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Abstract—Mobile Crowdsensing (MCS) is a new paradigm that
recruits users to cooperatively perform a sensing task. When
recruiting users, existing works mainly focus on selecting a group
of users with the best objective ability, e.g., the user’s probability
or frequency of covering the task locations. However, we argue
that, for the cooperative MCS task, the completion effect depends
not only on the user’s objective ability, but also on their subjective
collaboration likelihood with each other. In other words, in
each single round, we prefer to recruit users with not only a
strong objective ability but also good collaboration likelihood.
Moreover, even though we could find a well-behaved group of
users in a single round, in the multi-round scenario without
enough prior knowledge, we still face the problem of recruiting
previously well-behaved user groups (exploitation) or recruiting
unknown user groups (exploration). To address these problems,
in this paper, we first convert the single-round user recruitment
problem into the min-cut problem and propose a graph theory
based algorithm to find the optimal group of users. Furthermore,
in the multi-round scenario, to balance the trade-off between
exploration and exploitation, we propose the multi-round User
Recruitment strategy based on the combinatorial Multi-armed
Bandit model (URMB) and prove that it can achieve a tight
regret bound. Finally, extensive experiments on three real-world
datasets validate that the users recruited by URMB result in a
better task completion effect than the state-of-the-art strategy.

Index Terms—Mobile crowdsensing, user recruitment, collab-
oration likelihood, combinatorial multi-armed bandit, min-cut

I. INTRODUCTION

ITH the proliferation of smart devices equipped with
powerful sensors, Mobile CrowdSensing (MCS) has
attracted much attention [1], which recruits distributed mobile
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Fig. 1: An example to illustrate the multi-round user recruit-
ment problem taking both objective ability and subjective
collaboration likelihood into consideration.

users to cooperatively perform various sensing tasks [2], [3]
such as air quality monitoring [4], traffic mapping construction
[5] and target tracking [6]. Thus, how to select users raises the
fundamental user recruitment problem in MCS.

The existing user recruitment strategies mainly focus on
selecting a group of users with the best objective ability,
e.g., the user’s probability or frequency of covering the task
locations [2], [7]. However, in this paper, we argue that, for
the cooperative MCS tasks, the completion effect depends
not only on the objective ability, but also on their subjective
collaboration likelihood with each other. For example, the
target tracking task requires a group of users to detect and
upload the target’s location information as well as the detecting
time. However, the uploading process also leaks the detector’s
spatiotemporal information. If a user is not familiar with the
others in this group, it may be unwilling to cooperate with
them because of privacy leaks [8]. Thus, even if the user
finds the target, it may hesitate about whether to upload the
location, which results in the poor task completion effect.
Hence, when recruiting users for these cooperative tasks, we



should consider not only their objective abilities but also the
subjective collaboration likelihood with each user.

To clearly describe the user recruitment problem in this
paper, an example is shown in Fig. 1, where the whole
recruitment process is divided into K rounds. There are
three users (uj;, ug, and wug) moving around the locations
of the sensing task. At the beginning of each round, some
users are selected to perform the sensing task, and the users’
objective abilities (as shown in the left part of Fig. 1) are
defined as the frequencies that they pass through the locations
of the sensing task. Meanwhile, the subjective collaboration
likelihood is shown in the right part of Fig. 1, which shows
that us and ug are willing to cooperate with each other, while
they do not want to cooperate with u;. In this single-round
scenario, we face the problem of selecting a group of users
who have strong individual objective ability as well as good
collaboration likelihood, i.e., the single-round user recruitment
problem. Furthermore, in the multi-round scenario, because we
are unknown to users’ actual objective ability and subjective
collaboration likelihood, we must estimate them according to
the feedbacks (the completion effect of the sensing task) of
previous rounds. Even though we could estimate the ability
and collaboration likelihood of users, we still face the problem
of continuing recruiting previously well-behaved user groups
or exploring other unknown user groups. This is exactly the
multi-round user recruitment problem to be addressed.

Taking the subjective collaboration likelihood into consider-
ation, we cannot individually measure users’ abilities anymore.
In other words, a user’s actual ability depends not only on its
objective ability, but also on its cooperators within the same
group. Thus, how to model each user’s actual ability to finish
a sensing task is the first challenge. Moreover, since a user’s
collaboration likelihood is unknown, when a user is added to
a group, the amount of utility change for this group is hard to
measure (maybe non-linearly or non-monotonically). Hence,
the previous greedy-liked recruiting strategies [2], [7] do not
work anymore. So, in the single-round scenario, how to recruit
a group of users with both a strong objective ability and good
collaboration likelihood is the second challenge. Finally, in
the multi-round scenario without enough prior knowledge, a
conservative strategy is to continue recruiting the previously
well-behaved users. By contrast, a progressive strategy is to try
recruiting unknown users. Thus, how to balance the trade-
off between exploration and exploitation in the multi-round
scenario is the third challenge.

In order to overcome the above challenges, we first for-
mulate the user ability in a graph, where the vertex indi-
cates the user’s objective ability and the edge indicates the
collaboration likelihood with each other. Second, we convert
the single-round user recruitment problem into the min-cut
problem [9], and select the best group of users based on the
modified min-cut algorithm for undirected graph. Third, we
propose the multi-round user recruitment strategy based on the
combinatorial multi-armed bandit model (URMB) [10], [11] to
balance exploration and exploitation. Moreover, we prove that
the URMB can achieve a tight regret bound through theoretical

analysis. Our main contributions are summarized as follows:

e As we know, this is the first work considering not
only users’ objective ability, but also their subjective
collaboration likelihood with each other when recruiting
users in MCS.

e In each single round, we convert the user recruitment
problem into the min-cut problem, and propose a graph
theory based algorithm to find the optimal solution. We
also prove the equivalence of the conversion, and the
completeness and optimality of the proposed algorithm.

o For the multi-round user recruitment problem without
enough prior knowledge, we propose the multi-round
user recruitment strategy based on combinatorial multi-
armed bandit model (URMB) to balance exploration and
exploitation. We also prove that the proposed strategy
achieves a tight regret bound.

o We conduct extensive simulations based on three real-
world datasets to verify the performance of the proposed
strategy, and the results show that URMB always outper-
forms other strategies.

II. RELATED WORK
A. User Recruitment in MCS

User recruitment problem in MCS has been studied for
years [2], [3], [12]. When recruiting users, some researches
often consider the user’s objective ability, such as the ability
of covering sensing tasks [2], [7]. Gao et al. [2] consider
the joint probability of multiple vehicles performing the tasks
and propose the winner selection algorithm based on the
non-trivial set cover problem. Yang et al. [7] investigate the
prediction-based user recruitment framework based on the
optimal stopping theory. However, both of them assume that
the user’s ability is known in advance. Wu et al. [13] consider
the situation where the users’ abilities are unknown, and
develop a Thompson Sampling based user selection algorithm.
Gao et al. [14] propose an extended UCB based unknown
user recruitment process. But, [13] and [14] ignore each user’s
subjective collaboration likelihood with others.

B. Combinatorial Multi-armed Bandit Problem

To balance exploration and exploitation, the multi-armed
bandit problem (MAB) has been studied for years, and there
are several well-known algorithms: e-greedy algorithm [15],
upper confidence bound algorithm [16] and so on. Gai et al.
[10] further extend the MAB to the combinatorial multi-armed
bandit problem (CMAB) where multiple variables (arms) can
be selected at each time. They investigate the linearly weighted
combination of selected variables and propose the LLR al-
gorithm with the bounded regret. For solving the CMAB
problem, Chen et al. [11] propose a general algorithm CUCB
with a large of nonlinear reward instances. Hiiyiik et al. [17]
investigate the combinatorial Thompson Sampling strategy and
achieve a better regret than [11]. However, these algorithms for
CMAB could not be directly used to solve the user recruitment
problem in MCS since when they calculate the reward of a
group of arms, they ignore the arm’s influence on each other.
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Fig. 2: The illustration for exploration and exploitation.
III. SYSTEM MODEL AND PROBLEM FORMULATION
A. System Model

We consider a general MCS system, where a cooperative
sensing task 7 is published by the platform in some sensing
areas at the beginning and will remain there until the end
of system time. Users are denoted as U = {uy, -, upn},
each of them is constantly moving around sensing areas.
We adopt the frequency of u; passing through the sensing
areas in round ¢ to denote its objective ability p!, and all
objective abilities of users in U are represented as the vector
pt. Note that the objective ability of each user follows a fixed
distribution during a long-term time, which will be verified
in our experiments. Moreover, we adopt the likelihood matrix
a=(w1,02, - , 04, -+ ,apm) to denote the collaboration
likelihood between any two users in U, and «;; € [0, 1] denotes
the collaboration likelihood between u; and w;. For example,
if u; and u; are familiar, the collaboration likelihood between
them is high, which leads to a good task completion effect
since the familiar users have a strong willingness to cooperate.
If they are unfamiliar, the collaboration likelihood between
them is low, then the completion effect is bad. Obviously,
«jj = oj; due to the symmetry of the collaboration likelihood,
and «ay; will not be used.

The MCS campaign is divided into K rounds represented
as T = {t1, - ,tx}. In a single round ¢, the platform selects
a group of users S! to perform the cooperative task. For a
cooperative task, the completion effect depends not only on
the user’s objective ability, but also on their collaboration
likelihood with each other. To measure the task completion
effect of S?, we consider the quality of data (QoD) [18] of
task 7, i.e., the number of times the task is performed, which
is represented as follows:

QS =Y ai-pl, M)

u; €St

where aj =37, cqi ;2 0;/(]S'| — 1) denotes the average
collaboration likelihood among u; and other users in S*. p!
and aﬁj are the objective ability of w; and the collaboration
likelihood between u; and u;. Then, the platform selects users
per round until the end of K rounds. For the multi-round
scenario, the total QoD of K rounds is Y, . Q*(S").

B. Problem Formulation

In the single round ¢, the single-round user recruitment
problem is formulated as follows:
Q'(S") @)
S| = N. 3)

Maximize
Subject to

Fig. 3: An example for single-round recruitment problem.

The constraint (3) indicates that the platform selects N users in
a round because of some resource constraints, e.g., the budget
constraint [2]. Selecting a fixed number of users in each round
is a special case of our problem, we further use simulations in
Section VI to prove that selecting a variable number of users
by our algorithm could still achieve satisfactory performance.

Furthermore, in the multi-round scenario without enough
user prior knowledge, how to maximize the total QoD after
all rounds is the multi-round user recruitment problem, which
is formulated as follows:

Maximize Z Q(SH 4
teT
Subjectto |S*| =N, VteT. 5)

To maximize the total QoD after K rounds, a conservative
strategy is to continue recruiting the previously well-behaved
users, while a progressive strategy is to try recruiting unknown
users. An example of the trade-off between exploration and
exploitation is shown in Fig. 2, where the blue users indicate
the known users with accurate objective ability and the black
users are the unknown users with inaccurate objective ability.
The dashed lines indicate the collaboration likelihood between
any two users. When selecting users, we should decide to
explore more unknown users or exploit more known users.

IV. USER RECRUITMENT WITH OBJECTIVE ABILITY AND
COLLABORATION LIKELIHOOD

We focus on the user recruitment problem in single-round
and then multi-round scenarios.
A. Single-Round Strategy

We first consider the single-round scenario, where we select
a group of users S based on their objective abilities and
collaboration likelihoods for the current round ¢. As shown
in Eq. 2, the single-round user recruitment problem is non-
linear and non-monotonic, since the &;,Vu; € S will change
when a new user is added into the group S. An example is
shown in Fig. 3, assume that the objective ability of each
user p; = pP2 = pP3 = 2 and 19 = 0.8, 13 = 0.4,
a3 = 0.2. Then, we can obtain the QoD @, = 3.2
according to Eq. 2. However, after adding us to S, we have
the @, = 3 < 3.2. Therefore, it is difficult to find the best
group of users to maximize the utility function, and existing
greedy-liked user recruitment strategies [2], [7] cannot work
effectively anymore. Moreover, if we search for the optimal
solution globally, we need to search (%) times in the worst
case, which leads to a very high time complexity O(M™).
Obviously, searching globally for the best group is not a good
choice. Thus, to find the best group of users efficiently, we
convert the single-round user recruitment problem into the
min-cut problem in graph theory through the following steps:



Fig. 4: An example for
constructed graph G.

Fig. 5: An example for the con-
version from G to G.

First step: Without loss of generality, we construct an edge
weighted undirected graph G = (V, E), where each vertex
represents a user, denoted as V =U ={uy, - ,u;, -+, ups}-
Moreover, for the edge between two vertices u; and u;, the
weight is calculated based on the abilities of them:

wij:W,Vui,uj 6U,i7éj. 6)
Note that GG is a complete graph because we should consider
the collaboration likelihood between any two users. An exam-
ple of a constructed graph G is shown in Fig. 4, and we only
demonstrate a part of the edges for brevity.

Then, the single-round user recruitment problem in Eq. 2
turns into the problem of finding the induced subgraph G’ =
(V' E') with the maximum edge weight as follows:

> wy @)
s u  EVY it
Subject to [V'| = N. ®)

Second step: As shown in Fig. 4, assume that the subgraph
covered by the red cycle is the optimal subgraph G’ = (V' E’)
with the maximum edge weight, then the total weight of the
solid edges is equal to Q(S),S = V’ in Eq. 2 according to
Eq. 6. In other words, as soon as we find these solid edges, the
single-round user recruitment problem is solved. However, it
is difficult to find these edges directly, so we tend to find the
edges which are connected to the vertices in V' and are not
included in E’, i.e., the dashed edges in Fig. 4. Furthermore,
we find that the dashed edges are cut by the red cycle, which
is the cut ¢(V', V/V") that divides V' into two disjoint parts V'
and V/V'. We call these edges cut by ¢(V’, V/V") cut-set, and
the weights are w(c(V',V/V")) =3, v ZujeV/V' Wij.
Definition 1 (us-u; Cut). A ug-uy cut is a partition of vertex
set V into two vertex sets, S and 7', and us € S, u; € T

Maximize

Definition 2 (Minimum Cut). The minimum cut is the cut
with minimum w(c(S,T)).

Let w; = Zugev, ;i Wij represent the weight of all edges
between u; and all vertices in V. We have

1 / /
> wi=g (X wimwe(VLVAVY) O
uqr,ujGV/,z;é] u; €V’
Then, we turn the maximization problem in Eq. 7 into the
minimization problem in Eq. 11 as follows:

. . 1 7 !
Maximize 3 ( Z w; —w(c(V,VA\VY))) (10)
u; EV/
<Minimize  w(c(V',V\V'))— Z w; (11D
u; €V’
Subject to |[V'| = N. (12)

Algorithm 1: Minimum Cut
Input: Graph G = (V, E)
Output: cut ¢(S',V \ 5’)
1 wqy < +00 ;
2 for each u; € {u € V]u # usu # u, } do
3 S+ {ul},
4 | while |S| <N +1do
5 Search the vertex a such that
w(S, a) = max{w(S,b)|b € V\ S,b# u};
6 S+ Su{a};
7 if w(c(S,V\5S)) <wp then
wo  w(c(S,V\9));
S« S;

10 return cut ¢(S", V' \ 9’)

For the ZuiEV’ w; in Eq. 11, we regard —w; as the cost of
adding vertex u; into the subgraph G’. Afterwards, we build
a sink vertex u; and connect all vertices to it, and assign —w;
to the edge between u; and u; as w;; = —w;. Due to the
non-negative property of edge weight, we add a large enough
variable W = Zu,;EV w; to the weight w;; =W — w;. In this
way, based on the graph theory [9], [19], we can convert the
graph G = (V,E) to a new undirected graph G = (V, E)
through three steps: (1) add source vertex u, and sink vertex
uy to the vertex set V'; (2) connect all vertices in V' to source
us (undirected edge) and assign the weight W; (3) connect
all vertices in V' to sink u; (undirected edge) and assign the
weight W — w;. This process can be formulated as follows:
V =V U {us,w}, 13)
E ={(, )|, j) € E}U{(us, ui)|u; € VIU{(ui, ut)|u; €V}, (14)
ws; =W, u; €V, s)
u; € V. (16)
An example of the conversion process is shown in Fig. 5.
Through the conversion, the problem of finding the maximum
weight subgraph in G turns to be the problem of finding
the minimum w,-u; cut in G. The equivalence of these two
problems will be proved in Section V.

Wit =W — Wi,

Next, we propose a specific minimum cut algorithm as
shown in Algorithm 1 based on the undirected graph min-cut
algorithm [20]. In Algorithm 1, we first initialize the temporary
variable wg as a positive infinity number (line 1). Then, for
each vertex u; in V' \ {us, us}, we set u; as the initial vertex
for set S (line 3). Next, the algorithm enters the loop phase
until |S| = N + 1, where N is the number of the selected
vertices as shown in constraint (12). In the loop phase (lines
4~6), we select the vertex which is connected to the vertex
set S most tightly from the vertex set V'\ .S (line 5) and add it
to S (line 6), where w(S,u;) = >, -gwij; is defined as the
weights of all edges between the vertex set .S and vertex u;.
Moreover, we find the minimum cut ¢(S’, V'\ S’) (lines 7~9),
which will be proved to be the minimum ug-u; cut. Therefore,
as long as we input the converted graph G to Algorithm 1, we
can get the minimum ws-u; cut of G. Note that the solution
to the problem in Eq. 7 is the vertex set V' = S’ \ {us}, and



Algorithm 2: Update Among Rounds

Algorithm 3: Multi-Round User Recruitment

Input: All the observed data (pt,Q%),t € [0, m]
Output: Updated likelihood matrix o™ 1
k
Vot e S g/
2 while nd‘]a(aoiﬂ ) < E,Va}? in o™ do

3 L for each o™ in a™ do

ij )
m aJ(a™),

4 A ol —
L ij ij — 1 da >

1 )
5 amtl — o™,
6 return p™mt! omt1

the solution to single-round user recruitment problem in Eq.
2 is exactly the users in V.

In conclusion, we solve the single-round user recruitment
problem in Eq. 2 through the following steps: (1) construct
a graph G = (V, E) based on users’ objective abilities and
their collaboration likelihoods, and convert the single-round
user recruitment problem to the maximum weight subgraph
problem 8; (2) construct a new graph G through the process in
Eqgs. 13-16, and convert the subgraph problem to the minimum
ug-u; cut problem in the undirected graph; (3) propose an
algorithm based on graph theory to solve the min-cut problem.

B. Update Strategy

After solving the single-round user recruitment problem,
we focus on the multi-round user recruitment problem. Note
that the single-round scenario uses the deterministic user
information to select users. However, in the multi-round sce-
nario without enough prior knowledge, we don’t know users’
objective abilities and collaboration likelihoods and have to
learn them during the multiple rounds. Thus, before describing
the multi-round user recruitment problem, we introduce the
update strategy. In fact, at the end of each round, the objective
ability (the frequency of each selected user passing through
the task) and the actual QoD (the number of times the task
is performed) are observable, i.e., feedbacks. Thus, we can
update users’ abilities based on the feedbacks of previous
rounds.

Update on objective ability: Assume that user u; has been
selected k(t) times before round ¢, and the actual objective
ability observed at the r-th is p;,.. Then, the user’s objective
ability in round ¢ + 1 is updated as follows:

k(t)
1 Zr:1 Pi,r
pi = T ED )

Update on collaboration likelihood: We update the esti-
mated likelihood matrix based on the batch gradient descent
(BGD) [21]. Assume that the current round is the m-th round.
First, we define the hypothetical function 7 of any round ¢ and
the loss function J at the end of round m according to Eq. 1:

a7

hat,p') =Q'(s") = Y ai-pl, (18)
m ui €5
m _L mo oty At\2
J(a™) =5 ;(h(a 1P5) = Q0)’, (19)

where ! and p? denote the estimated objective ability vector
and likelihood matrix in round ¢ respectively. Note that the loss

Input: User set U, user objective ability vector p,
likelihood matrix o

Output: Total QoD @ after K rounds

Q+0,t+ 0, pt — p, a® +— «;

r; < 1 for each u; € U;

while ¢t < K do

t+—t+1;

for each p! in p* do

6 L ﬁ§<_p§+ 3lnt.

2r;
7 Convert the user set U to graph G through Eq. 6
with pt, at;
8 Convert graph G to graph G through Eqs. 13-16;
9 S’ + Minimum Cut (G);
10 Select the users in S\ {us};
11 for each u; € S\ {us} do
12 | rierm+ L

N B W N =

13 Users perform the task and we observe the actual
values of pf and Q! at the end of round ¢;

14 ptt1, attl « Update Among Rounds ();

5 | Q+—Q+Q:

16 return @

function J(a™) denotes the total loss of all previous rounds at
the end of round m, and i(a™, pt) denotes the expected value
of QoD based on the actual observed objective ability vector
pf) at the end of round ¢ and the estimated likelihood matrix
o™ of current round m. Moreover, Qf, denotes the observed
value of the QoD at round ¢. Then we propose the update
strategy as shown in Algorithm 2. First, we need to input the
observed data of all rounds before round m (including), i.e.,
pt and Q!,t € [0,m]. Line 1 represents the update on the
objective ability vector according to Eq. 17. Then we enter the

loop and update the value of each item «; in the likelihood
S
function J, and 7 denotes the step size (learning rate). The
loop stops when the descent distances of all items are less
than the accuracy € (line 2). Finally, we can get the updated
likelihood matrix o™ 11, which will be used for the user

recruitment process in the next round.

matrix ™ (lines 3-4), where

is the gradient of loss

C. Multi-Round Strategy

Now, we combine the above single-round algorithm and
update strategy and propose the multi-round user recruitment
strategy based on the combinatorial multi-armed bandit model
(URMB). In the multi-round scenario, the platform doesn’t
know each user’s accurate objective ability and collaboration
likelihood. In order to maximize the total QoD after K rounds,
the platform should try to learn each user’s ability according
to the feedbacks of the previous rounds as accurately as pos-
sible (exploration), and recruit those users who are currently
estimated to have a strong ability (exploitation). Neither pure
exploration nor pure exploitation will bring the best results.



Therefore, how to balance exploration and exploitation is the
key of the multi-round user recruitment problem.

We propose Algorithm 3 based on CUCB [11] to solve
the problem. First, we input the user set U and a little
prior knowledge about each user’s ability p and « for the
first recruitment, which actually determines the regret bound
of the algorithm. After the initialization process (lines 1-
2), the algorithm enters the loop when ¢t < K (line 3).
In each round t, we face the single-round user recruitment
problem. Note that the objective ability vector p? used in the
single-round user recruitment strategy (lines 7-9) includes an
adjustment term /31nt/2r; (line 6) to balance exploration
and exploitation, where ¢ indicates the number of rounds and
r; denotes the number of times u; is selected in the previous
rounds. Moreover, we regard the prior knowledge about users’
objective abilities as if each user is selected once, and thus we
initialize r; = 1 for each user (line 2). Furthermore, we select
users in S\ {us} to perform task 7 and update r; (lines 11-
12). Then, at the end of each round, both the actual objective
ability of each user (the frequency of passing through the task)
and the number of the task is performed are observable. Next,
we update the selected users’ abilities based on the update
strategy and get the latest user ability for the next round (line
14). Note that the update strategy needs all observed data up
to the current round ¢. Finally, we add the observed QoD Qf)
of the current round to the total QoD Q.

V. THEORETICAL ANALYSIS

For the conversion process from graph G to G in Egs. 13-
16, we convert the problem of finding the maximum weight
induced subgraph G’ of graph G to the problem of finding the
minimum ug-uy cut ¢(S, V' \ 5).

Lemma 1. Any u,-u; cut ¢(S,T) of the converted graph G
one-to-one corresponds to a subgraph G’ of graph G.

Proof. Assume that ¢(S,T) is a ug-u; cut of G, us € 8,
uy € T. Since the cut is a partition of G into S and T, we
can always find only one subgraph G’ = (V' E’) of G such
that V' = S\ {us}. O

Theorem 1. The cut-set of cut ¢(S',V \ S’) found by
Algorithm 1 is the solution to the problem in Eq. 7.

Proof. The problem in Eq. 7 is to find a subgraph G’ =
(V', E') to maximize ), , ey ;.; Wi;. Assume that the cut

¢(S,T) in G is found by Algorithm 1, according to Lemma
1, we have V/'=5\ {us} and V\ V' =T\ {u;}. Thus, we get

w(e(S,T) =Y wy
u; €S,uj; €T
= E wit+ E Ws;+ E Wij
u; €V’ u; EV\V/ u; €V/ uj €V\V/

=VI-W+ D (—wi+ Y wy)

u; €V’ uj EVAV/

>

wg,uj €V i#]

=M -W — (20)

Wij-

Fig. 6: Illustration for optimality analysis.

The last equation holds because w; represents the weights of
all edges between u; and all other vertices in V, and w;;
denotes the weights of all edges between u; and all other
vertices in V' \ V', and G’ is the induced subgraph. Thus,
—Wi + Yy ev\vr Wij = = Dy ey Wij. Moreover, M - W is
a constant term in Eq. 20. Thus, when finding the minimum
ugs-u; cut, we get the vertex set V' = S\ {us} as well as
the maximum Zui,ujevuz‘ 25 Wij» which is the solution to the
problem in Eq. 7. O

Theorem 2. Algorithm [ can find at least a u -u; cut c(S,T')
of the converted graph G = (V, E) and |S \ {us}| = N.

Proof. In the conversion process from G to G, we assign the
W = ZuL cy Wi to the edge between us and any vertex in
V. Thus, w;s = W >w;;, Yu; € 17\uS Then, in Algorithm 1
(lines 5), the first searched vertex must be ug, so us will be
added into S. Meanwhile, the limitation in the search process
b # uy ensures that u; ¢ S. Thus, the cut is a us-u; cut. [

Theorem 3. The solution founded by Algorithm 1 is the
optimal solution to the problem in Eq. 7.

Proof. According to Theorems 1 and 2, we know Algorithm 1
can find a solution to the problem in Eq. 7, then we will prove
the optimality of the solution V' = S'\ {u,}. Moreover, since
the weights of edges between u, and any vertex u; except u;
are equal, we ignore vertex u, in the following process.
When |V'| =2, suppose that the two vertices in the optimal
set V' are u, and u;. Furthermore, assume that when the initial
vertex is u, (line 3 in Algorithm 1), the next added vertex is
Uu.. We have wq,. > wqp according to line 5, which contradicts
the hypothesis that u, and u; are the optimal set. Thus, the
next added vertex is u;, and Algorithm 1 finds the optimal set.
When |V’| = 3, assume that the optimal set is V' =
{u1,us,us}, and the corresponding edge weights are a, b
and c as shown in Fig. 6. Assume that « > b > c. For the
worst case, if Algorithm 1 does not find V” in the process
when u, and wg are initial vertices (line 3), then we will
prove that V'’ will be found when w; is the initial vertex.
Assume that in the first iteration in lines 4~6, the initial
vertex is ug and the next added vertex is an arbitrary vertex
us, then we have f > a, let f = a + 1. Since the optimal
set V' are uy, us and ug, then the weight of {u;,us,us} is
f+b+d<a+b+cand we get d < ¢ — 1. For the same
reason, the weight of {uz,us,us} isa+f+h<a+bd+ec,
then h < b+ ¢ — a — 1. Similarly, in the second iteration,
if the initial vertex is u3 and the next added vertex is an
arbitrary vertex uy, let ¢ = a + €9, we get e < b — 9 and
1 < b+ c—a—e2. Subsequently, when the initial vertex is w1,
the first vertex added to S must be uy because w(S, ug) = b >
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Fig. 7: The distribution of check-ins of three datasets.

w(S,uz) = ¢ > w(S,us) = d and b > w(S,us) = e. Now
S = {u1,uz} and the next added vertex must be ug because
that w(S, ug) —w(S,us) = a+c—(e+1i) >2(a—b+e2) >0
and w(S,uz) — w(S,us) = a+c— (f +d) > 0. Therefore,
Algorithm 1 will find the optimal user set V.

Similarly, when |V’| > 3, in Algorithm 1, once the initial
vertex is determined S < {u;}, the second added vertex, e.g.,
u; is determined due to line 5. Specifically, we can combine
u; and u; into a single vertex uy such that wi, = wi; +
Wjgz, Vugz € V in the following adding vertex process, i.e.,
S = {u;,u;} — S* = {ug}. It does not affect the subsequent
algorithm process because w(.S, u,) = EuyES Wy = Wig +
Wiy = Wgy = w(S™, u,). Consequently, the case of |V'| > 3
can be converted into the case of |V'| = 3, whose optimality
has been proven. In conclusion, the optimality is proved. [l

Lemma 2. For an arbitrary user set S, the expected value
of QoD is monotonically non-decreasing with the objective
ability vector p, i.e., i(c, p) < h(ex, p’) if p; < pl, Yu; € S.

Proof. The monotonicity is obvious according to Eq. 18. [

Lemma 3. For an arbitrary user set S, hi(a, p) in Eq. 18
achieves bounded smoothness such that for any two objective
ability vectors p and p’, if max,,cs|p; — p;| < ¥, where
¥ is a constant, we have |A(a, p) — he, p’)| < h(a,9),
where 9 indicates a new objective ability vector such that
pPi = 19,Vul €S.

Proof. Since h(at,p) =), cg @i pi, if maxy,es|pi—pi
9, we have [(cv, p) — heop')| = Su,cq - o — pl]
> ues @i - U = h(a, ), proved.

Theorem 4. The multi-round recruitment strategy achieves

CTIAIA

the regret of Algorithm 3 in K rounds at most (% +
? + 1) : Amax : A’r'ati(r
Proof. Suppose that the function f(p) = h(a®, p), where

a® denotes the initial priori knowledge of likelihood matrix

between users. Thus, f(p) achieves monotonicity and bounded

smoothness due to lemmas 2-3. According to [11], we have
K

Reg(K) =K - opt — Z Q'(S") < K - opt — Avatio - Zf(l)t)
t=0 t=0
61n K
< : mazx ° ratio-
_(fil(Amln)2 + 1) A A t (21)

7T
5+

A, pin = opt maxst{Qt( )} Ajpaz = opt—ming: {Q*(S?)}
and A0 = mlnst{ p )} for t € [0, K], where opt
denotes the QoD of the optlmal user set S, with the real
likelihood matrix and S? is the user set selected in round ¢.
When K — +00, Reg(K) approaches a constant. O
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Fig. 9: QoD evaluation in the single-round scenario.
VI. PERFORMANCE EVALUATION

A. Datasets and Settings

In the simulations, we adopt three widely-used real-world
datasets, i.e., Brightkite [22], Gowalla [22] and Foursquare
[23]. Theses three datasets contain the user’s location and
social information, thus they are suitable for simulations.
Brightkite includes 58228 nodes (users), 214078 edges (collab-
oration likelihood) and a total of 4491143 check-ins over the
period of Apr. 2008 - Oct. 2010. Similarly, Gowalla consists
of 196,591 nodes, 950,327 edges and 6,442,890 check-ins.
Foursquare contains 456988 check-ins made by 10162 users.
As shown in Fig. 7, the blue nodes denote the geographic
distribution of three datasets and red cycles represent the areas
with concentrated check-ins.

We introduce the settings of simulations as follows: (1) The
number of rounds K: we divide check-ins of all users into
K rounds by date. (2) User objective ability vector pt: the
frequency of each user passing through the sensing area during
round ¢ represents its objective ability in round ¢, which is
actually the observed value of the user objective ability at
each round. (3) Real likelihood matrix «,.: the real likelihood
matrix is adopted to generate the observation data Q! in Eq.
19 according to Eq. 1. For two users us and wu, if they are
friends in the dataset, then we quantify the likelihood «;; into
a random number between 0.5 and 1. If not, we quantify the
likelihood c;; into a random number between 0 and 0.5. (4)
Initial likelihood matrix ap: initial matrix represents the prior
knowledge, which is generated randomly between 0 and 1. (5)
The number of total users M: for each dataset, we only keep
the users with at least 1000 check-ins. (6) The number of the
selected users NN: it can change from 1 to M.

B. Baselines and Metrics

We mainly compare URMB with following algorithms:

e Optimal: It searches globally to find the optimal solution
with each user’s real ability.

e CUCB [11]: It both considers exploration and exploitation
when selecting users with the initial likelihood matrix a,
and takes Algorithm 1 as its Oracle part.
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Fig. 10: QoD evaluation in the multi-round scenario.

TABLE I: Running time of three datasets

Running time (ms) N (URMB) N (Optimal)
2 3 4 5 2 3 4 5
Brightkite 8 7 8 9 4 7 43 1278
Gowalla 100 10 9 9 4 6 50 685
Foursquare 30 10 9 8 3 5 52 642

Exploitation: It only considers the current ability of each
user when selecting users, i.e., Algorithm 3 without the
adjustment term in line 6.

Exploration: It only selects IV users with the least number
of selections.

Random: Tt selects N users randomly.

We use following metrics to evaluate the compared algo-
rithms: (1) QoD Qs for the single-round scenario. (2) Total
QoD @ for the multi-round scenario. (3) Running time for
algorithms. (4) Freedom degree dy, which represents the
degree of the actual number of selected users N’ deviates
from the specified number of selected users N, ie., N/ €
[N —ds, N +dg¢]. (5) The loss J in Eq. 19.

C. Evaluation Results

Before evaluating the performance of the URMB, we first
verify that users’ objective abilities (frequencies of passing
through the sensing areas) in different rounds follow a normal
distribution as shown in Fig. 8. We adopt the 2094 check-
ins of a user in Brightkite as shown in Fig. 8a (Denver),
where the red rectangle indicates the sensing area, and get the
user’s objective ability vector p for all rounds. The frequency
histogram graph and the PDF of the normal distribution with
the mean and standard deviation of p are shown in Fig. 8b, and
the CDFs are shown in Fig. 8c. Clearly, the objective ability
of a user follows a stable distribution so that URMB can learn
the mean of each user’s objective ability through Eq. 17.

QoD for single-round scenario: Based on three datasets,
we conduct simulations of the single-round scenario (K = 1),
and the results are shown in Fig. 9. For Brightkite in Fig. 9a,
when M changes from 50 to 450 and N changes from 5 to
40, QoD for single scenario () shows an upward trend, which
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Fig. 11: Freedom Degree evaluation in multi-round scenario.

is reasonable because when M increases, the solution space is
larger than before. Moreover, when N rises, Qs grows because
we can select more users than before. Similarly, we change
M from 10 to 50, N from 2 to 10 for Gowalla in Fig. 9b and
for Foursquare in Fig. 9c, and get the similar results.

Running time: The computational complexity is a critical
metric. When M 20, we change N from 2 to 5 and
conduct the simulations of URMB and Optimal strategies for
the single-round scenario. As shown in Table I, for all three
datasets, when N is small, the running time of the Optimal
strategy is similar to that of URMB. But when N grows
slightly, the running time will rise explosively. Consequently,
URMB is efficient to find the optimal solution.

QoD for multi-round scenario: To evaluate the performance
on total QoD () for the multi-round scenario, we conduct
extensive simulations with respect to different variables as
shown in Fig. 10. At first, when N = 10 and K = 200,
we change M from 30 to 49. The results in Figs. 10a-10c
show that () increases monotonically with A/, and URMB
has advantages over other strategies. CUCB is the second-best
strategy since it considers both exploitation and exploration but
ignores the effect of the collaboration likelihood. Meanwhile,
the results of Exploitation and Exploration are not good
because pure exploration or exploitation is unreasonable. Note
that when M increases, () has some sudden rises because that
some users with strong ability are added and selected. Next,
when we change N from 10 to 30 while M = 50, K = 200,
the results are shown in Figs. 10d-10f. We can conclude that
Q@ also rises with NV, and URMB always outperforms other
strategies. The differences of these strategies are not obvious,
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because when N is close to M, the user sets selected by these
strategies are similar. When N = M. Then we improve the
number of rounds K when M = 50, N = 10 in Figs. 10g-10i.
All strategies rise linearly except URMB because more rounds
means more feedbacks. In Figs. 10j-101, ¢ shows an upward
trend with the increase of M and N.

Freedom degree: In the multi-round scenario, URMB re-
cruits the same number of users in each round to perform the
task, and then we can get a bounded regret in Theorem 4. Oth-
erwise, the regret is not guaranteed. To prove the robustness
of URMB, we define the freedom degree d;y and randomly
generate the actual number of selected users N’ per round in
the range [N —ds, N +dy], and conduct simulations as shown
in Fig. 11. Specifically, the left y-axis in Fig. 11a represents
the total QoD after all rounds, and we find that the changes
in total QoD of URMB and Optimal are both slight. The left
y-axis represents the change ratio rcpange = %7621“", where
Qn and Q- represent the total QoD when selecting N and
N’ users per round respectively. And the values of change ratio
are small. The similar results are shown in Figs. 11b-11c. In
summary, in the actual multi-round recruitment process, even
if the number of selected users N changes dynamically in each
round, URMB can still achieve a good performance.

Loss: In the simulations, we record the values of the loss
function J in Eq. 19 as shown in Fig. 12, which is actually
the difference between « and c,.. The x-axis represents the
number of iterations in BGD, and the y-axis represents the
loss. We find that the value of J often rises suddenly and
then gradually decreases. The sudden increase of J indicates
that the new observed feedback is added after a round, which
makes the difference between expected QoD and observed
QoD larger. Then the value of J decreases because the value
of « is approaching that of a,. through the update process,
which indicates that our update strategy is effective.

VII. CONCLUSION

In this paper, we argue that when selecting a group of users
to perform a cooperative task, we should consider not only
a user’s objective ability but also its collaboration likelihood
with others. In the single-round scenario, we convert the
recruitment problem into the min-cut problem and propose an
algorithm based on graph theory to find the optimal solution.
Furthermore, in the multi-round scenario, we propose the
multi-round user recruitment strategy based on the combinato-
rial multi-armed bandit model (URMB) to balance the trade-
off between exploration and exploitation, and prove that it
achieves a tight regret bound. Finally, we conduct extensive

simulations based on three real-world datasets, and the results
show that URMB always outperforms other strategies.
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