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RSU Placement

l Roadside advertisement

¡Attracting shoppers 

¡Variation of maximum coverage problem

l Traffic flow monitoring 

¡Tracking traffic flow 

¡Variation of set cover problem



RSU

Roadside Advertisement 
¡ Passengers, shopkeeper, and roadside unit (RSU)

¡ Shopkeeper disseminates ads to passing vehicles through RSUs

¡ Passengers may go shopping, depending on detour distance
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Roadside Advertisement

RSUs placement optimization
¡ Given a fixed number of RSUs and (traffic) flows, maximally 

attract passengers to the shop

¡ Tradeoff between traffic density and detour probability
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Graph Model: G = (V, E)
¡ V: a set of street intersections (vertices)

l One shop and RSUs located at street intersections

¡ E: streets (directed edges)

¡ Traveling path is the shortest path
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Detour Model
l Shopkeeper disseminates ads to passengers through RSUs

l Passengers in a flow may detour to the shop

l Detour probability depends on detour distance: d1 + d2 – d3
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Property 

l Insight: first RSU provides the 

highest traveling flexibility

l The first RSU dominates the others

¡ Redundant ads do not provide extra attraction

For a given flow, the first RSU on its path always provides the best 

detour option (compared to all other RSU locations on the path)
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l For a traffic flow, f, with a detour distance, d
¡ p(d): the detour probability, decreasing utility function

¡ An expectation of |f| p(d) passengers detour to the shop
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Related Work: Maximum Coverage
l Use a given # of sets (s) to maximally cover elements (e)

l Greedy algorithm with max marginal coverage has an 

approximation ratio of 1-1/e

l Inapproximability result: best polynomial time approximation 

algorithm

l Weighted version: elements have benefits, sets costs
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Our Problem
l Place RSUs on intersections to cover flows

l Different RSUs bring different detour probabilities
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RSU Placement
Composite Greedy Solution (CGS)
Iteratively find an intersection that can attract the maximum: 

Candidate i: passengers from the uncovered flows;
Candidate ii: passenger from the covered flows, providing smaller         

detour distances;
Select i or ii that can attract more passengers to the shop
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RSU Placement

Time complexity: O(|V|3+kn|V|)
l |V|: # of intersections, k: # of RSUs, and n: # of flows

l Computing the detour distance takes |V|3 (shortest paths 

of all pairs using the Floyd algorithm)

l Greedy algorithm has k steps; in each step, it visits each 

intersection to check traffic flows for coverage: n|V|

Theorem 1 [a]: The composite greedy solution has an 
approximation ratio of              to the optimal solutione/11−



Experiments

l Dataset: Dublin bus trace 
¡ Includes bus ID, longitude, latitude, and vehicle journey ID

¡ A vehicle journey represents a traffic flow

¡ 80,000 * 80,000 square feet, c is set to be 0.001



Experiments

l Other algorithms in comparison
¡ MaxCardinality: ranks intersections by # of bus routes and places 

RSUs at the top-k intersections

¡ MaxVehicles: ranks intersections by # of passing buses and places  

RSUs at the top-k intersections

¡ MaxCustomers: ranks the intersections by the # of attracted 

passengers (flows) and places RSUs at the top-k intersections.

¡ Random: places RSUs uniform-randomly among all the intersections



Experiments

l The impact of utility function (Dublin trace)
¡ Shop in the city with D=20,000
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Traffic flow monitoring

Coverage
Each traffic flow goes through at least one RSU

Distinguishability
RSUs used to cover each flow is unique

Objective
Minimize the number of placed RSUs



Examples 
Case 1: f2 and f3 are covered, but not distinguishable

f1 : {e5, e6}      f2 : {e3, e5}      f3 : {e3, e4}
Case 2: f1, f2 and f3 are distinguishable, but f1 is uncovered

f1 : {e5, e6}      f2 : {e3, e5}      f3 : {e3, e4}
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Model and Formulation
Graph G = (V, E)

V: street intersections, and E: streets

F = {f1, f2, …, fn} is a set of n known flows on G

S is a subset of E on which RSUs are placed

S(f) is a subset of S that covers f



Formulation

Objective: minimizing the number of RSUs

minimize |S|    (# of RSUs)

s.t.   S(f) ≠ ∅ for ∀f ∈ F              (coverage)

S(f) ≠ S(f′) for f ≠ f′           (distinguishability)



Related Work: Submodularity

N(S): # of covered and distinguishable flows under S

Monotonicity: N(S) ≤ N(S’) for ∀S ⊆ S’, S’ ⊆ E           s’
s

(Monotonicity enables greedy approaches)

Submodularity: N(S∪{e})−N(S) ≥ N(S’∪{e})−N(S’) for 
∀e∈E

(Submodularity ensures bounds)

S



Related Work: Set Cover 
l Use minimum number of sets to cover all elements

l Greedy algorithm with max marginal coverage has a ratio of 

O(log n) due to submodularity

l Inapproximability result: best polynomial time approx. algo. 

l Hitting set problem: right-vertices cover left-vertices in a 

bipartite graph
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Problem Analysis

NP-hard: reduction from the set cover problem
Non-submodularity: traditional coverage

S = {e1} and S’ = {e1, e4}
N(S) = N(S’) = 1, only f1 is covered/distinguishable
N(S ∪ {e2}) = 1, no change
N(S’ ∪ {e2}) = 4, all flows are covered/distinguishable



To cover and distinguish an arbitrary pair of traffic
flows (f and f′), each of f, f′, and f△f′ = (f\f′)∪(f′\f) 
should include a street with a RSU placement

3-out-of-3 Principle
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1st iteration, e1 is added to S (appears in 4 subsets)
2nd iteration, e2 is added to S,  and terminated

S = {e1, e2}, with S(f1) = {e1, e2}, S(f2) = {e1}, and S(f3) = {e2}

Example



Idea: in each greedy iteration, place an RSU that is in
maximum number of subsets of f, f′, and f △ f′ 

Initialize S = ∅
for each pair of traffic flows (say f and f’) do

Generate subsets of f, f′, and f △ f′ 
while there exists a subset do

Update S to place an RSU that is in maximal             
number of subsets, remove corresponding subsets

return S

Improved Subset-Based Greedy (ISBG)



Prove by converting to set cover with a ratio of ln 
[n(n+1)/2], where n(n+1)/2 is the number of subsets

Time complexity: O(n2|E|2) 

Each greedy iteration visits |E| RSUs for n(n-1)/2 
pairs of traffic flows, with |E| iterations

ISBG Performance

Theorem 2 [b]: ISBG has an approximation ratio 
ln [n(n+1)/2] = O(ln n) to the optimal solution, where 
n is the number of traffic flows



Real data-driven: Seattle
10,000 × 10,000 square foot area
135 given traffic flows on 2,283 streets

Experiments 



Coverage-Oriented Greedy (COG): greedily covers all 
traffic flows, and then uniform-randomly place RSUs to 
distinguish them. O(n2|E|2) 

Two Stage Placement (TSP): greedily covers all traffic flows 
in the 1st stage, and then, greedily distinguishes all traffic flows 
in the 2nd stage. O(n2|E|2) 

Distinguishability-Oriented Greedy (DOG): greedily 
distinguishes pairs of traffic flows by placing an RSU at f △ f′ 
until all flows are distinguishable. O(n2|E|2)

2-out-of-3 (PBG): To cover and distinguish an arbitrary pair of 
traffic flows (f and f′), two RSUs should be placed on streets 
from two different subsets from f\f′, f′\f, and f ∩ f′. O(n2|E|3)

Comparison Algorithms



Dublin (left) and Seattle (right)

Different flow patterns in Dublin and Seattle

Experiments
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Maximum and minimum coverage using RSUs
Variation of max coverage to maximally attract passengers
Variation of min set cover to ensure coverage and distinguishability

Future works
Extensions: Effect of multiple RSUs, multiple shops, …

Applications: Flow monitoring/calculation in SDN networks, …

Conclusion
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