
SIST: A Similarity Index for Storage 
Traffic

Lu Pang, Krishna Kant, and Jie Wu
CIS Department, Temple University

Philadelphia, PA
{lpang, kkant, jiewu}@temple.edu



Outline

Introduction

SIST

Evaluation

Conclusion and Future Work



Introduction

• Performance of storage systems is crucial for data intensive workloads
• Constant evolution of storage technologies and systems
• Evaluation of storage systems or features is crucial and often done using 

storage traces

• With increasing availability of traces, how do we select one or more 
traces that

• Have certain characteristics
• Cover a range of behaviors
• Are easily distinguished from other similar traces

• Need notion of Trace Similarity



Existing Similarity Measures (1)

• Image Similarity (IS)
• Used to measure the similarity between two images
• Focused on directly or indirectly trying to model the human visual system

• Image Similarity example
• Structural similarity index (SSIM) : A product of three comparison 

measurements between the target and reference image
• Mean value (luminance)
• Variance (contrast)
• Correlation (structure)



Existing Similarity Measures (2)

• Time Series Similarity (TSS) Measures
• Used to measure the relationship between two time series
• Focus on scenarios where direct comparison of values is important 

• Stock price
• Gnomic structure
• ECG signals

• TSS example
• Euclidean (or Minkowski) distance
• Edit distance
• Longest Common SubSequence (LCSS)
• Dynamic time warping (DTW) – provide better alignment



Why do we need a new measure?

• Trace Similarity needs
• Comparison should be relevant to the storage performance perspective 
• Need to cover both temporal and spatial similarity aspects
• Need to capture nonhomogeneity in storage behavior

• Applications with different characteristics starting or ending at unpredictable times
• Occasional unusually heavy load on some applications
• Regular but distinctive activities such as backup

• Aggregate measures inadequate, e.g., 
• Time aggregation – overall access frequency of each chunk

• Inadequate for caching, short-term tiering, prefetching, etc.
• Space aggregation – overall accesses in successive time-slots

• Useful only for network bandwidth management
• Aggregate variability measures also largely inadequate



Typical Trace Behavior
Number of read and write accesses of Friday for MSR usr workload (red 
represent more accesses, blue represent less accesses)



Similarity Index for Storage Traces

• Provide a similarity index called SIST 
• Accounts for storage performance aspects in general
• However, avoid tying it to specific use-cases (e.g., tiering, caching, etc.)

• SIST is a triplet (𝑆𝑆𝑀𝑀 , 𝑆𝑆𝐴𝐴, 𝑆𝑆𝐷𝐷)
• SM : Overall (or Main) similarity based on discrete wavelet transform (DWT)
• SA : Similarity in activity level of two traces
• SD : High-frequency content (or Detail) similarity (that is ignored in the 

computation of SM )

• SIST caters to storage performance
• SIST captures access locality behavior, activity level, high-frequency behavior



Trace Pre-processing to compute SIST

• Original trace: Each access is a 4-tuple consisting of
• Offset 
• Request size
• Request type (read or write)
• Timestamp

• Represent all requests in a time slot as a data-grid where
• Rows: chunk number
• Columns: time slot 
• Contents of a cell: #accesses with the specified chunk in the specific time slot

• May have multiple chunk accesses in the same time slot, which will 
be represented in different rows of the same column



Example of a Data Grid

• Selection of time-slot duration
• Depends on the intensity of the trace 

• Most storage operations occur in phases, with each phase accessing a rather small range of LBAs actively
• Need to choose time-slot duration  large enough to contain a significant number of accesses to these active ranges 

(e.g., 10's to 100’s)
• The similarity is not meaningful  (too few accesses) 
• The similarity is not granular enough (too many accesses)
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SIST Implementation

• Use DWT on data-grids
• Allows separation of level of detail (through scale factor) 
• Low-dimensional features used to compute 𝑆𝑆𝑀𝑀 and 𝑆𝑆𝐴𝐴 measures
• Top k detail coefficients of DWT  used to finer details SH

• For main similarity, we do not use DWT coefficients directly
• Use the approximation coefficients of level k to get a low dimensional representation of the 

grids
• Distance metric (DM) for comparing traces

• Use constrained dynamic time warping (DTW) to align each pair of the corresponding row vectors of the 
two grids

• Obtained as sum of Euclidian distance between rows over columns (chunks)

• Compute 𝑆𝑆𝐴𝐴 ∶ the normalized difference between the root sum squares of the 
low dimensional representation of the grids

• Compute 𝑆𝑆𝐻𝐻 : the normalized difference between the root mean square deviation 
of the fine detail representation of the grids



DWT at different scale factors



Evaluation – Object Storage Dataset

• HPC Trace
• Publicly available server-side I/O request arrival traces
• Use OrangeFS parallel file system
• Generated on the Rennes site of Grid’5000 Workloads using MPI-IO Test 

benchmarking tool

• Workload
• Several traces w/ different config. parms (File layout, Spatiality, Request size, 

#processes, etc.)
• Trace A and trace B have different spatiality parameter (contiguous and non-

contiguous), and different number of processes (64+64 and 64+32)
• Trace C has a different request size than A and B



Evaluation – Block Storage Dataset

• MSR Trace
• One-week public block I/O traces of enterprise servers at MSR, Cambridge

• Workloads
• User home directories (usr : A), Project directories (proj : B), HW monitoring 

(hm: C)
• Trace request details

• Timestamp: the time the request is made, in Windows file time 
• Hostname: the hostname (ignored)
• Disk number: the same disk number (ignored)
• Type: "Read" or "Write"
• Offset: the byte offset from the start of a disk to the requested LBA
• Size: the number of bytes requested
• Response time: the time needed for the request to complete (ignored)



Evaluation – Stack Distance

• Evaluate SIST with Stack Distance 
• Stack distance is an important measure of locality and hence 

performance
• Use grids where a point in position (chunk#, time) denotes the 

average stack distance for chunk# within the specific time-slot
• Similar behavior for stack distance confirms that SIST should also 

track the storage performance quite well
• Shows the similarity comparisons for the four perturbations of the 

results with HPC stack distance grids



Evaluation - Experimental setup

• Evaluate SIST with 4 types of perturbations
• In all cases, uses a probability parm 𝑝𝑝 in the range 0. . 1

• Mixing: 
• Random mixture of traces (say, A, B). Mixed trace M = (1 − p%) ∗ A + p% ∗ B

• Shifting: 
• Shift the original trace in the left or right direction by p% (Any vacated places are filled with 

zeros)
• Salt and pepper noise addition: 

• Replace (p/2)% of the accesses (in randomly chosen positions) have the minimum access 
count and the remaining (p/2)% of accesses to have the maximum access count

• Traffic Thinning: 
• Remove randomly chosen p% of the accesses (i.e., make them zero) without changing the 

trace length



Evaluation - Experimental setup

• Evaluate SIST against the following four measures
• Structural Similarity Index (SSIM):  

• Treat the trace grids as the input images to compute the similarity
• Longest Common SubSequence (LCSS) similarity: 

• Computed as the length of the longest common subsequence divided by the 
time series length

• Euclidean Distance (Euclid): 
• Computed as the normalized Euclidean distance between the two time-series

• Dynamic Time Warping based similarity: 
• Calculated as the normalized mean DTW distance for row vectors of trace grids



Evaluation – Mixing (HPC traces)

Mix(A,C) vs. A Mix(A,C) vs. C

Mix(B,C) vs. A Mix(B,C) vs. C



Evaluation – Shifting (HPC traces)

Shift(A, right) Shift(A, left)

Shift(B, right) Shift(B, left)



Evaluation – Salt-n-pepper & Thinout (HPC traces)

Salt_pepper(A) Salt_pepper(B)

Thinout A Thinout B



Evaluation – MSR traces

Mix(A,C) vs. A Shift(A,right)

Salt_pepper(A)
Thinout A



Evaluation – Stack-distance (HPC traces)

Mix(A,C) vs. A Shift(A,right)

Salt_pepper(A) Thinout A



Evaluation – Activeness & Finer detail differences

HPC A
Activeness
differences

MSR A
Activeness
differences

HPC A
Finer detail
differences

MSR A
Finer detail
differences



Conclusion and Future Work

• Defined a similarity index called SIST for comparing storage traces and 
compared it against other commonly used measures for traces from 
both object and block storage

• We showed that SIST has a much better behavior compared to the 
commonly used image and time series similarity measures for storage 
trace

• Future work
• Validate SIST and correlate it with actual storage system performance for 

various use cases
• Devise efficient algorithms for clustering traces based on the similarity metric 

and potentially other criteria relevant to storage system performance
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