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SMRS: A scalable multi-path routing scheme

Quan Yuan*, Jie Wu1 and Ionut Cardei

Department of Computer Science and Engineering, Florida Atlantic University, Boca Raton,
FL 33431, USA

(Received 11 December 2007; final version received 12 June 2008 )

Source routing has been extensively investigated as a method of improving diversity in path
selection. Due to its limited scalability, the application of source routing is hindered today.
Yang andWetherall proposed a tag-based routing architecture to provide a set of non-shortest-
path routes as an alternative to explicit source routes. The idea is that each router constructs a
deflection set with the 1-hop route information and utilises tags as hints to independently
deflect packets to the neighbours in the deflection set. To find more diverse paths, one
approach is to increase the route knowledge of every node. However, there is a tradeoff in that
more route knowledge leads to more diverse loop-free and dead end-free paths, but it also
causes more overhead. In this paper, our objective lies in designing a method to find more
diverse paths, with minimum knowledge. In addition, the tag-based deflection approach does
not consider the length of the utilised paths as a main issue, which may lead to long paths.
With this in mind, we propose a scalable multi-path routing scheme (SMRS), which consists
of two components. One is the extension of the Yang andWetherall approach to 2-hop history
information. The other is the next hop selection algorithms to control the average length of the
utilised paths. Comprehensive simulations are conducted to compare the performance of the
tag-based deflection routing and SMRS.

Keywords: multi-path routing; routing diversity; routing scalability; path selection

1. Introduction

Because of the dynamic network environment, single-path routing, which usually constructs the

shortest path, is subject to network faults, e.g. link or router failure, link congestion, low capacity

link and high delay link, resulting in degraded delivery efficiency. Thus, finding alternative paths

between the source and the destination, which is mainly implemented by multi-path routing

protocols, becomes necessary. Compared to single-path routing, multi-path routing provides

more flexibility and diversity in path selection. In addition, multi-path routing alleviates the

influence of exceptions in networks by providing alternative paths for packet forwarding, which

improves the reliability and efficiency of networks.

One of the main challenges for multi-path routing protocols is how to discover available

loop-free paths between a pair of nodes. Recent research focuses on source routing, which argues

that, given a destination, the source can find all the possible loop-free paths to it after locally

mapping a global network with some tools, e.g. trace route. Then, the source determines several

paths for packet delivery and stores the corresponding routing instructions in the forwarded

packet. Once the packet is in the network, it will traverse strictly based on the instructions.

However, this approach is unscalable because maintaining the global network map on each
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router leads to large overhead, especially when the network size grows. Moreover, source routes

tend to be relatively static and therefore do not fit the dynamic hop-by-hop routing facilities.

In [16], Yang and Wetherall presented a tag-based routing architecture, which uses routing

deflections to provide path diversity without the scalability issue associated with the explicit

source routes. Instead of finding all the possible loop-free paths, the proposed scheme provides a

small set of diverse paths for packet delivery with one hop information – neighbours’ shortest-

path costs to a given destination. Specifically, they developed three deflection rules that enable

routers to independently deflect packets and thereby collectively construct a set of diverse loop-

free and deadend-free paths. The source can affect the choice of deflection at each router through

setting tags in the forwarded packets. Because routing deflections build on the shortest path

machinery and the source does not need to construct the global network map for discovering

paths, their scheme exhibits good scalability.

To find more diverse paths between a node pair, one approach is to increase the route

knowledge of every node in the network. However, there is a tradeoff in that more route

knowledge leads to more diverse paths, but it also causes more overhead. We aim at designing a

method to find more diverse loop-free and deadend-free paths, with minimum knowledge.

Additionally, in the Yang andWetherall approach, routers deflect packets to a randomly selected

qualified neighbour in nature, even though the source can set a tag value in the packet to affect its

deflection choice and use TTL to determine when to apply deflection. Unfortunately, there is the

problem that the path used to deliver data may become too long.

In this paper, we propose a scalable multi-path routing scheme (SMRS) to address the above

problems. In SMRS, every node employs two-hop history information and one hop forward

information to construct a local successor set, after receiving a packet. Then, the node chooses a

neighbour from the successor set as the next hop to forward the packet. This way, a set of diverse

paths are discovered for routing. SMRS consists of two components. One is the extension of the

Yang and Wetherall deflection rules with one more history hop route information to construct

the local successor set at each node. The other is the next hop selection algorithms to control the

average length of the utilised paths. We prove that, with only one more history hop route

information, the performance (in terms of routing diversity) improves substantially. Also, we

find that 2-hop history information based schemes outperform other k-hop history information

based schemes. Our approach has the following features:

. Diversity: By the comprehensive simulations, we prove that SMRS can discover a larger

set of diverse paths between a node pair in the networks than the 1-hop route information

based schemes. Thus, routing diversity is further improved, and traffic congestion can

avoided.

. Scalability: SMRS builds on shortest-path machinery without maintaining the global

topology information. In addition, besides the knowledge of 1-hop routing condition, we

utilise one more history hop route information to implement SMRS. These two properties

guarantee that SMRS has nearly the same scalability as the Yang and Wetherall approach.

. Low Latency: When using link delay as path cost, packets tend to be delivered on

short paths, even though SMRS can provide a sufficient number of diverse loop-free

paths. Long paths are mainly used as backup when short paths do not work.

This paper is organised as follows. Section II presents two extended rules of the Yang and

Wetherall deflection rules for the local successor set construction. Section III discusses the

routing schemes based on the successor set. Section IV provides simulation results, and

Section V discusses the related work. We conclude our work in Section VI.

Q. Yuan et al.70
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2. Extended deflection rules

Our rules are built on the shortest-path costs. The notation we use to define rules is detailed in

Table 1, where the computation of shortest path costs D
j
i ðGÞ between node i and node j can be

computed as an extension of the routing protocol they run for base routing. For example, each

node has the distance and next hop knowledge for any destination with the base routing table.

A node could acquire its neighbours’ shortest-path cost information by exchanging such

knowledge with its neighbours. Thus, compared to the base routing algorithm, our solution only

needs trivial extra cost.

2.1 Review of deflection rules

Yang and Wetherall define the following three deflection rules with one hop route information,

which means node i keeps the route information of node i 2 1 and node i þ 1, e.g. shortest path

costs to a given destination, as in Figure 1(a).

Rule 1: The deflection set for a node i is those neighbours i þ 1 for which Dd
iþ1ðGÞ , Dd

i ðGÞ.

Rule 2: The deflection set for a node i is those neighbours i þ 1 for which either of the

following conditions is satisfied: (1) Dd
iþ1ðGÞ , Dd

i ðGÞ; (2) D
d
iþ1ðGÞ , Dd

i21ðGÞ.

Rule 3: The deflection set for a node i is comprised of the neighbours i þ 1 for which node

i þ 1 is different from node i 2 1 and either: (1) Dd
iþ1ðGnliþ1Þ , Dd

i ðGnliÞ;

(2) Dd
iþ1ðGnliþ1Þ , Dd

i21ðGÞ.

Rule 1 regulates that the cost to a given destination at each router along a path decreases

strictly and will eventually become zero. Rule 2 allows that the cost to a destination can go down

in two hops. Rule 3 provides some complement to Rule 2 by finding an alternative to immediate

backtracking. These three rules provide a set of loop-free (a safety condition) and deadend-free

(a liveness condition) paths.

2.2 Challenges

Our challenges lie in designing a method to find more diverse loop-free and deadend-free paths,

with minimum knowledge. A trivial extension of the deflection rules is to increase each node’s

route knowledge to two hops and revise the corresponding rules. However, such an approach

costs too much overhead, e.g. memory. Suppose the average node degree is n. The overhead

increases to (n/2)2, compared to n/2 which is the overhead of the 1-hop information based

scheme.

In SMRS, we extend the deflection rules with the route information of only one more history

hop, as in Figure 1(b). We find that although the change is subtle, the performance improves

substantially. Specifically, node i still keeps the route information of node i 2 1 and node i þ 1.

In addition, we assume that packets can store the route information of one passing node.

Table 1. The notations.

Notation Meaning

D Destination node
i Sequence of nodes along a path, i . 0
li Link that connects node i 2 1 and node i
G Graph of network
Gnl Graph of network with link l removed
D

j
i ðGÞ Shortest path cost from node i to node j in network G

Si Successor set of node i

International Journal of Parallel, Emergent and Distributed Systems 71
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Thus, the route information of node i 2 2 can be piggybacked by the forwarded packets to node

i. Note that if node i 2 2 or node i 2 1 does not exist, Dd
i22ðGÞ or D

d
i21ðGÞ will be infinite.

Considering that in the Yang and Wetherall deflection rules, Rule 1 serves as a strawman for

assessing the strength of other rules and Rule 2 includes all the choices provided by Rule 1, we

only extend Rule 2 and Rule 3 in our case. In this paper, Rule E1 and Rule E2 are proposed as the

extensions of deflection Rule 2 and Rule 3, respectively.

The main issue with the two extended rules is to prove they are loop-free and deadend-free.

Both of these properties assure that paths discovered can always reach a given destination.

2.3 Rule E1

In our first rule, we regulate that nodes in the successor set should satisfy that the shortest path

cost to the destination at each node along a path decreases in three hops.

Rule E1: Given the destination node d, the successor set Si at node i includes neighbours

i þ 1 which satisfy either of the following conditions:

Dd
iþ1ðGÞ , Dd

i ðGÞ; ð1Þ

Dd
iþ1ðGÞ , Dd

i21ðGÞ; ð2Þ

Dd
iþ1ðGÞ , Dd

i22ðGÞ: ð3Þ

Theorem 1. All the paths discovered by Rule E1 between any pair of nodes are loop-free and

deadend-free.

Proof. To prove its loop-free, we present that any two directional adjacent links in the path

would be visited at most twice. First, we define the cost of two directional adjacent links mi as

costðmiÞ ¼ max{Dd
i ðGÞ;D

d
iþ1ðGÞ;D

d
iþ2ðGÞ}, where mi is the two links connecting node i, i þ 1

and i þ 2. cost(mi) is the maximum shortest path cost of those three nodes to the destination d.

According to Rule 1

costðmiþ1Þ ¼ max Dd
iþ1ðGÞ;D

d
iþ2ðGÞ;D

d
iþ3ðGÞ

� �

# max Dd
i ðGÞ;D

d
iþ1ðGÞ;D

d
iþ2ðGÞ

� �
¼ costðmiÞ;

costðmiþ2Þ ¼ max Dd
iþ2ðGÞ;D

d
iþ3ðGÞ;D

d
iþ4ðGÞ

� �

# max Dd
i ðGÞ;D

d
iþ1ðGÞ;D

d
iþ2ðGÞ

� �
¼ costðmiÞ;

Figure 1. (a) Presents the model of tag-based routing, in which node i keeps the route information of node
i 2 1 and node i þ 1. (b) Illustrates SMRS model, in which node i knows the route information of node
i 2 1 and node i þ 1 plus the route information of node i 2 2 is piggybacked to node i.
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because

Dd
iþ3ðGÞ , max Dd

i ðGÞ;D
d
iþ1ðGÞ;D

d
iþ2ðGÞ

� �

Dd
iþ4ðGÞ , max Dd

iþ1ðGÞ;D
d
iþ2ðGÞ;D

d
iþ3ðGÞ

� �
# max Dd

i ðGÞ;D
d
iþ1ðGÞ;D

d
iþ2ðGÞ

� �

Dd
iþ5ðGÞ , max Dd

iþ2ðGÞ;D
d
iþ3ðGÞ;D

d
iþ4ðGÞ

� �
# max Dd

i ðGÞ;D
d
iþ1ðGÞ;D

d
iþ2ðGÞ

� �
;

then

costðmiþ3Þ ¼ max Dd
iþ3ðGÞ;D

d
iþ4ðGÞ;D

d
iþ5ðGÞ

� �

, max Dd
i ðGÞ;D

d
iþ1ðGÞ;D

d
iþ2ðGÞ

� �
¼ costðmiÞ:

Thus, we have costðmiþqÞ # costðmiÞ (for q $ 1). Specifically, when q $ 3, the cost of any

two directional adjacent linksmiþq is strictly less thanmi, which implies that when q $ 3, no two

directional adjacent links would ever be the same. Moreover, because links liþ1 and liþ2 begin

with different nodes, mi and miþ1 cannot be the same two directional adjacent links. For q ¼ 2, if

node i is different from node i þ 2, mi and miþ2 begins with different nodes. Therefore, they are

the different two directional adjacent links. Otherwise, mi and miþ2 might be the same two

directional adjacent links. Thus, any two directional adjacent links in the path constructed byRule

E1 would be visited at most twice. Intuitively, if we consider each link as a ‘node’ and imagine

there is a ‘link’ between two adjacent ‘nodes’, an analogous form of deflection Rule 2 can be

derived. According to deflection Rule 2, if ‘nodes’ along the path are different from each other, no

directional ‘link’ can be re-visited on the forwarding path and there are no ‘link’-level loops in

Rule E2. Two directional adjacent links may be revisited only when ‘node’ overlapping occurs.

To prove deadend-free, shortest-path neighbours are always valid for Rule E1, which

guarantees that the successor set will never be empty at any node. This is because, according to the

definition of shortest-path neighbours, they always satisfy the condition Dd
iþ1ðGÞ , Dd

i ðGÞ. A

Note that Rule E1 allows node i to return the packet to node i 2 1 in some cases, which

should be avoided, because returning the packet extends the path length without improving the

path diversity. In addition, avoiding immediate moving-back can prevent the case that some

links are visited twice. Thus, node i 2 1 is taken into the local successor set only when there are

no other nodes in it.

An example of Rule E1 is shown in Figure 2, where node S is the source node and node D is

the destination. Applying Rule E1, paths discovered between S andD include path (S,F,D), path

(S,A,F,D), path (S,A,B,D), and path (S,A,B,C,E,D), while path (S,A,B,C,E,D) cannot be

found by deflection Rule 2.

Figure 2. An example for Rule E1. The number on each edge represents the cost of the link between two
nodes and the number in parenthesis presents the shortest path cost of the corresponding node to the given
destination D.
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2.4 Rule E2

Rule E2 is designed to extend deflection Rule 3, which eliminates immediate backtracking.

Compared to Rule E1, Rule E2 can provide some complement to enlarge the successor set.

Rule E2: Given the destination node d, the successor set Si at node i consists of neighbours

i þ 1 for which node i þ 1 is not equal to node i 2 1 and satisfies any of the following:

Dd
iþ1ðGnliþ1Þ , Dd

i ðGnliÞ; ð4Þ

Dd
iþ1ðGnliþ1Þ , Dd

i21ðGnli21Þ; ð5Þ

Dd
iþ1ðGnliþ1Þ , Dd

i22ðGÞ: ð6Þ

Theorem 2: All the paths discovered by Rule E2 between any pair of nodes are loop-free and

deadend-free.

Proof: Removing links from the graph G increases the shortest path cost between two nodes.

Therefore, for any node i and j (i . 0, j . 0), we have Dd
i ðGÞ # Dd

i ðGnljÞ.

According to Rule E2

Dd
iþ1ðGnliþ1Þ , max Dd

i ðGnliÞ;D
d
i21ðGnli21Þ;D

d
i22ðGÞ

� �

# max Dd
i ðGnliÞ;D

d
i21ðGnli21Þ;D

d
i22ðGnli22Þ

� �
:

To show that it is loop-free, we can use a similar method as in Rule E1. If we replace the G in

Rule E1 with Gnli, Rule E1 and Rule E2 are of analogous form. Thus, by defining a similar two

directional adjacent links cost, we can find that any two directional sequential links would never

be visited more than twice in Rule E2.

To verify that it is deadend-free, we prove that the shortest-path neighbour in Gnli is always

an allowed choice. According to the definition of shortest-path neighbour i þ 1 in Gnli,

Dd
iþ1ðGnliÞ , Dd

i ðGnliÞ and the shortest path of node i þ 1 to the given destination inGnli cannot

go back across the last incoming link liþ1, thus D
d
iþ1ðGn{li; liþ1}Þ ¼ Dd

iþ1ðGnliÞ.

Based on the above discussion

Dd
iþ1ðGnliþ1Þ # Dd

iþ1ðGn{li; liþ1}Þ ¼ Dd
iþ1ðGnliÞ , Dd

i ðGnliÞ:

The shortest-path neighbour in Gnli satisfies Rule E2. A

For instance, in Figure 3, node S is sending a packet to node D. By applying Rule E1, it is

possible for the packet to reach node A. When A receives that packet, Rule E1 cannot take

node B into the successor set. This is because cost(G,B) is larger than max{cost(G,A),

cost(G,C), cost(G,E)}. However, node B satisfies Rule E2, since cost(GnlB,B) is 12 and

cost(GnlC,C) is 15. Thus, node B can be taken into A’s successor set. Finally, path

(S,F,E,C,A,B,D) is discovered.

Q. Yuan et al.74
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2.5 Relationship between Rule E1 and Rule E2

Let SA denote the set of neighbours provided by Rule E1, SB represents the set of neighbours

satisfying Rule E2, and SC is the intersection of set A and B. Obviously, nodes in set SC satisfy

one of the following conditions: (1) Dd
iþ1ðGnliþ1Þ , Dd

i ðGÞ; (2) D
d
iþ1ðGnliþ1Þ , Dd

i21ðGÞ and

(3) Dd
iþ1ðGnliþ1Þ , Dd

i22ðGÞ. Note that set SB–SC can be Y, which means Rule E2 cannot always

provide complement to Rule E1. Compared to Rule E1, (6) in Rule E2 cannot enrich the local

successor set. This is because (6) in Rule E2 is a subset of (3) in Rule E1. The complement

provided by Rule E2 is from its first two clauses (4) and (5), because Dd
i ðGÞ # Dd

i ðGnliÞ and

Dd
i21ðGÞ # Dd

i21ðGnli21Þ, which leads to a larger successor set. But when D
d
i ðGÞ ¼ Dd

i ðGnliÞ and

Dd
i21ðGÞ ¼ Dd

i21ðGnli21Þ, we can derive

Dd
iþ1ðGÞ , Dd

iþ1ðGnliþ1Þ , Dd
i ðGnliÞ ¼ Dd

i ðGÞ;

Dd
iþ1ðGÞ , Dd

iþ1ðGnliþ1Þ , Dd
i21ðGnli21Þ ¼ Dd

i21ðGÞ:

Then, SB 2 SC is Y. In other words, given a destination, if the shortest path of node i does not
include link li, and the shortest path of node i–1 does not include link li–1, Rule E1 will include

all the nodes allowed by Rule E2. Otherwise, Rule E2 could take several additional neighbours

in the successor set.

2.6 k-Hop history information based rules

The extended rules based on k-hop history information and one hop forward information (k . 2)

is similar to Rule E1 and Rule E2. Since, Rule E1 and Rule E2 are almost the same except that a

link is deleted in Rule E2, we only extend Rule E1 to show their properties.

Rule E1 0: Given the destination node d, the successor set Si at node i includes neighbours

i þ 1 which satisfy either of the following conditions:

Dd
iþ1ðGÞ , Dd

i ðGÞ; ð7Þ

Dd
iþ1ðGÞ , Dd

i21ðGÞ; ð8Þ

· · · · · · · · · ð9Þ

Dd
iþ1ðGÞ , Dd

i2kðGÞ: ð10Þ

Figure 3. An example for Rule E2.
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We can prove that its loop-free and deadend-free with a similar method to the proof of

Rule E1. The only difference is that we need to define the cost of k directional adjacent links

instead of two directional adjacent links, which means we compare the cost in a k þ 1 node

group. Rule E10 can take more neighbours in the successor set because it enlarges the qualified

range of Dd
iþ1ðGÞ. However, in Rule E10, one physical link may be visited 2k times in the worst

case. Thus, while more history information can contribute to more diverse paths, it leads to

unnecessary link revisit.

3. Routing based on successor set

Routing schemes based on successor sets are implemented by selecting a next hop from the

successor set to forward packets at each passing node. We first give two next hop selection

algorithms. One is Random Selection, while the other one is Selection with Weight. Then, we

discuss successor set refinement to optimise our schemes.

3.1 Next hop selection algorithms

Selecting the next hop for forwarding incoming packets influences the path diversity and the

path length. In this paper, we propose two next hop selection algorithms.

(A) Random selection. In the random selection scheme, a node randomly picks one element

from its successor set as the next hop for delivering the incoming packet. This has three

advantages: (1) random selection reduces the dependence on a single path or a single node; (2)

most of the possible paths between a node pair can be utilised, which improves network

utilisation and (3) it disperses traffic on different links so that data congestion on a single path is

avoided.

Let l denote the average size of successor set S, and len be the average length of all the

discovered paths in terms of number of hops. The possibility p(Pa) that a specified path Pa is

taken is defined as pðPaÞ ¼
Qlen

i¼0ð1=lÞ. Thus, as the average size of the successor set and the

average length of the paths increase, it is more likely to deliver packets on different paths.

The corresponding algorithm is shown in Algorithm 1.

However, since our two rules focus on the loop-free and deadend-free properties without

considering path length, random selection may lead to long paths. For instance, in Figure 4, node

S is the source while D is the destination. Based on Rule E1, it is likely to take the path

Pa:(S,A,B,H,F,E,C,E,D) for packet routing, with latency 393. There are two drawbacks. First,

path Pa is much longer than the shortest path (S,C,E,D) in terms of latency. In fact, when the

packet reaches H, if H picks I as the next hop, the path can be even longer, which may exceed

applications’ tolerant latency. Second, it is more vulnerable to network failures. That is, if any

nodes in {A,B,H,F,E,C} fail, path Pa would be broken. Short paths in terms of number of hops

are less fault-vulnerable under the same dynamic network. Based on the observation, we propose

a better method.

Algorithm 1. Random selection routing algorithm

[1] Node constructs the successor set with Rule E1 or Rule E2 after receiving a packet
[2] Node randomly selects a node from the local successor set as the next hop
[3] Node forwards the packet to the chosen node in [2]
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(B) Selection with weight. In this approach, elements in the successor set are selected as the

next hop with priority. Specifically, a node computes the weight of neighbours in the successor

set according to their shortest path cost to the given destination. The smaller shortest-path cost

they have, the larger weight they obtain. With the computed weight, a specified neighbour is

selected as the next hop with probability.

Suppose li is the size of the local successor set Si at node i. rj (0 # j # li) denotes the

members in Si. The weight of each neighbour in the successor set is presented by weightj.

We have the computation of weightj in Si defined as follows:

weightj ¼
1=Dd

rj
ðGÞ

Pli
j¼0 1=Dd

rj
ðGÞ

� � ; ð11Þ

or

weightj ¼
1=Dd

rj
ðGnlrj ÞPli

j¼0 1=Dd
rj
ðGnlrjÞ

� � : ð12Þ

(11) and (12) are for Rule E1 and Rule E2, respectively. At each node,
Pli

j¼0weightj ¼ 1.

We regulate the probability that a specified neighbour rj in Si is selected as the next hop is

weightj. Note that the weight calculation could be defined in other forms besides the reciprocal

form. But the insight behind those two equations is that we want to select the nodes with smaller

shortest-path cost as the next hop more frequently, which then results in that shorter paths are

more likely to use. This is because the length of a path decreases when the shortest-path cost of

the nodes along this path drops more quickly. As in Figure 4, node S tends to forward packets to

node C instead of node A. C is more likely to choose node E as the next hop. Then, path

(S,C,E,D) is utilised for data delivery, and path (S,A,B,H, I,C,E,D) is used as a backup.

The above process is detailed in Algorithm 2.

There are several useful properties of this approach. First, it does not reduce the size of

the successor set, which implies that compared to the random selection, the number of

choices for routing from the local view and the number of diverse paths for packet delivery

Figure 4. An example that random selection produces long paths. The left figure is the topology of a
simple network. The corresponding successor set at each node for path (S,A,B,H,F,E,C,E,D) is shown in
the right table. The next hop chosen from the successor set is superscripted with a ‘*’.
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is not lessened. Second, with the difference of probability in selecting next hop, the average

latency of the utilised paths decreases, without excluding any long paths. In addition, the

average number of hops of the utilised paths is also reduced, which is proved by our

simulations in Section IV. This allows that short paths (in terms of number of hops) are more

frequently used for forwarding packets, which is less fault-vulnerable under the same

dynamic network, while long paths are rarely utilised in practical. The reason that we do not

completely exclude long paths here for routing is that the occasional utilisation of long paths

could share the traffic load on the short paths. Moreover, long paths could be used as backup

when short paths are found unhealthy (e.g., faulty and congested), and the transmission

efficiency is improved.

3.2 Successor refinement

When Rule E1 applied, for improving path efficiency, some nodes should be removed from the

successor set.

In Figure 5, according to Rule E1, path (S,A,E,F,E,D) is a valid choice between source S

and destinationD. In this case, when a packet reaches node F from node E, it has to come back to

E in order to reach the destination D. We call nodes like F ‘local deadend nodes’. A local

deadend node only has one link in the network. When packets reach a local deadend node, they

have no choice except returning. In Figure 5, there are two local deadend nodes: node C and

node F. The local deadend node does not have any contribution to improve path diversity

Algorithm 2 Selection with weight routing algorithm

[1] Node constructs the successor set with Rule E1 or Rule E2 after receiving a packet
[2] Node computes the weight for each neighbour in the successor set
[3] Node selects one member from the local successor set as the next hop with probability and forwards the
packet to it

Figure 5. An example to illustrate the necessity of successor refinement.

Algorithm 3 Successor set refinement algorithm

[1] Node constructs the successor set using Rule E1 when it receives a packet
[2] Node computes Dd

iþ1ðGnliþ1Þ for each member in the successor set to find local deadend nodes
[3] Remove the local deadend nodes from the successor set
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because it cannot provide any other useful links for packet forwarding. In addition, choosing a

local deadend node as the next hop increases the length of the path, which results in higher cost

and latency. Thus, local deadend nodes should not be taken into the successor set.

To judge whether node i þ 1 is a local deadend node, we can compute its shortest path cost

to the destination in graph Gnliþ1, which is Dd
iþ1ðGnliþ1Þ. If D

d
iþ1ðGnliþ1Þ is infinite, then node

i þ 1 is a local deadend node and it would not be considered in the successor set. Note that

according to the definition of our rules, local deadend nodes may only appear in Rule E1. This is

because in Rule E2 there is already an upper bound for Dd
iþ1ðGnliþ1Þ. For example, in Figure 5,

when a packet reaches node E, E first computes the successor set by applying Rule E1, which is

{A,F,D}. Then, it computes Dd
iþ1ðGnliþ1Þ for nodes A,F,D, respectively, and removes node F

from the successor set since Dd
FðGnEFÞ is infinite. The algorithm is described in Algorithm 3.

4. Performance simulation

In this section, we evaluate SMRS and contrast its performance with the rules in [16]. Since in

[16] Rule 2 includes all the choices allowed by Rule 1, our simulations only include Rule 2 and

Rule 3.

4.1 Evaluation methodology

To show how SMRS performs in different network environments, we use GT-ITM [17]

generating three topologies, with 128, 256 and 256 nodes, respectively. The model we used is the

Waxman model [18], which generates graphs with a probability of an edge from one node to

another. The average node degree in these three topologies is varied by tuning a and b.

Specifically, an increase in a will raise the number of edges in the graph, while an increase in b

will increase the ratio of long edges relative to shorter edges. Our objective is to evaluate the

performance under the different network size scenario (Topology 1 and Topology 2) and

the different average node degree scenario (Topology 2 and Topology 3). Link delay is used as

the cost metric for routing in our simulation. Table 2 shows the detailed network topology

generating parameters.

For each setup topology, we randomly choose 50 node pairs as the source and destination.

Then we apply all four rules for routing. For each rule, every source runs 1024 times by sending

packets to a destination, and we report the average. When utilising Rule E1, we apply the

successor set refinement for optimisation.

To measure the performance of SMRS, we use the following metrics. (1) Successor set size is

defined as the number of members in the successor set; (2) Path diversity is the number of

disjoint paths between two nodes; (3) Delivery ratio records the ratio of the number of the

connected pairs to the number of the sample pairs when some node failures occur in the network,

which represents the ability to route around faults and (4) Path length is used to evaluate path

Table 2. Topology generating parameters in GT-ITM.

Topology 1 Topology 2 Topology 3

Nodes 128 256 256
Average node degrees 16 16 19.5
Network scale 100 £ 100 100 £ 100 100 £ 100
a 0.1 0.05 0.6
b 1 1 1
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quality for each rule. We record the average latency and the average number of hops of paths

between a node pair.

4.2 Performance results

We first evaluate the successor set size for each rule. Successor set size at a node, representing

the number of choices for the next hop selection from the local view, is determined by the

number of neighbours of that node, the successor set construction rule, the incoming packet, and

the destination. Figure 6 records the percentages of the nodes with different successor set size in

three topologies, where we contrast SMRS and deflection rules. To make it clear, we only plot

the nodes whose successor set size is larger than 2. It shows that for any successor set size larger

than 2, nodes with SMRS rules are always more than those with deflection rules. This is because

with the route information of one more history hop, nodes can take more neighbours as the next

hop to forward packets without loops.

In addition, according to our results, SMRS rules discover more different routes than the

deflection rules. The reason is obvious. As the successor set size becomes larger at each node,

which means there are more choices for the next hop selection at every passing node, the number

of different routes increases. However, the number of different routes cannot present the path

diversity precisely due to the shared nodes.

To better measure the path diversity, we define the correlation among the paths first. Let

Pa ¼ ðS;N1;N2; . . . ;Nn;DÞ and Pb ¼ ðS;M1;M2; . . . ;Mm;DÞ be the two paths between source

S and destination D, where N1;N2; . . . ;Nn;M1;M2; . . . ;Mm are intermediate nodes and

n, m $ 1. Sp denotes the joint node set which contains the intermediate nodes shared by Pa and

Pb. size(Sp) represents the number of nodes in Sp. The correlation of Pa and Pb, corr(Pa, Pb), is

defined as corrðPa;PbÞ ¼ max{ðsizeðSpÞ=nÞ; ðsizeðSpÞ=mÞ}, and 0 # corrðPa;PbÞ # 1. Larger

corr(Pa, Pb) indicates more immediate nodes Pa and Pb share. If the shared immediate nodes fail,

neither of these two paths work any longer. Thus, to corr(Pa, Pb), the smaller the better.

If corr(Pa, Pb) is 0, Pa and Pb are two totally disjoint paths. For each node pair, we summarise the

number of disjoint paths, which means that the correlation of any two paths is 0. This metric

shows two important properties: (1) the ability to construct diverse paths of the successor set, we

focus on whether larger successor set can provide more path diversity, (2) the fault-tolerance

capacity, because the more disjoint paths there are, the more reliable it is under network faults.

The first row in Figure 7 shows a comparison of the number of disjoint paths. SMRS rules

provide more disjoint paths than deflection rules, which indicates that SMRS rules can provide

more path diversity for routing.

Next, we evaluate the ability of routing under network faults. First, 50 different node pairs

are randomly chosen in the network. The two nodes in a pair act as the source and destination,

respectively. Then, we run the simulation 50 times. For the Nth time, we randomly select N

Figure 6. Comparison of successor set size. Left, Topology1; centre, Topology 2 and right, Topology 3.
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nodes as faulty and let the source send packets to the destination 32 times with different rules

applied. We consider the pair whose destination can receive the packets from the source as

connected. The delivery ratio is defined as the ratio of the number of connected pairs to the

number of sample pairs. The second row in Figure 7 summarises the delivery ratio for each rule.

In Topology 1, when the number of faulty nodes is close to 50, SMRS rules can connect more

pairs of nodes. In Topology 2 and Topology 3, the number of connected pairs is almost the same

for SMRS rules and deflection rules. This is because when the network size (in Topology 2) or

the average node degree (in Topology 3) grows, the impact of the network faults in Topology 1

on routing is reduced.

Then, we measure the performance of random selection and selection with weight. Figure 8

reports the effect of random selection and selection with weight schemes on path length, where

Figure 7. Comparison of number of disjoint paths (first row) and delivery ratio under network faults
(second row). Left, Topology1; centre, Topology 2 and right, Topology 3.

Figure 8. Comparison of length of paths in terms of latency (first row) and length of paths in terms of
number of hops (second row). Left, Topology1; center, Topology 2 and right, Topology 3.
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“RS” stands for random selection and ‘SWW’ is short for selection with weight. We measure the

average latency and average number of hops of paths constructed by each rule between each

node pair. The first row in Figure 8 presents the average latency of paths. We see that selection

with weight decreases the average path latency by raising the probability of utilising short paths.

The second row in Figure 8 shows the comparison of path length in terms of number of hops. It

shows that although selection with weight is designed to reduce the average latency of paths, it

also decreases the average number of hops compared to the random selection scheme. For all

three networks, random selection leads to paths with a larger number of hops, which implies that

routing with the random selection is more subject to network failures, although it can guarantee

that all the paths are loop-free and deadend-free.

4.3 Evaluating Rule E10 and Rule E20

We then evaluate the performance of Rule E10 and Rule E20, which are the k-hop history

information based rules. Specifically, we extend Rule E10 and Rule E20 based on k-hop history

information, where k ranges from 1 to 6. Then, we randomly choose 50 node pairs as the source

and destination, and apply random selection and selection with weight schemes for routing,

respectively. For each rule, the source sends 1024 packets to the destination, and the average is

reported.

The first row in Figure 9 plots the average length of paths in terms of number of hops as k

varies. When k rises, the average number of hops increases. This is due to the fact that more

history information causes more choices in the local successor set which may include neighbours

far away from the destination. An interesting observation is that when k . 2, the average number

of hops increases more quickly.

The second row in Figure 9 shows the number of different paths rules provide. We see that as

network size grows and average node degree increases, both Rule E10 and Rule E20 discover

more paths. Moreover, in all three topologies, the number of paths is much larger when k $ 2

than when k ¼ 1. Furthermore, the number of paths goes up slowly as k rises when k $ 2. This

implies that to discover more possible diverse loop-free and deadend-free paths with less

Figure 9. Comparison of length of paths in terms of number of hops (first row) and number of paths
(second row). Left, Topology1; centre, Topology 2 and right, Topology 3.
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knowledge, k ¼ 2 is a relatively good choice, and 2-hop history information based rules

outperform other rules.

5. Related work

Previous research has been conducted on multi-path routing [3,14] to improve Internet routing

performance, especially under network failures. Source routing [5,13], as one of the approaches,

has been explored extensively. In [15], Yang aimed at providing end users the ability to choose

the sequence of Internet service providers a packet traverses. Raghavan et al. [8] presented an

authenticated source routing system built around the concept of network capabilities. The issue

of scaling to global internet sizes without restricting the availability of a diverse set of routes was

addressed in [4]. The Nimrod architecture [2] was designed to accommodate a dynamic

internetwork of arbitrary size with heterogeneous service, such as multi-path routing. In [19],

routing decisions were made based on dynamic information, which was discovered by the

routers with feedback and probes. However, all of those schemes are similar in that they utilise a

link-state like routing to acquire the knowledge of the whole network for implementing source

routing, which limits the scalability.

To address the above problem, per-hop routing schemes were proposed. In per-hop routing,

instead of determining the complete path by source, each node along the path only determines the

next hop of the packet with its local route information. In other words, the source node neither

knows thewhole network topology nor stores any instruction information in the forwarded packet,

which improves scalability. OSPF [6,7] and ISIS [1,9] implemented multi-path routing through

routing among next hops with equal cost to a given destination [10]. Vutukury et al. regulated that

a router can forward packets to any neighbour with a cost less than itself for multi-path routing

[11,12]. However, our approach can discover more diverse paths. Yang andWetherall formulated

three deflection set rules to qualify several neighbours for packet forwarding, which finally

constructed a set of non-shortest paths to the destination without loops [16]. Our approach

improves their work in three aspects. (1) SMRS rules construct more diverse loop-free and

deadend-free paths with only one more history hop information; (2) algorithms are proposed to

control the length of utilised paths and (3) SMRS aims at providing a set of routes diverse from

each other, while the tag-based deflection discovers routes diverse from the shortest path.

6. Conclusion

In this paper, we have proposed a scalable multi-path routing scheme (SMRS), which consists of

two components. One is the extension of the Yang and Wetherall deflection rules with one more

history hop information to provide a set of successors for packet routing. The other is the next

hop selection algorithms to control the average length of the utilised paths. Our simulations show

that SMRS not only increases the number of choices for the next hop from the local view, but

also discovers more diverse loop-free paths with less latency compared with the Yang and

Wetherall approach. In addition, our simulations show that 2-hop history information based rules

outperform other rules. For our future work, we plan to develop node degree-related protocols,

for dynamically determining k in different network environments to improve multi-path routing

performance with less overhead.
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