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Abstract—In this paper, we address the characterization of
similarity between two storage traces and define a three-part
measure called SIST (Similarity Index for Storage Traffic).
Such a measure is essential for identifying traces that are most
appropriate for storage system evaluations. We compare SIST
against several other similarity measures in the literature on
both the object storage and block storage systems, and show
the superiority of SIST in terms of its behavior for known
perturbations.

Index Terms—Storage systems, Time series, Discrete Wavelet
transform, Similarity, Dynamic time warping

I. INTRODUCTION

With applications becoming increasingly data-intensive, the
performance of storage systems for various types of workloads
is crucial to the viability of these applications. Storage system
evaluation is normally done using storage traces, which are
typically collected at the storage server and thus do not capture
much semantic/application information. This is particularly
true for block storage which is very common in enterprises [1].
The physical storage is usually divided into virtual storage
volumes, possibly spread across multiple devices without
explicit knowledge of the host/application. In this paper, we
consider both the object and block storage, with traces taken
from the server side for a specific volume. The traces capture
the request timestamp, Logical Block Address or LBA (usually
4KB), request offset, I/O request size, and request I/O type
(read, write).

In recent years, many commercial storage traces have be-
come available to researchers. Traces for both object and
block storage can be easily obtained. For example, Tencent
has put out a ten-day trace, collected from thousands of cloud
virtual volumes [2]. Internally, organizations often have rich
traces from their applications, which continue to evolve as
the applications and storage system technologies change. In
working with such traces, a natural question is how to select
one or more existing traces that are likely to have certain
characteristics or cover a range of behaviors for the storage
system. This requires a suitable notion of similarity between
traces, which could then be used to cluster the traces into a
set of "representative" classes.

In this paper, we design a similarity index called SIST
focused on the characteristics of storage traces in general,
while avoiding to tie it to a specific storage use-case such as
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tiering, caching, etc. We compare SIST against the prevalent
similarity metrics, namely those for time-series and images,
and show its advantages. In particular, SIST decreases gradu-
ally as an original trace is progressively perturbed to a greater
degree, unlike other metrics. However, efficient SIST based
trace clustering is beyond the scope of this paper.

The remainder of the paper is organized as follows. Sec-
tion II discusses the representation of the storage traces and
the similarity measures. Section III then defines our similarity
measure called SIST, with evaluation in Section IV. Section V
discusses the related work and Section VI concludes the
discussion.

II. STORAGE TRACE REPRESENTATION AND SIMILARITY

A. Trace Representation

Storage traces continue to get more voluminous due to the
increasing size and IO rates of storage systems. This has led
to increasing sizes of data transfers both for the purposes
of tiering across storage devices and for caching of content
in DRAM. Thus, an LBA level representation of traces is
unnecessary and it suffices to work with much larger units,
often known as chunks, which we assume to be 8MB for our
work. When converting the raw trace to use chunk granularity,
access to any LBA within a chunk will be counted as access to
the chunk. It is also useful to divide time into slots, and report
all accesses per time-slot as a list of unique blocks (or chunks)
along with their address, operation (read/write), number of
accesses, and average access size. Although this introduces
another dimension to the problem (#accesses), it obviates the
need for keeping the timestamps. Also, given the large chunk
size, the average access size is well contained within a chunk.
Thus, for each time-slot and chunk#, we have (#accessses,
operation) as the key attributes in our trace representation. We
consider reads and writes separately in our SIST measure and
thus focus on #accesses.

Figure 1. Number of read and write accesses of Friday for MSR usr workload
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Fig. 1 shows the #accesses (or access intensity) for reads
and writes for the well-known Microsoft Research Cambridge
(MSR) trace [3] that come from a block storage system. We
show its "usr" dataset collected on a Friday. As seen, read
and write access patterns are quite different, and high access
regions tend to bunch up both in time and space.

B. Trace Similarity

The trace representation can be considered as a 2-D time
series with time-slot# and chunk# being the x and y dimen-
sions. This allows the use of existing literature on time series
similarity (TSS). One could also look at Fig. 1 as an image,
which potentially allows the use of image similarity (IS)
measures that have been explored extensively in the literature.
However, neither view is well-suited for storage traces. In
particular, TSS largely focuses on precise differences between
corresponding values between two time-series, which may not
be very interesting from the storage performance and hence
the storage similarity perspective. The IS measures focus on
how similar the images appear to the human eye, which is
again different from how the storage behaves.

As can be seen from Fig. 1, the trace behavior is nonho-
mogeneous both temporally and spatially. That is, there are
sudden changes or breaks in activity over both the chunk and
time. Therefore, aggregate measures such as overall access
frequency of the chunks (i.e., aggregation over time), overall
accesses in successive time-slots (i.e., aggregation over space),
or even the aggregate variability measure are inadequate.
Instead, we need a characterization of the heterogeneity, but
only to the extent that it may affect storage characteristics.

The nonhomogeneity in storage behavior in a commercial
environment results from many causes. The three common
cases are: (1) Applications with different characteristics start-
ing or ending at unpredictable times, (2) Occasional unusually
heavy load on some applications, and (3) Regular but distinc-
tive activities such as backup or report generation where the
behavior shows bunched up requests during a short period of
time. It is likely that the two traces are roughly similar except
for these special situations, and we would like to recognize
them as such.

C. Image Similarity (IS) Measures

IS metrics have been studied extensively but focused on
directly or indirectly trying to model the human visual system.
The most prominent example of full image similarity is the
structural similarity index (SSIM) [4]. SSIM is a simple mea-
sure computed as a product of the similarity in the mean value
(or intensity), variance, and correlation between the target and
reference image. The similarity between two values µx and µy

is computed using the expression sxy = 2/(µx/µy + µy/µx),
which has the important properties of sxx = 1, sxy = syx,
and sxy ≤ 1. For correlation, it uses the standard (Pearson’s)
correlation coefficient, but this would be inappropriate as it
emphasizes large differences. The other extreme is to use
Spearman’s rank correlation [5], which only correlates the

trend (increasing or decreasing) across the traces. However,
this is rather insensitive to large differences in accesses.

MS-SSIM [6] is a generalization of SSIM to multiple
(resolution) scales, by successively applying a low pass filter
(similar to using Haar Wavelet transform). Gradient similarity
measure (GSM) [7] essentially replaces the intensity term of
SSIM with a similar term involving gradients, thereby focusing
on edges rather than the general intensity. SIST also adopts
this idea.

D. Time Series Similarity (TSS) Measures

The TSS measures in the literature focus on scenarios where
direct comparison of values is important (e.g., for comparing
gnomic structure, stock price, ECG signals, etc.) The three
most popular comparison types are (a) Euclidean (or the more
general Minkowski) distance, (2) Edit distance (or the number
of changes required to convert one series into another), and (3)
Longest Common SubSequence (LCSS) [8]. The edit distance
is not suitable to evaluate the attributes of storage traces
because there is no natural notion of a "word" in storage access
traces.

Time series from two different sources may be misaligned
and thus a direct comparison can be misleading. In particu-
lar, the two series could have a relative shift, compression,
or expansion. Dynamic time warping (DTW) [9], originally
developed for speech comparison, is a highly popular approach
for alignment. However, it may look arbitrarily far from the
current point to find the closest point to match, which makes
it exceedingly expensive. DTW also has another problem: if
one series has repeated occurrences of the same value, they all
might be matched to the same value in the other series. This
problem may occur rather frequently in the traces where the
"value" is the number of accesses to a chunk in a small time
window. It can be lessened by matching the trend rather than
the actual values [10], where the trend is often estimated from
the next/previous points only. We will use a low-dimensional
approach with a small band to indicate the trend.

III. SIMILARITY INDEX FOR STORAGE TRACES

A. Preprocessing and Trace Grids Representation

For each request in the raw trace, we convert the LBA offset
into the corresponding chunk number. Then we collect the total
number of read and write requests received within successive
time-slots of duration ts into separate quantities Rt and Wt.
Let K be the maximum offset in the storage trace. Then, m,
the total number of chunks, is given by m = K

|C| , where |C|
is the chunk size. Suppose that our data spans n time-slots.
Thus, the range of the spatial dimension is [1, · · · ,m] and the
range of the time dimension is [1, · · · , n]. For a grid point
in position (chunk_no, time-slot) denoted as [i][j], its value
represents the total number of read or write requests for the
specific chunk and time-slot. Fig. 2 shows an example of our
data grids. The time-window size ts and chunk-size |C| are
parameters, and their choice is discussed in Section IV-D.
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B. Similarity Measure for Storage Trace

Consider two equal size trace grids Gm×n =
g[1 . . .m][1 . . . n] and Hm×n = h[1 . . .m][1 . . . n], as
illustrated in Fig. 2. Based on the discussion above, we
define similarity between traces G and H as a triplet
SG,H = (SM , SA, SD) where

1) SM ∈ [0, 1] represents the overall (or Main) similarity
measure between the two traces by exploiting discrete
wavelet transform (DWT).

2) SA ∈ [−1, 1] represents the similarity in terms of the
number of chunk access intensity (or the Activity level).

3) SD ∈ [−1, 1] is the similarity for high-frequency content
(or Detail) that is ignored in the computation of SM .

Given two identical traces, the similarity measure will be
(1,0,0) meaning that they have the same overall characteristics,
and the activity level and high-frequency content are the same.

C. Estimating Activeness Similarity SA

Given two equal size trace grids Gm×n = g[1 . . .m][1 . . . n]
and Hm×n = h[1 . . .m][1 . . . n], the activeness of G and H
is computed as

A(G) =

√√√√ ∑
1≤i≤m
1≤j≤n

g[i][j]2, A(H) =

√√√√ ∑
1≤i≤m
1≤j≤n

h[i][j]2,

(1)
Now we define the activeness difference between these two
traces as

SA(G,H) =
A(G)−A(H)

A(G) +A(H)
. (2)

Note that SA(G,H) ∈ [−1, 1]. The negative value of
SA(G,H) means H is more active than G, and the positive
value means G is more active than H .

D. Estimating Main Similarity Index SM

For this, we first compute a row-wise distance measure
between G and H , henceforth denoted as d(G,H, i), and
then the overall measure, denoted as D(G,H) by a simple
summation. That is,

D(G,H) =
∑

1≤i≤m

d(G,H, i).

Note that d(G,H, i) denotes the similarity in terms of accesses
to chunk i. A simple summation reflects the fact that accesses
to all chunks are given equal weight.

g11 g12 … g1n

g21 g22 …

… … …

gm1 … … gmn

h11 h12 … h1n

h21 h22 …

… … …

hm1 … … hmn

n

t_s

n

t_s

m m

Figure 2. Computing similarity of traces G and H

Now to estimate d(G,H, i), we can regard G(i) and H(i)
as time series and use a suitable distance measure. A suitable

candidate for this is Euclidean distance along with DTW.
However, a full DTW has O(N2) complexity for a time series
of length N since it may examine the points that are arbitrarily
far. This is not necessary or meaningful for a storage trace
that has been aggregated into fairly large time windows and
chunks. Thus we use the Sakoe-Chiba banded comparison [11]
where the ith element in one series is only compared against
element j with i − L ≤ j ≤ i + L for some small band size
of 2L+1. (Note that L = 0 corresponds to the case of simple
Euclidean distance.) We let r = (2L + 1)/N where r is a
fractional parameter 0 ≤ r ≤ 1. The choice of r is discussed
in Section IV-D.

Instead of using the similarity distance D(G,H) directly,
we scale the distance by the activeness of the two trace grids.
Storage traces normally follow the Pareto principle where a
large percentage of I/O requests a small section of the storage.
Thus, the similarity scaled by the activeness of the request
data is the part we should focus on. We normalize the scaled
distance dscale = D(G,H)

4∗(A(G)+A(H)) using 1
1+dscale

to output a
value in the range of [0, 1]. That is,

SM (G,H) =
1

1 + D(G,H)
4∗(A(G)+A(H))

. (3)

E. Wavelet Transform Based Distance Comparison

Since raw traces are likely to have quite a bit of "noise" or
high-frequency variability that is not necessarily the most fun-
damental part from the storage perspective, direct analysis of
the trace becomes less desirable. Wavelet transform provides
an attractive way to handle this situation since it includes both
the frequency (through the scale factor) and temporal location
(through the time-shift factor). Discrete wavelet transform
(DWT) represents scale factors as powers of 2 and uses a
pair of high-pass and low-pass filters in each step, and the
decomposition is applied recursively to the low-pass part [12],
[13]. Both filters are constructed using the scaled and shifted
versions of an underlying mother wavelet. The eventual output
consists of a concatenation of all the wavelet coefficients.
The simple Haar mother wavelet is used most commonly
and amounts to computing the average and difference of
adjacent pairs of elements. The differences become the detail
coefficients at this level, and the process is continued for the
next level using the averages recursively until we get down
to the last level which is simply the overall average of all
elements. With the Haar wavelet, the successive stages of
DWT provide "trends" at lower frequency levels.

With DWT, we can get a low dimensional representation of
the signal by ignoring the top k detail coefficients (where k is
a parameter), and use this for a "less noisy" distance measure.
We also compute a measure on ignored detail coefficients to
capture the high-frequency content. One benefit of the high-
frequency content is that it might reveal the activities of special
processes (e.g. backup, report generation, etc.) or other special
activities that tend to have intensive accesses over short time
periods. These could be considered as "anomalies" in data [13]
and DWT provides a convenient way to characterize them.
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F. Estimating Similarity Measure with DWT

Given two equal size trace grids G,H of size (m,n), G
is a representation of G with reduced dimensionality (m,n′)
and H is a representation of H with reduced dimensionality
(m,n′), where n′ ≪ n. G and H extract the main features of
G and H respectively.

With the low dimensional grids G and H , we form the
similarity degree of two traces G and H as SM (G,H), and
the activeness difference as SA(G,H).

We then use the top k detail coefficients of DWT to compute
the differences in the finer details. We output the finer detail
difference between the traces.

SD(G,H) = max
l

RMSD(Gl
cd)−RMSD(H l

cd)

RMSD(Gl
cd) +RMSD(H l

cd)
, (4)

where Gcd and Hcd are the detail coefficients. We scale the
input two trace grids using the minmax scaling.

G. Implementation Details

In this section, we discuss the details of the implementation
choices we made. We give the choice of the method that we
use to measure the distance D(G,H) and the method used to
form the low dimensional representation G and H .

1) Using DTW for Distance Measure: As previously dis-
cussed, the distance measure of two trace grids is obtained by
summing up the distance per corresponding row vectors that
represent the request intensity change in time of a specific
chunk in these two traces. We use constrained DTW to align
each pair of the corresponding row vectors.

Figure 3. Sample DWTT at levels 2 and 3

2) Using DWT for Trace Analysis: In using DWT for traces,
we intend to deal with 2 dimensions – time-slot number and
chunk number. One could thus start with a 2-D DWT, where
each scale will be a pair (ks, kt) with ks denoting the chunk-
space and kt the time. This is rather unwieldy; therefore,
we consider DWT individually for each dimension. We will
largely use the DWT in the time domain (DWTT ). This
provides a 2-D plot at each time scale, where x-axis is the
detail coefficient index of DWTT at that scale and y-axis is the
chunk number. The value at (x, y) is xth wavelet coefficient
value for chunk no. y. Fig. 3 shows the DWTT plot at levels 2
and 3. Note that the amount of coefficients becomes 1/2 as we
go down each level. Thus, for example, the two vertical bands
around x position of 25 in Fig. 3(b) have the corresponding
(rather faint) bands around position 50 in Fig. 3(a). This shows

that there is significant activity around 80% time offset into the
trace across the entire range of chunks, and this is prominent
only at level 2 (higher frequency).

To illustrate the spatial DWT (DWTS), imagine that in
Fig. 3 the x axis is the time-slot number and the y-axis is
the index of the DWT coefficient. Thus, level 2/3 activity will
correspond to the variability in access behavior at the chunk
granularity of 16MB and 32MB respectively. Thus, the DWTS

provides us with information about the level of sequentiality
in the trace. For example, if Fig. 3 were actual DWTS plots,
we would expect many 16 MB accesses at 80% time point
all across the volume, but much fewer 32 MB accesses. Thus,
DWTS can be useful in finding out the reasonable granularity
for chunking.

3) Overall Algorithm: The pseudocode implementation of
computing the trace similarity distance is given in Table 1

Algorithm 1 Trace Similarity Distance (TSD) algorithm
1: procedure TSD(G,H, l, r) ▷ Input trace grid G, H,

wavelet level l, and DTW constraint band r
2: Gs = scale(G,min,max)
3: Hs = scale(H,min,max)
4: Gca, Gcd = DWTT (Gs, wavelet = haar, level = l)
5: Hca, Hcd = DWTT (Hs, wavelet = haar, level = l)

▷ Gca and Hca is the approximation coefficients; and Gcd

and Hcd are the detail coefficients
6: while i ≤ n do ▷ For each chunk
7: Di = DTW (Gca[i, :], Hca[i, :], constraint = r)

8: D(G,H) = sum(Di)
9: Compute similarity degree SM (G,H) by Eq.3

10: Compute activeness different SA(G,H) by Eq.2
11: Compute finer detail different SD(G,H) by Eq.4
12: return SM (G,H), SA(G,H), SD(G,H)

After some experimentation, we chose k = 3 and r = 0.15.
We use the minmax scaling with the range [0,1] to normalize
the input grids. The minimum value of the grids is made equal
to 0 and the maximum value is made equal to 1.

H. Evaluation Methodology

Although SIST is intended for use with different traces that
might exist in a storage trace repository, such comparisons are
not useful for evaluation purposes since we would not have
any underlying ground truth to assess whether the obtained
similarity measure is reasonable. Therefore, we take individual
traces and apply certain perturbations to them to generate a
variant to be compared against the original. In the following,
we describe four basic types of perturbations that we believe
cover some key differences between real traces. These could
be used both individually and in combination for evaluation
purposes.

• Mixing: Here we mix two different traces, say A and B
using a percentage parameter p, where the mixed trace
M = (1− p%) ∗A+ p% ∗B. The mixed trace can now
be compared against both A and B.
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• Shifting: Here we shift the original trace in the left or
right direction by a certain percentage denoted as p% to
get a trace variant for comparison. Any vacated places
are filled with zeros.

• Salt and pepper noise addition: Here we replace p
2% of

the accesses (in randomly chosen positions) to have the
minimum access count and the remaining p

2% of accesses
to have the maximum access count.

• Traffic Thinning: For this, we simply remove randomly
chosen p% of the accesses (i.e., make them zero) without
changing the trace length.

We have verified that using multiple of these perturbations has
a roughly additive impact on SIST; therefore, for brevity, we
only provide results with a single perturbation in each case.

To evaluate the performance of SIST, we compare it against
the following four measures from the literature.

• Structural Similarity Index (SSIM): The detail of this
measure is mentioned in II-C. In our experiment, we
treat the trace grids as the input images to compute the
similarity.

• Longest Common SubSequence (LCSS) similarity: We
compute this as the length of the longest common sub-
sequence divided by the time series length.

• Euclidean Distance (Euclid): This measure computes the
Euclidean distance dEuclidean between the two time se-
ries, normalized using the expression 1/(1+dEuclidean).

• Dynamic Time Warping based similarity: This measure
calculates the mean DTW distance dDTW for the row
vectors of the trace grids and normalizes it as 1/(1 +
dDTW ).

IV. EVALUATION OF SIST
A. Datasets Used

In the following, we show detailed results for traces from
two sources. One is the MSR block trace that we discussed
earlier [3]. This trace is for an enterprise system and includes
several workloads, of which we use one workday trace from
one of the disks associated with "usr", "proj", and "hm"
workload. We call the trace from "usr" as trace A, "proj"
as trace B, and "hm" as trace C. The other traces [14]
are from an HPC environment (Rennes site of Grid’5000
environment [15]) and uses the OrangeFS [16] parallel file
system. The traces include 14 read workloads and 14 write
workloads generated using the MPI-IO Test tool [17]. Among
the many configuration parameters, an important one is the
shared file for all applications vs. one file per application.
We use one trace in each category here. For these traces,
the object size is only 64KB, and the max access size is
4MB. We selected two traces from the HPC environment,
that we call as traces A and B. The spatiality parameter of
trace A is configured to be contiguous, whereas that of trace
B is configured as non-contiguous. The two traces were also
generated using a different number of processors, one is 64 +
64 the other is 64 + 32. For the mixing setup, we also selected
another trace which we call trace C which has a different
request size than A and B.

B. Evaluation of Main SIST Measure SM

Figs. 4, 5, and 6 show the comparisons for the (object store)
HPC trace. We use the four perturbations mentioned above,
namely mixing of two traffics, left/right shifting, salt-n-pepper
noise addition, and thinning out of the traffic.

Let us start with Fig. 4(a) which compares a mixture of
traffics A and C (denoted Mix(A,C) in the caption) with
A. The x-axis indicates the percentage of the traffic C that
is used in the mixture and it varies from 0% to 100%. As
expected, at 0%, all methods yield a similarity of 1.0, and it
generally decreases as the percentage of C increases. It is seen
that LCSS, DTW, and Euclid go down very rapidly and thus
do not represent the mixture very well. (The LCSS even rises
when the traffic is 95% type C). Both SIST and SSIM show
plausible behavior, but SIST has an almost linear decay until
it reaches 50% B, at which point it stabilizes to the inherent
similarity between A and B. Fig. 4(b) shows a symmetrical
behavior except for the slight asymmetrical of SSIM between
(a) and (b). Cases (c) and (d) use a mixture of traffic B and
C, and the results again show similar behavior.

Fig. 5(a) shows the result of right shifting traffic A by the
percentage on x-axis. Such a shift will zero out increasing
amounts of initial trace and thus expected to lead to increasing
dissimilarity until we reach the limit of similarity of traffic
A with all zeros. The zeroing out creates an extremely non-
homogeneous situation in time and is challenging for all
measures. Nevertheless, SIST shows a roughly gradual decay
up to the minimum similarity value. SSIM here shows a
gradual increase after a very rapid drop, whereas DTW/Euclid
shows no ability to tolerate the shift. Fig. 5(c) shows a similar
behavior for trace B. Figs. 5(b) and (d) show that the left shift
performs almost identical to the right shift.

Fig. 6(a) shows the impact of salt-n-pepper noise mixture on
trace A. Such noise is rather extreme and all methods except
SIST record a negligible similarity with only a small amount
of noise. SIST may appear to show anomalous behavior of
settling down at around 0.3. However, note that salt-n-pepper
noise largely results in adding a high-frequency noise to the
signal. SIST will catch this through the SD part of the triplet
(discussed below); however, with high-frequency noise filtered
out, the trace retails a level of similarity with the unperturbed
trace regardless of the percentage of noise. Fig. 6(b) shows
similar behavior for traffic B.

Fig. 6(c) and (d) show the similarity with the traffic thinned
out by an increasing percentage. Again SIST shows the most
plausible behavior – a smooth and concave curve ending in
a rather small similarity with all zeros. In contrast, SSIM
decreases only slowly and is very high even for all zeros.
DTW and Euclid go down to a negligible value rapidly, and
LCSS drops out unexpectedly at around 45%.

We ran all the same experiments with the "usr" and "proj"
parts of MSR block traces. The results turned out to be quite
similar and thus only some are depicted in Figs. 7 and 8. It
can be seen that even though the detailed behavior is different,
the trends are very similar to that for the HPC trace, and once
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Legend for Figs. 4, 5, 6, 7, 8, 9: SIST SSIM LCSS DTW Euclid

(a) Mix(A,C) vs. A (b) Mix(A,C) vs. C (c) Mix(B,C) vs. B (d) Mix(B,C) vs. C
Figure 4. Comparison of different similarity measures for mixing (HPC traces)

(a) Shift(A, right) vs. A (b) Shift(B, right) vs. B (c) Shift(A, left) vs. A (d) Shift(B, left) vs. B

Figure 5. Comparison of different similarity measures for shifting (HPC traces)

(a) Salt_pepper(A) vs. A (b) Salt_pepper(B) vs. B (c) Thinout(A) vs. A (d) Thinout(B) vs. B

Figure 6. Comparison of different similarity measures for noising and traffic-thinning (HPC traces)

again SIST shows a smooth decay in similarity as the amount
of perturbation increases.

We also evaluated SIST using grids where a point in
position (chunk#, time) denotes the average stack distance
for chunk# within the specific time-slot. Fig. 9 shows the
similarity comparisons for the four perturbations of the results
with HPC stack distance grids. It is shown that the behavior
with stack distance is quite similar to the ones with access
trace grids we discussed above. Stack distance is an important
measure of locality and hence performance; therefore, finding
an almost similar behavior for stack distance confirms that
SIST should also track the storage performance quite well.

C. Evaluation of SA and SD SIST Measures

Since other similarity measures do not have the counterparts
to SA and SD, we only show them for various perturbations to
traces A and B. Fig. 10(a) shows the SA metric, which ranges
from -1 to +1 with zero meaning no detectable difference from
the original. It is seen that the salt-n-pepper noise shows the
most dramatic behavior: the SA metric rises rather rapidly
and then saturates at around 0.75. Since the salt-n-pepper

noise is applied to all the chunks, it makes many new chunks
active. In contrast, trace mixing does not have much influence
on activity level. The shift and thinning of the traffic both
reduce the activity level (by zeroing out some accesses) and
the impact becomes very pronounced at a high percentage
of shift/thinning. Fig. 10(b) shows very similar behavior.
The behavior for MSR traces in Fig. 10(c) and (d) is also
qualitatively similar to that of the HPC traces.

Fig. 11 shows the SD metric for the same cases as for
activity level. The SD metric also takes the range -1 to +1 with
zero indicating no detectable difference from the original. It
is seen that the behavior SD is generally qualitatively similar
to that of SA. This is largely a result of most perturbations
affecting both the activity level and high-frequency content in
a similar way; however, the two concepts are not identical and
can capture the different aspects for certain situations, and thus
it helps retain both measures in SIST.

D. Justification for Parameter Choices

Because of the complexity of the storage traces, deriving a
similarity measure for them necessarily involves a judicious
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Figure 7. Comparison of different similarity measures for mixing and shifting (MSR traces)

(a) Salt_pepper(A) vs. A (b) Salt_pepper(B) vs. B (c) Thinout(A) vs. A (d) Thinout(B) vs. B

Figure 8. Comparison of different similarity measures for noising and traffic thinning (MSR traces)

(a) Mix(A,C) vs. A (b) Shift(A, right) vs. A (c) Salt_pepper(A) vs. A (d) Thinout(A) vs. A

Figure 9. Comparison of different similarity measures for various perturbations in the stack-distance (HPC traces)

choice of several parameters. For the proposed method, there
are four different parameters. In the following, we provide
some justifications for their choice.

• Time-slot duration ts: The choice of ts depends on the
intensity of the trace. Most storage operations occur in phases,
with each phase accessing a rather small range of LBAs
actively (and others either occasionally or none at all). We
need to choose ts large enough to contain a significant number
of accesses to these active ranges (e.g., 10’s to 100’s), else the
similarity is either not meaningful (too few accesses) or not
granular enough (too many accesses).

• Chunk-size C: Chunk size needs to be chosen so that
much of the sequentiality is captured within the chunk access
and corresponds to data transfer sizes in contemporary storage
systems that continue to go up both in total size and hence the
access size to control the management overhead. Currently, a
chunk size of 1-16 MB is perhaps appropriate in most cases.

• DTW band size (r): One important aspect in deciding r
is the maximum span beyond which trace characteristics are
considered to be sufficiently different that does not make sense
to match them. Based on this and some experimentation, we
chose the total band side of 15% (or approximately 7.5% on
each side of the diagonal).

• DWT levels for high-frequency content (k): This is
related to both ts and C, and represents the time and space
granularity that is relevant for the overall comparison vs. the
high frequency "noise" or anomalies.

V. RELATED WORK

In addition to SSIM, another image similarity proposal is
visual information fidelity (VIF) [18]. VIF models the wavelet
coefficients as Gaussian scale mixtures and quantifies the
mutual information between reference and target images. The
feature similarity index (FSIM) [19] uses a combination of
two feature maps for RRS. Reisenhofer [20] introduces a Haar
wavelet-based perceptual similarity index (HaarPSI), which
can be considered as a simplification of FSIM.

Many strategies have been explored to reduce the com-
plexity of DTW [21]. In particular, other than the constant
size band of Sakoe-Chiba [11], there is also the Itakura
"parallelogram" approach, but it is generally worse than Sakoe-
Chiba. Hauswirth et al. [5] analyze the performance of object-
oriented programs by examining techniques for trace align-
ment and trace correlation. Reference [22] considers similarity
for "uncertain" time series, i.e., time series where each sample
can be considered to be drawn from a distribution. It computes
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Legends for Figs. 10 and 11 Mixed w/ trace A Mixed w/ trace B Trace w/ right-shift Salt-n-pepper Thinned out trace

(a) HPC Trace A (b) HPC Trace B (c) Microsoft Trace A (d) Microsoft Trace B
Figure 10. Activeness differences for various perturbations.

(a) HPC Trace A (b) HPC Trace B (c) Microsoft Trace A (d) Microsoft Trace B
Figure 11. Finer detail differences for various perturbations

distance measure which is less than some threshold with a high
probability. While this notion is useful, the lack of knowledge
of the distribution makes this approach infeasible.

DWT has been explored extensively under different
wavelets and filters [12]. There are also other transforms, such
as Short-term Fourier Transform (STFT) [23] and stationary
DWT (SDWT) [24], but we don’t believe they are appropriate.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have defined a similarity index called
SIST for comparing storage traces and compared it against
other commonly used measures for traces from both object
and block storage. We showed that SIST has a much better
behavior compared to these measures and more directly re-
lates to storage access issues. In the future, we will validate
SIST against a variety of other storage traces, and attempt
to correlate it with actual storage system performance for
various use cases. We will also devise efficient algorithms for
clustering traces based on the similarity metric and potentially
other criteria relevant to storage system performance. We will
explore the suitability of SIST for persistent memory and
DRAM traffic as well.
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