.2 dollars/h, which is
lower than the previous charge, and the revenue of InP1 is
(6 + 0.1 + 0.1)× 3 = 18.6 dollars/h, which is much higher
than the previous one.

In this example, we see that opportunistic resource shar-
ing enables better utilization of physical resources, and
hence, increases the revenues of InPs, and decreases the
rents of SPs. We believe that opportunistic resource sharing
can benefit all parties through reasonable pricing. We will
not discuss how to set prices in this paper, as it is out of
this paper’s scope and deserves separate studies.

2 PROOF OF THEOREM 1
Proof: Consider the following instance of the 3-partition

problem [2]. There are positive integers B and m, and 3m
positive integers ai for 1 ≤ i ≤ 3m (called items), such that
B/4 < ai < B/2 for all i. The question is whether the items
can be partitioned into m subsets, each of sum B (clearly, if
this is possible, then each subset must contain three items).

Given an instance of the 3-partition problem, we construct
an instance of the TSA problem as follows. Let 0 < p < 1
(the reduction works for any such p), and q = 1 − p
(so 0 < q < 1, as well). Let N = (⌈10B/(pq)⌉)2 (so
N ≥ 100B2/(p2q2)). For 1 ≤ i ≤ 3m, let εi = ai/N ,
pi = p+ εi, qi = q− εi = 1− pi. There are 3m variable sub-
requirements from virtual links e1, e2, ..., and e3m, where
each ei requires 1 time slot with probability pi. We have:

0 < p < pi < p+B/(2N) ≤ p+ p2q2/(200B) < p+ q = 1

and thus, since qi = 1− pi, 0 < qi < 1.
We define the upper bound on the collision probability,

i.e., pth, for this instance by:

pth = 1− 3q2 + 2q3 + 2pqB/N + 10B2/N2

This value is indeed in (0, 1), because:

3q2 − 2q3 − 2pqB/N − 10B2/N2

= q2 + 2q2 − 2q3 − 2pqB/N − 10B2/N2

> q(q − 2pB/N − p2q/(10N))

> q(q − 2B/N − q/10)

> q(q − p2q2/(50B)− q/10)

> q(q − q/50− q/10) > 0



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, MONTH YEAR 2

and

3q2 − 2q3 − 2pqB/N − 10B2/N2 < 3q2 − 2q3 ≤ 1

In the above, we have used that 3q2 − 2q3 is monotonically
non-decreasing q ∈ (0, 1). The TSA problem is then trans-
lated into the following problem: whether it is possible to
group the 3m sub-requirements into at most m sets, each
with a collision probability of at most pth.

We claim that it is possible to partition the items into m
subsets of sum B if, and only if, it is possible to group
the 3m sub-requirements into at most m sets, each with a
collision probability of at most pth.

We first compute the collision probability of a subset of
three sub-requirements ej , ek, et. The probability that less
than two of them occur is:

qjqkqt + pjqkqt + qjpkqt + qjqkpt

We have

qjqkqt = (q − εj)(q − εk)(q − εt)

= q3 − (εj + εk + εt)q
2 + (εjεk + εjεt + εkεt)q − εjεkεt

and

pjqkqt = (p+ εj)(q − εk)(q − εt) = pq2

+ εjq
2 − (εk + εt)pq − (εjεk + εjεt)q + εkεtp+ εjεkεt

Therefore,

qjqkqt + pjqkqt + qjpkqt + qjqkpt = q3 + 3pq2

− 2(εj + εk + εt)pq + (εjεk + εjεt + εkεt)(p− q) + 2εjεkεt

Then, the collision probability is 1 minus this number.
Next, we compute the lower bound on the collision prob-

ability of a set of at least four sub-requirements. Clearly, the
probability that at least two sub-requirements happen is no
less than the probability that at least two sub-requirements
out of a subset of four arbitrarily chosen sub-requirements
out of the set happen. Consider four sub-requirements,
ej , ek, et, ed. The probability that at most one of them occurs
is:

qjqkqtqd + pjqkqtqd + qjpkqtqd + qjqkptqd + qjqkqtpd

Since we have qjqkqtqd < q4, and

pjqkqtqd < pjq
3 < (p+B/(2N))q3 = pq3 +Bq3/(2N)

Thus, the probability that at most one sub-requirement out
of the four happens is less than

q4 + 4pq3 + 2Bq3/N = 4q3 − 3q4 + 2Bq3/N

We then show 4q3 − 3q4 + 2Bq3/N ≤ 1 − pth, and thus
we find that any set of at least four sub-requirements has a
collision probability strictly above pth.

Indeed 4q3 − 3q4 + 2Bq3/N ≤ 3q2 − 2q3 − 2pqB/N −
10B2/N2 holds, since this is equivalent to 2Bq3/N +
2pqB/N + 10B2/N2 ≤ 3q2(q − 1)2 = 3q2p2, which holds
since:

2Bq3/N + 2pqB/N + 10B2/N2

≤ 2Bq2/N + 2pqB/N + p2q2/(10N)

≤ 2Bq/N +Bq/N < p2q3/(30B)

< p2q2

Therefore, a necessary condition for a valid partition of sub-
requirements into m subsets is that every subset has exactly

three sub-requirements. We then show that a subset of sub-
requirements, ej , ek, et, can be grouped together if, and only
if, aj + ak + at ≤ B. This will prove the correctness of the
reduction.

We have q3 + 3pq2 − 2(εj + εk + εt)pq + (εjεk + εjεt +
εkεt)(p− q) + 2εjεkεt − (1− pth) = q3 + 3pq2 − 2(εj + εk +
εt)pq + (εjεk + εjεt + εkεt)(p − q) + 2εjεkεt − 3q2 + 2q3 +
2pqB/N +10B2/N2 = 2pqB/N −2(εj +εk+εt)pq+(εjεk+
εjεt + εkεt)(p− q) + 2εjεkεt + 10B2/N2. We would like to
show that this difference is non-negative if, and only if,

aj + ak + at ≤ B

which is equivalent to εj + εk + εt ≤ B/N .
We already have

(εjεk + εjεt + εkεt)(p− q) + 2εjεkεt

< 3(B/(2N))2 + 2(B/(2N))3 ≤ 5(B/(2N))2

and

(εjεk + εjεt + εkεt)(p− q) + 2εjεkεt > −3(B/2N)2

Therefore, if aj + ak + at ≤ B, the difference is at least:

2pqB/N − 2Bpq/N + (εjεk + εjεt + εkεt)(p− q)

+ 2εjεkεt + 10B2/N2

> 10B2/N2 − 3(B/(2N))2 > 0

and otherwise (that is, if aj+ak+at ≥ B+1, i.e., εj+εk+εt ≥
B/N + 1/N ), the difference is at most:

2pqB/N − 2(B + 1)pq/N + 10B2/N2 + 2εjεkεt

+ (εjεk + εjεt + εkεt)(p− q)

< 2pqB/N − 2Bpq/N − 2pq/N + 5(B/(2N))2 + 10B2/N2

< 12B2/N2 − 2pq/N

= (12B2/N − 2pq)/N

≤ (12p2q2/100− 2pq)/N < 0

The theorem follows immediately.

3 PROOF OF THEOREM 2
Proof: We first construct two special scenarios of our

problem, then derive the approximation ratio bound.
Case I: we use a particular variable sub-flow, which

requires dmin time slots and occurs with probability pmin,
to replace all of the variable sub-flows. Then, the maximal
allowable number volI of sub-flows that a substrate slot can
be assigned to in this case is determined by:

1− (1− pmin)
volI − volI · pmin · (1− pmin)

volI−1 = pth

And the number of substrate slots required by all of the
n sub-flows is SI = (n · dmin)/volI .

Case II: we use another particular variable sub-flow,
which requires dmax time slots and occurs with probability
pmax, to replace all of the variable sub-flows. Then, the max-
imal allowable number volII of sub-flows that a substrate
slot can be assigned to in this case is determined by:

1− (1− pmax)
volII − volII · pmax · (1− pmax)

volII−1 = pth

Similarly, the number of substrate slots required by all of
the n sub-flows is SII = (n · dmax)/volII .

It is straightforward to see that:

0 < SI ≤ Sopt ≤ Scff ≤ SII



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, MONTH YEAR 3

then:
Scff

Sopt
≤ SII

SI
=

dmax · volI
dmin · volII

The theorem follows immediately.

4 PROOF OF THEOREM 3
Proof: Let Y =

∑
i∈Dj

Xi and µ = E[Y ], we have:

Pr(Dj) = Pr[Y > 1] ≤ Pr[Y ≥ 1]

= Pr[Y ≥ (1 + δ)µ] (let δ = 1/µ− 1 > 0)

≤ (eδ/(1 + δ)1+δ)
µ

(chernoff bound)

= µe1−µ ≤ µthe
1−µth = pth

The theorem follows immediately.

5 PROOF OF THEOREM 4
Proof: Given an instance of bin packing, we construct

a corresponding instance of ETSA by letting µth be the bin
size, p1, p2, ..., pn be the sizes of n items, respectively, and
vi = 1 for all i. In doing so, we reduce bin backing to a
special case of ETSA, and prove ETSA to be NP-hard. It is
also easy to see that ETSA is in NP; the theorem follows
immediately.

REFERENCES

[1] N. Chowdhury and R. Boutaba, “A survey of network virtual-
ization,” Computer Networks, vol. 54, no. 5, pp. 862–876, 2010.

[2] M. Gary and D. Johnson, “Computers and intractability: A
guide to the theory of np-completeness,” WH Freeman and
Company, New York, 1979.


