Optimizing Roadside Unit (RSU) Placement in Vehicular CPS

Jie Wu
Computer and Information Sciences
Temple University

RSU Placement

- Roadside advertisement

Attracting shoppers
Variation of maximum coverage problem
Traffic flow monitoring
Tracking traffic flow
Variation of set cover problem

Roadside Advertisement

Passengers, shopkeeper, and roadside unit (RSU)
Shopkeeper disseminates ads to passing vehicles through RSUs
Passengers may go shopping, depending on detour distance

Roadside Advertisement

RSUs placement optimization
Given a fixed number of RSUs and (traffic) flows, maximally attract passengers to the shop

Tradeoff between traffic density and detour probability

Graph Model: $G=(V, E)$

V: a set of street intersections (vertices)

- One shop and RSUs located at street intersections

E: streets (directed edges)
Traveling path is the shortest path

Detour Model

- Shopkeeper disseminates ads to passengers through RSUs
- Passengers in a flow may detour to the shop
- Detour probability depends on detour distance: $d_{1}+d_{2}-d_{3}$

Property

For a given flow, the first RSU on its path always provides the best detour option (compared to all other RSU locations on the path)

- Insight: first RSU provides the highest traveling flexibility

- Redundant ads do not provide extra attraction

Detour probability

- For a traffic flow, f, with a detour distance, d
$p(d)$: the detour probability, decreasing utility function
An expectation of $|f| p(d)$ passengers detour to the shop

Related Work: Maximum Coverage

- Use a given \# of sets (s) to maximally cover elements (e)
- Greedy algorithm with max marginal coverage has an approximation ratio of 1-1/e
- Inapproximability result: best polynomial time approximation algorithm
- Weighted version: elements have benefits, sets costs

Our Problem

- Place RSUs on intersections to cover flows
- Different RSUs bring different detour probabilities

Intersections

RSU Placement

Composite Greedy Solution (CGS)

Iteratively find an intersection that can attract the maximum:
Candidate i: passengers from the uncovered flows;
Candidate ii: passenger from the covered flows, providing smaller detour distances;
Select i or ii that can attract more passengers to the shop

RSU Placement

Theorem 1 [a]: The composite greedy solution has an approximation ratio of $1-1 / \sqrt{e}$ to the optimal solution

Time complexity: $O\left(|V|^{3}+k n|V|\right)$

- |V|: \# of intersections, k: \# of RSUs, and n: \# of flows
- Computing the detour distance takes $/ V /^{3}$ (shortest paths of all pairs using the Floyd algorithm)
- Greedy algorithm has k steps; in each step, it visits each intersection to check traffic flows for coverage: $n / V /$

Experiments

- Dataset: Dublin bus trace

Includes bus ID, longitude, latitude, and vehicle journey ID

- A vehicle journey represents a traffic flow

80,000 * 80,000 square feet, c is set to be 0.001

Experiments

- Other algorithms in comparison
- MaxCardinality: ranks intersections by \# of bus routes and places RSUs at the top- k intersections
- MaxVehicles: ranks intersections by \# of passing buses and places RSUs at the top- k intersections
- MaxCustomers: ranks the intersections by the \# of attracted passengers (flows) and places RSUs at the top-k intersections.
- Random: places RSUs uniform-randomly among all the intersections

Experiments

The impact of utility function (Dublin trace)
Shop in the city with $D=20,000$

$$
f(d)=\left\{\begin{array}{cc}
0.001 \times(1-d / D) & d \leq D \\
0 & \text { otheriwse }
\end{array}\right.
$$

Traffic flow monitoring

Coverage
Each traffic flow goes through at least one RSU

Distinguishability
RSUs used to cover each flow is unique

Objective
Minimize the number of placed RSUs

Examples

Case 1: f_{2} and f_{3} are covered, but not distinguishable

$$
f_{1}:\left\{e_{5}, e_{6}\right\} \quad f_{2}:\left\{e_{3}, e_{5}\right\} \quad f_{3}:\left\{e_{3}, e_{4}\right\}
$$

Case 2: f_{1}, f_{2} and f_{3} are distinguishable, but f_{1} is uncovered

$$
f_{1}:\left\{e_{5}, e_{6}\right\} \quad f_{2}:\left\{e_{3}, e_{5}\right\} \quad f_{3}:\left\{e_{3}, e_{4}\right\}
$$

Model and Formulation

Graph $G=(V, E)$
V : street intersections, and E: streets
$F=\left\{f_{1}, f_{2}, \ldots, f_{n}\right\}$ is a set of n known flows on G
S is a subset of E on which RSUs are placed
$S(f)$ is a subset of S that covers f

Formulation

Objective: minimizing the number of RSUs

$$
\begin{array}{ll}
& \text { minimize }|S| \\
\text { s.t. } & S(f) \neq \varnothing \text { for } \forall f \in F \\
& \text { (coverage) } \\
S(f) \neq S\left(f^{\prime}\right) \text { for } f \neq f^{\prime} & \text { (distinguishability) }
\end{array}
$$

Related Work: Submodularity

$N(S)$: \# of covered and distinguishable flows under S

Monotonicity: $N(S) \leq N\left(S^{\prime}\right)$ for $\forall S \subseteq S^{\prime}, S^{\prime} \subseteq E$
(Monotonicity enables greedy approaches)
Submodularity: $N(S \cup\{e\})-N(S) \geq N\left(S^{\prime} \cup\{e\}\right)-N\left(S^{\prime}\right)$ for $\forall e \in E$
(Submodularity ensures bounds)

Related Work: Set Cover

Use minimum number of sets to cover all elements
Greedy algorithm with max marginal coverage has a ratio of $O(\log n)$ due to submodularity

Inapproximability result: best polynomial time approx. algo. Hitting set problem: right-vertices cover left-vertices in a bipartite graph
select 3 sets, e_{1}, e_{3}, and e_{4}

Problem Analysis

NP-hard: reduction from the set cover problem
Non-submodularity: traditional coverage

$S=\left\{e_{1}\right\}$ and $S^{\prime}=\left\{e_{1}, e_{4}\right\}$
$N(S)=N\left(S^{\prime}\right)=1$, only f_{1} is covered/distinguishable
$N\left(S \cup\left\{e_{2}\right\}\right)=1$, no change
$N\left(S^{\prime} \cup\left\{e_{2}\right\}\right)=4$, all flows are covered/distinguishable

3-out-of-3 Principle

To cover and distinguish an arbitrary pair of traffic flows (f and f^{\prime}), each of f, f^{\prime}, and $f \triangle f^{\prime}=\left(f \backslash f^{\prime}\right) \cup\left(f^{\prime} \backslash f\right)$ should include a street with a RSU placement

Example

subsets	f_{1}	f_{2}	f_{3}
streets	$e_{1}, e_{2}, e_{3}, e_{6}$	e_{1}, e_{4}, e_{6}	$e_{2}, e_{5}, e_{6}, e_{7}$
subsets	$f_{1} \triangle f_{2}$	$f_{1} \triangle f_{3}$	$f_{2} \triangle f_{3}$
streets	e_{2}, e_{3}, e_{4}	$e_{1}, e_{3}, e_{5}, e_{7}$	$e_{1}, e_{2}, e_{4}, e_{5}, e_{7}$

$1^{\text {st }}$ iteration, e_{1} is added to S (appears in 4 subsets)
$2^{\text {nd }}$ iteration, e_{2} is added to S, and terminated
$S=\{e 1, e 2\}$, with $S\left(f_{1}\right)=\left\{e_{1}, e_{2}\right\}, S\left(f_{2}\right)=\left\{e_{1}\right\}$, and $S\left(f_{3}\right)=\left\{e_{2}\right\}$

Improved Subset-Based Greedy (ISBG)

Idea: in each greedy iteration, place an RSU that is in maximum number of subsets of f, f^{\prime}, and $f \triangle f^{\prime}$

Initialize $S=\varnothing$
for each pair of traffic flows (say f and f^{\prime}) do Generate subsets of f, f^{\prime}, and $f \triangle f^{\prime}$ while there exists a subset do

Update S to place an RSU that is in maximal number of subsets, remove corresponding subsets return S

ISBG Performance

Theorem 2 [b]: ISBG has an approximation ratio $\ln [n(n+1) / 2]=O(\ln n)$ to the optimal solution, where n is the number of traffic flows

Prove by converting to set cover with a ratio of In $[n(n+1) / 2]$, where $n(n+1) / 2$ is the number of subsets

Time complexity: $O\left(n^{2}|E|^{2}\right)$
Each greedy iteration visits $|E|$ RSUs for $n(n-1) / 2$ pairs of traffic flows, with $|E|$ iterations

Experiments

Real data-driven: Seattle $10,000 \times 10,000$ square foot area
135 given traffic flows on 2,283 streets

(a) The Seattle map.

(b) The bus trace.

Comparison Algorithms

Coverage-Oriented Greedy (COG): greedily covers all traffic flows, and then uniform-randomly place RSUs to distinguish them. $O\left(n^{2}|E|^{2}\right)$

Two Stage Placement (TSP): greedily covers all traffic flows in the $1^{\text {st }}$ stage, and then, greedily distinguishes all traffic flows in the $2^{\text {nd }}$ stage. $O\left(n^{2}|E|^{2}\right)$

Distinguishability-Oriented Greedy (DOG): greedily distinguishes pairs of traffic flows by placing an RSU at $f \triangle f^{\prime}$ until all flows are distinguishable. $O\left(n^{2}|E|^{2}\right)$

2-out-of-3 (PBG): To cover and distinguish an arbitrary pair of traffic flows (f and f^{\prime}), two RSUs should be placed on streets from two different subsets from $f \backslash f^{\prime}, f^{\prime} \backslash f$, and $f \cap f^{\prime} . O\left(n^{2}|E|^{3}\right)$

Experiments

Dublin (left) and Seattle (right)

Different flow patterns in Dublin and Seattle

Conclusion

Maximum and minimum coverage using RSUs
Variation of max coverage to maximally attract passengers
Variation of min set cover to ensure coverage and distinguishability

Future works

Extensions: Effect of multiple RSUs, multiple shops, ...
Applications: Flow monitoring/calculation in SDN networks, ...

Q \& A

[a] H. Zheng and J. Wu, "Optimizing Roadside Advertisement Dissemination in Vehicular Cyber-Physical Systems," Proc. of IEEE ICDCS 2015.
[b] H. Zheng, W. Chang, and J. Wu, "Coverage and Distinguishability Requirements for Traffic Flow Monitoring Systems," Proc. of IEEE/ACM IWQoS2016 (Best Paper Award).

