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Abstract

In this paper, we consider the large-scale Area Under the

Precision-Recall Curve (AUPRC) maximization problem for

the imbalanced data classification task. Existing optimiza-

tion methods for AUPRC maximization only focus on the

single-machine setting, which are not applicable to the dis-

tributed data. To address this problem, we propose a

novel decentralized stochastic compositional gradient de-

scent method for large-scale AUPRC maximization. Our

theoretical analysis shows that it can achieve a better sam-

ple complexity O(1/✏4) than O(1/✏6) of existing decen-

tralized methods, but has the same communication com-

plexity O(1/✏4). To further reduce the communication

cost, we developed a novel communication-e�cient decen-

tralized stochastic compositional gradient descent method,

whose communication complexity is improved to O(1/✏4�4↵)

(where ↵ 2 (0, 1/4)). To the best of our knowledge, this is

the first work achieving such favorable sample and commu-

nication complexities. Finally, we conduct extensive exper-

iments for imbalanced data classification and the empirical

results confirm the superior performance of our proposed

methods.

1 Introduction

In many real-world machine learning and data mining
applications, the data is highly imbalanced, i.e., the
distribution of samples across di↵erent classes is highly
skewed. For instance, in the click-through rate (CTR)
prediction task of online advertisement, the number of
positive samples is much smaller than the number of
negative samples. Meanwhile, the real-world data is
usually very large and often distributed on di↵erent
devices. Thus, it is necessary to develop distributed
optimization algorithms for this kind of large-scale
imbalanced data classification problem.

The imbalanced data distribution can degenerate
the classifier’s performance significantly. To address this
problem, a feasible way is to learn a classifier by directly
optimizing the metric designed for measuring the per-
formance of a classifier on imbalanced data, such as area
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under the curve (AUC). AUC includes Area Under the
ROC Curve (AUROC) and Area Under the Precision-
Recall Curve (AUPRC). In the past few years, a lot
of e↵orts [19, 6, 14, 16] have been made to improving
the classification performance for the imbalanced data
via maximizing AUC. For instance, [19] formulated the
AUROC maximization task as a minimax optimization
problem and employed the stochastic gradient descent
ascent (SGDA) method to optimize it. In addition,
[14] formulated the AUPRC maximization problem as
a stochastic compositional optimization problem, and
then employed the stochastic compositional gradient de-
scent (SCGD) method to optimize it. More recently,
[16] developed a stochastic compositional gradient de-
scent method with momentum (SCGDM) to improve
the convergence rate. In this paper, we will focus on
the AUPRC maximization problem.

However, all aforementioned methods only consider
the single-machine case, which are not applicable to
the large-scale imbalanced data. In fact, in real-world
applications, the data is typically distributed on dif-
ferent devices, and then maximizing AUPRC in a dis-
tributed manner becomes more and more necessary. Re-
cently, a wide variety of distributed optimization meth-
ods [11, 13, 9, 15, 20] for large-scale machine learning
models have been proposed. Among them, the decen-
tralized training method, where the devices conduct
peer-to-peer communication with their neighboring de-
vices, has attracted increasing attention, since there ex-
ists no communication bottleneck in the central server.
For instance, [11] developed the decentralized stochas-
tic gradient descent (DSGD) method and studied its
convergence rate for nonconvex problems. [10] devel-
oped the communication e�cient DSGD by employing
the periodic communication strategy. However, these
standard DSGD methods cannot be applied to AUPRC
maximization, as it is a stochastic compositional opti-
mization problem.

Recently, [4] developed the first decentralized
stochastic compositional gradient descent (DSCGD)
method for stochastic compositional optimization prob-
lems. However, this method has several limitations.
First, to achieve the ✏-accuracy stationary point, the
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batch size should be as large as O(1/✏2), which is not
feasible for practical applications. Second, DSCGD em-
ployed standard SCGD on each device so that the sam-
ple complexity in [4] is O(1/✏6), which is worse than
O(1/✏4) of the single-machine method in [5]. More im-
portantly, standard SCGD used in [4] cannot be directly
used for AUPRC maximization. Specifically, standard
SCGD employs a common moving average estimator for
all inner-level functions. However, the inner-level func-
tion in the reformulated AUPRC problem is an approx-
imation for the rank of each sample. Thus, one cannot
use a common estimator to estimate all inner-level func-
tions as standard SCGD.

To address aforementioned problems, in this pa-
per, we developed a novel sample-e�cient decentralized
stochastic compositional gradient descent with momen-
tum (SE-DSCGDM) method for AUPRC maximization,
which enjoys a smaller batch size and better sample
complexity. In particular, the batch size is improved to
O(1) and the sample complexity is improved to O(1/✏4),
which are much better than those of DSCGD [4]. To
the best of our knowledge, this is the first work achiev-
ing such a favorable sample complexity under the de-
centralized setting. However, like existing methods [4],
SE-DSCGDM needs to conduct communication at each
iteration, resulting in the O(1/✏4) communication com-
plexity. To reduce the communication cost, we fur-
ther developed a communication-e�cient method CE-
DSCGDM by employing the periodic communication
strategy, which can achieve the O(1/✏(4�4↵)) commu-
nication complexity where ↵ 2 (0, 1/4). The compari-
son between our methods and existing methods can be
found in Table 1. Finally, extensive experimental results
confirmed the superior performance of our proposed two
methods. The contributions of this work is summera-
zied below:

• We developed a sample-e�cient decentralized
stochastic compositional gradient descent method
for AUPRC maximization. It enjoys a better sam-
ple complexity O(1/✏4) than existing decentralized
SCGD methods.

• We proposed a communication-e�cient decen-
tralized stochastic compositional gradient descent
method, which achieves a better communication
complexity O(1/✏4�4↵) where ↵ 2 (0, 1/4) than ex-
isting decentralized SCGD methods and our first
method.

• We conduct extensive experiments on the imbal-
anced classification problem and the extensive ex-
perimental results confirm the e↵ectiveness of our
proposed methods.

2 Related Works

2.1 AUC Maximization Traditional classification
methods, such as logistic regression, aim to minimize
the classification error. They typically do not per-
form well on the imbalanced data. On the contrary,
the method based on AUC maximization directly maxi-
mizes the AUC score, which can benefit the imbalanced
classification problem. As a result, AUC maximization
has attracted increasing attention, and a wide variety
of methods have been proposed in recent years. Typi-
cally, these methods can be categorized into two classes:
AUROC maximization and AUPRC maximization.

AUROC Maximization. As for AUROC maxi-
mization, traditional methods [7, 8] su↵er from large
computational cost due to the pairwise loss function.
Recently, [19] reformulated AUROC maximization as a
convex-concave minimax optimization problem for the
linear classifier. Then, it can be e�ciently optimized
by stochastic gradient descent ascent method. After-
wards, numerous methods have been proposed based on
the minimax reformulation. For instance, [12] applied
this strategy to deep neural networks and reformulated
AUROC maximization as a nonconvex-concave mini-
max problem. [22] developed an margin-based minmax
surrogate loss for robust AUROC maximization. Re-
cently, [6, 25] developed distributed AUROC maximiza-
tion methods for Federated Learning. However, maxi-
mizing AUROC does not maximize AUPRC. Thus, it is
necessary to study how to e�ciently optimize AUPRC.

AUPRC Maximization. Regarding AUPRC
maximization, it is more challenging to optimize com-
pared with AUROC maximization, since it is di�cult
to obtain sample-wise loss function for stochastic opti-
mization. A lot of e↵orts have been made to address
this challenging problem. For instance, [2] developed
an approximated method, which reformulated AUPRC
maximization as a constrained minimax problem and
then it could be solved in a stochastic manner. Re-
cently, [14] proposed to optimize the average precision
(AP) instead of AUPRC, since AP is an unbiased esti-
mation for AUPRC. As a result, maximizing AUPRC
boils down to optimize a stochastic compositional
optimization problem. Based on this reformulation,
[14] developed a stochastic compositional gradient
descent with momentum (SCGDM) method , which
enjoys O(1/✏5) sample complexity. However, this
sample complexity is suboptimal. More recently,
[16] developed a new SCGDM method for AUPRC
maximization, whose sample complexity is improved
to O(1/✏4). However, all these methods only consider
the single-machine case. It is unclear whether these
methods can converge under the distributed setting.
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Methods Sample complexity Communication complexity Batch size

Single-machine
SCGD [17] O(1/✏8) - O(1)
SOAP [14] O(1/✏5) - O(1)
MOAP-V2 [16] O(1/✏4) - O(1)

Decentralized
GP-DSCGD [4] O(1/✏6) O(1/✏4) O(1/✏2)
SE-DSCGDM (this work) O(1/✏4) O(1/✏4) O(1)
CE-DSCGDM (this work) O(1/✏4) O(1/✏(4�4↵)) O(1)

Table 1: The sample and communication complexity of di↵erent stochastic compositional gradient descent
methods under the single-machine and decentralized settings for achieving the ✏-accuracy stationary point, i.e.,
1
T

PT�1
t=0 krF (x̄t)k2  ✏2. Here, ↵ 2 (0, 1/4).

2.2 Stochastic Compositional Optimization

Stochastic Compositional Optimization. The
stochastic compositional optimization has been exten-
sively studied in recent years due to its widespread ap-
plications in machine learning. For instance, [17] de-
veloped the first stochastic compositional gradient de-
scent method, whose sample complexity isO(1/✏8). The
major di↵erence between SGD and SCGD lies in that
SCGD introduces a variance-reduced estimator for the
inner-level function to control the gradient variance. Af-
terwards, a series of variants have been proposed to im-
prove the sample complexity of SCGD based on acceler-
ation techniques [5, 18] and advanced variance reduction
techniques [23, 24, 21, 1]. However, as mentioned ear-
lier, these SCGD methods cannot be directly applied to
the reformulated AUPRC maximization problem.

Decentralized Optimization. The decentralized
optimization method is widely used for training large-
scale machine learning models. The engaging devices
compose a communication graph and they only com-
municate with the connected peer devices. Under this
setting, decentralized stochastic gradient descent [11, 3]
has been extensively studied in recent years. However,
most existing methods cannot be applied to AUPRC
maximization since they focus on the non-compositional
optimization problem. To make decentralized training
feasible for stochastic compositional problems, [4] devel-
oped two decentralized stochastic compositional gradi-
ent descent methods based on the gossip and gradient
tracking communication strategy, respectively. As the
standard single-machine SCGD, these two methods can-
not be utilized for AUPRC maximization. Meanwhile,
[4] didn’t consider the momentum technique so that its
convergence rate is suboptimal. Moreover, DSCGD in
[4] conducts communication at each iteration. When
the model size is large, it can incur considerably large
communication costs, slowing down the overall conver-
gence performance. In summary, these limitations make
DSCGD infeasible for AUPRC maximization. It is nec-

essary to develop sample-e�cient and communication-
e�cient algorithms to maximize AUPRC for imbalanced
classification problem.

3 Preliminaries

3.1 Stochastic Compositional Optimization

for AUPRC Maximization Given n samples
{(ai, bi)}ni=1 where ai 2 Rd and bi 2 {�1, 1},
the positive and negative samples are denoted as
D+ = {(ai, bi)}mi=1 and D� = {(ai, bi)}ni=m+1, respec-
tively. In this paper, it is assumed m � n�m so that
it is an imbalanced classification problem.

Considering that we have the classifier h(x;ai)
parameterized by x, to learn the model parameter x,
we optimize the approximated AUPRC as [14], which is
defined as follows:

(3.1) AP =
1

m

X

ai2D+

Pn
j=1 `(x;aj ,ai) · I(bj = 1)
Pn

j=1 `(x;aj ,ai)
,

where `(x;aj ,ai) 2 R is the approximation of the
indicator function I(h(x;aj) � h(x;ai)). Following [14],
we use the sigmoid function in our experiments, which
is defined as follows:

(3.2) `(x;ai,aj) =
exp(⇢h(x;aj)� h(x;ai))

1 + exp(⇢h(x;aj)� h(x;ai))
,

where ⇢ > 0 is a hyperparameter. In fact, AP in
Eq. (3.1) computes the average precision score. Specif-
ically, the nominator computes the rank of ai in the
positive samples, while the denominator gives the rank
of ai in all samples. It is worth noting that AP is an un-
biased estimator of AUPRC. Thus, maximizing AUPRC
boils down to maximizing AP.

By introducing the following function

(3.3) ! (x;aj ,ai) =


I (bj = 1) ` (x;aj ,ai)

` (x;aj ,ai)

�
,

[14] shows that maximizing AP in Eq. (3.1) can be re-
formulated as a stochastic compositional minimization
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problem as follows:

(3.4) min
x

F (x) , 1

m

X

i2D+

f(gi(x)) ,

where the inner-level function is gi(x) =Pn
j=1 !(x;aj ,ai) 2 R2 and the outer-level func-

tion is f(y) = �
y1

y2
2 R for y = [y1, y2]T 2 R2. As

a result, Eq. (3.4) can be optimized via stochastic
compositional gradient descent.

3.2 Problem Setup In this paper, we consider to
optimize AUPRC in a decentralized manner. Specif-
ically, there are totally K devices in a decentralized
training system. Each device connects with a few
neighboring devices. The composed communication
topology can be denoted by a graph G = {V,W}

where V = {vk}Kk=1 denotes the device set and W =
[wij ] 2 RK⇥K denotes the adjacency matrix. Specif-
ically, wij > 0 if the i-th device and the j-th device
are connected. Otherwise, wij = 0. In addition, the
k-th (k 2 {1, 2, · · · ,K}) device has its own dataset
D

k = {D
k
+,D

k
�} where D

k
+ = {(aki , b

k
i )}

m
i=1 denotes the

positive samples and D
k
� = {(aki , b

k
i )}

n
i=m+1 represents

the negative samples on the k-th device, respectively.
Under the aforementioned setting, all devices col-

laboratively optimize the following loss function:
(3.5)

min
x

F (x) , 1

K

KX

k=1

F k(x) =
1

K

KX

k=1

⇣ 1

m

X

i2Dk
+

f(gki (x))
⌘
,

where gki (x) =
Pn

j=1 !
k(x;akj ,a

k
i ) denotes the function

on the k-th device. Correspondingly, !k and `k are also
the functions on the k-th device. Their definitions are
the same as Eq. (3.3) and Eq. (3.2) but using the local
data D

k = {D
k
+,D

k
�} on the k-th device.

To investigate the convergence rate of our proposed
methods, we introduce the following assumptions, which
are commonly used in existing works [14, 16, 4].

Assumption 1. For any k 2 {1, 2, · · · ,K}, there are
two constant values 0 < C < M such that function `k(·)
is lower and upper bounded as C  `k(·)  M .

Assumption 2. For any k 2 {1, 2, · · · ,K}, func-
tion `k(·) is C`-Lipschitz continuous and r`k(·) is L`-
Lipschitz continuous, where C` > 0 and L` are two con-
stant values.

Assumption 3. For any k 2 {1, 2, · · · ,K}, the gradi-
ent of function !k(·) is bounded as kr!k(·)k  �2 where
� > 0 is a constant value.

Assumption 4. The adjacency matrix W satisfies
WT = W , W1 = 1, and 1

TW = 1
T . Additionally, the

eigenvalues {�i}
n
i=1 of W satisfy |�n|  · · ·  |�2| <

|�1| = 1.

Based on Assumption 4, the spectral gap of the adja-
cency matrix is 1�� where � = |�2|. Additionally, from
Assumptions 1-3, we can obtain the following lemma.

Lemma 3.1. [16] Given Assumptions 1-3, it can be
obtained:

• The outer-level function f(·) is Cf -Lipschitz con-
tinuous and its gradient is Lf -Lipschitz continuous.

• The inner-level function gki (·) is Cg-Lipschitz con-
tinuous and its gradient is Lg-Lipschitz continuous.

• The compositional function F k(·) is CF -Lipschitz
continuous and its gradient is LF -Lipschitz contin-
uous.

• The inner-level function value is upper bounded as
kgki (·)k  G.

Here, Cf , Cg, CF , Lf , Lg, LF , and G are positive
constant values.

Algorithm 1 SE-DSCGDM

Input: x
k
0 = x0, � 2 (0, 1), � 2 (0, 1), ⌘ > 0.

1: for t = 0, · · · , T � 1, each device k do

2: Select a minibatch of samples Bk
t from D

k
+ and a

minibatch of samples Sk
t from D

k to compute:

3: U
k
i,t+1 =

(
(1� �)Uk

i,t + � m
|Bk

t |
g̃ki
�
x
k
t

�
i 2 B

k
t

(1� �)Uk
i,t o.w.

4: v
k
t = 1

|Bk
t |
P

i2Bk
t
rg̃ki (x

k
t )

T
rf(Uk

i,t+1)

5: m
k
t+1 = (1� �)mk

t + �vk
t

6: x̃
k
t+1 = x

k
t � ⌘mk

t+1

7: x
k
t+1 =

P
j2Nvk

wkj x̃
j
t+1

8: end for

4 Decentralized Stochastic Compositional

Gradient Descent with Momentum

4.1 Sample-E�cient Decentralized Stochastic

Compositional Gradient Descent with Momen-

tum In Algorithm 1, we developed the sample-e�cient
decentralized stochastic compositional gradient descent
with momentum (SE-DSCGDM) method. In detail, at
the t-th iteration, each device k selects a minibatch of
samples Bk

t from positive samples Dk
+ and a minibatch

of samples Sk
t from all samplesDk. Then, for i 2 B

k
t , Al-

gorithm 1 uses the samples Sk
t to compute the stochastic
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inner-level function value and its stochastic gradient as
follows:

(4.6)

g̃ki
�
x
k
t

�
=

n

|Sk
t |

X

j2Sk
t

!k(xk
t ;a

k
j ,a

k
i ) ,

rg̃ki
�
x
k
t

�
=

n

|Sk
t |

X

j2Sk
t

r!k(xk
t ;a

k
j ,a

k
i ) ,

where xk
t denotes the model parameter of the k-th

device at the t-th iteration, |Sk
t | denotes the size of the

minibatch S
k
t .

To compute the stochastic compositional gradient,
we should use the moving average estimator to estimate
the inner-level function value for controlling the gradient
variance. The standard SCGD method uses a common
estimator for all samples to estimate the inner-level
function. However, from the definition of gki (x

k
t ), it can

be observed that the inner-level function involves the
rank of the i-th sample. Thus, it is not reasonable to
use a common estimator for all samples. In this paper,
we employ the sample-wise moving average estimator
proposed in [16] to estimate the inner-level function
gki (x

k
t ):

(4.7)

U
k
i,t+1 =

(
(1� �)Uk

i,t + � m
|Bk

t |
g̃ki
�
x
k
t

�
, i 2 B

k
t

(1� �)Uk
i,t , o.w.

,

where � 2 (0, 1) is a hyperparameter, Uk
i,t 2 R2 is the

moving average estimation of the inner-level function
for the i-th positive sample on the k-th device. Then,
the k-th device computes the stochastic compositional
gradient v

k
t as shown in Step 4 and the momentum

m
k
t+1 as shown in Step 5 in Algorithm 1. Afterwards,

the k-th device updates its local model parameter x
k
t

with its local momentum m
k
t+1 and communicates the

updated model parameter x̃
k
t+1 with its neighboring

devices Nk as shown in Steps 6-7, where ⌘ > 0 denotes
the learning rate. All devices repeat this procedure until
it converges.

In what follows, we establish the convergence rate
of Algorithm 1 for nonconvex problems.

Theorem 4.1. Given Assumptions 1-4, by setting
|S

k
t | = |B

k
t | = B, ⌘ 

�

2
p

2L2
F+10C4

g

, � 2 (0, 1),

� 2 (0, 1), Algorithm 1 has the convergence rate:
(4.8)

1

T

T�1X

t=0

krF (x̄t)k
2


2(F (x0)� F (x⇤))

⌘T
+

8⌘2C2
gC

2
fL

2
F

(1� �)2

+
2(C2

gL
2
f + 5C2

gL
2
fG

2)

�T
+ 2�(10C2

gL
2
fG

2m

B
+ 2C2

gC
2
f ) ,

where x̄t =
1
K

PK
k=1 x

k
t and x⇤ is the optimal solution.

Remark 1. For Theorem 4.1, by setting ⌘ = O

⇣
1p
T

⌘
,

� = O

⇣
1p
T

⌘
, and B = O(1), we can get

(4.9)

1

T

T�1X

t=0

krF (x̄t)k
2
 O

✓
1

p
T

◆
+O

✓
1

(1� �)2T

◆
.

From this convergence rate, we have two observations.
First, the spectral gap only a↵ects the high-order term
of the convergence rate, which is consistent with exist-
ing decentralized optimization methods, such as DSGD
[11]. Second, to achieve the ✏-accuracy stationary point,

i.e., 1
T

PT�1
t=0 krF (x̄t)k2  ✏2, the communication com-

plexity (i.e., the number of iterations) is O(1/✏4) and
the sample complexity is T ⇥ B = O(1/✏4). Obviously,
SE-DSCGDM has the same communication complexity
as [4] but enjoys a better sample complexity than [4].
The reason for this improvement is that our batch size
is O(1), while the batch size in [4] is O(1/✏2).

Algorithm 2 CE-DSCGDM

Input: x
k
0 = x0, � 2 (0, 1), � 2 (0, 1), ⌘ > 0, p > 1.

1: for t = 0, · · · , T � 1, each device k do

2: Select a minibatch of samples Bk
t from D

k
+ and a

minibatch of samples Sk
t from D

k to compute:

3: U
k
i,t+1 =

(
(1� �)Uk

i,t + � m
|Bk

t |
g̃ki
�
x
k
t

�
, i 2 B

k
t

(1� �)Uk
i,t, o.w.

4: v
k
t = 1

|Bk
t |
P

i2Bk
t
rg̃ki (x

k
t )

T
rf(Uk

i,t+1)

5: m
k
t+1 = (1� �)mk

t + �vk
t

6: x̃
k
t+1 = x

k
t � ⌘mk

t+1

7: x
k
t+1 =

(P
j2Nk

wkj x̃
j
t+1, mod(t+1,p) = 0

x̃
k
t+1, o.w.

8: end for

4.2 Communication-E�cient Decentralized

Stochastic Compositional Gradient Descent

with Momentum From Algorithm 1, it can be
observed that devices conduct communication at every
iteration. This operation can incur large commu-
nication cost. To reduce the communication cost,
we developed a communication-e�cient decentralized
stochastic compositional gradient descent with momen-
tum (CE-DSCGDM) method in Algorithm 2. In detail,
same as Algorithm 1, we compute the momentum m

k
t+1

and then use it to update the local model parameter.
Di↵erent from Algorithm 1, each device communicates
with its neighbors at every p (p > 1) iterations:

(4.10) x
k
t+1 =

(P
j2Nk

wkj x̃
j
t+1, mod(t+1,p) = 0

x̃
k
t+1, o.w.

.
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In this way, the number of communication rounds is
reduced to T/p, which is smaller than T in Algorithm 1.
Thus, Algorithm 2 is more communication-e�cient than
Algorithm 1. It is worth noting that Algorithm 2 is
identical to Algorithm 1 if p = 1.

In Theorem 4.2, we establish the convergence rate
of Algorithm 2 for nonconvex problems.

Theorem 4.2. Given Assumptions 1-4, by setting
|S

k
t | = |B

k
t | = B, ⌘ 

�

2
p

2L2
F+10C4

g

, � 2 (0, 1),

� 2 (0, 1), Algorithm 2 has the convergence rate:
(4.11)

1

T

T�1X

t=0

krF (x̄t)k
2


2(F (x0)� F (x⇤))

⌘T

+
2(C2

gL
2
f + 5C2

gL
2
fG

2)

�T
+ 2�(10C2

gL
2
fG

2m

B
+ 2C2

gC
2
f )

+ 16p2⌘2C2
gC

2
fL

2
F

⇣
1 +

1

(1� �)2

⌘
,

where x̄t =
1
K

PK
k=1 x

k
t and x⇤ is the optimal solution.

Compared with Theorem 4.1, it can be observed that

there is an additional term 16p2⌘2C2
gC

2
fL

2
F

⇣
1+ 1

(1��)2

⌘

in Theorem 4.2, which is caused by the periodic com-
munication. In what follows, we demonstrate how the
communication period p a↵ects the convergence rate.

Remark 2. For Theorem 4.2, by setting ⌘ = O

⇣
1p
T

⌘
,

� = O

⇣
1p
T

⌘
, B = O(1), and p = O(T↵) where

↵ 2 (0, 1/2), we can get
(4.12)

1

T

T�1X

t=0

krF (x̄t)k
2
 O

✓
1

p
T

◆
+O

✓
1

(1� �)2T 1�2↵

◆
.

Here, we have two observations. First, when ↵ 2

(0, 1/4), the first term on the right hand side is domi-
nant. Then, Algorithm 2 has the same convergence rate
with Algorithm 1, which means that the periodic com-
munication strategy does not worsen the convergence
rate. When ↵ 2 (1/4, 1/2), the second term on the right
hand side is dominant, resulting in a slower convergence
rate than Algorithm 1. Second, by setting ↵ 2 (0, 1

4 ),
the sample complexity of Algorithm 2 is O(1/✏4) and
the communication complexity is T/p = O(1/✏(4�4↵)).
Thus, Algorithm 2 can achieve a better communication
complexity than Algorithm 1 when the communication
period p 2 (1, T 1/4).

5 Proof Sketch

In this section, we provide the proof sketch of Theo-
rem 4.1 and Theorem 4.2

5.1 Proof of Theorem 4.1 To prove Theorem 4.1,
we introduce the following key lemmas, whose proof can
be found in Appendix A.1.

Lemma 5.1. Given Assumptions 1-3, we can get

(5.13) kv
k
t � v̄tk

2
 4C2

gC
2
f .

Lemma 5.2. Given Assumptions 1-3, we can get

(5.14) km
k
t � m̄tk

2
 4C2

gC
2
f .

Lemma 5.3. Given Assumptions 1-4, we can get

(5.15)
KX

k=1

kx
k
t+1 � x̄t+1k

2


4K⌘2C2
gC

2
f

(1� �)2
.

Lemma 5.4. [16] Given Assumptions 1-4, by setting
� = �, we can get
(5.16)

T�1X

t=0

krF k(xk
t )�m

k
t+1k

2


C2
gL

2
f + 5C2

gL
2
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2

�

+
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g )

�2
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t=0
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k
t+1k

2 + 10�C2
gL

2
fG

2m

B
T

+ 2�C2
gC

2
fT .

Based on these lemmas, we provide the proof sketch
of Theorem 4.1. The details can be found in Ap-
pendix A.1.

Proof. At first, since F (x) is LF -smooth, we can get
(5.17)

F (x̄t+1)  F (x̄t)�
⌘

2
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2
�

⌘

4
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2 +
⌘

K
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t )�m

k
t+1k

2 ,

By combining it with Lemmas 5.3- 5.4, we can get
(5.18)
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By setting ⌘ 
�

2
p

2L2
F+10C4

g

, we complete the proof.
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(a) CIFAR10 (b) CIFAR100 (c) STL10 (d) CATvsDOG

(e) CIFAR10 (f) CIFAR100 (g) STL10 (h) CATvsDOG

Figure 1: The comparison between our two methods and baseline methods. The first row shows SE-DSCGDM
and the second row shows CE-SCGDM.

5.2 Proof of Theorem 4.2 Similarly, we introduce
the following key lemmas to prove Theorem 4.2. Their
proof can be found in Appendix A.2.

Lemma 5.5. Given Assumptions 1-4, for any t, for
8st 2 {0, 1, 2, · · · , bT/pc}, we can get

(5.19)
KX

k=1

kx
k
stp � x̄stpk

2


4Kp2⌘2C2
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2
f

(1� �)2
.

Lemma 5.6. Given Assumptions 1-4, we can get
(5.20)

KX
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2
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2
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(1� �)2

⌘
.

Then, we provide the proof sketch of Theorem 4.2.

Proof. Same as Theorem 4.1, we can get Eq. (5.17).
Then, by plugging Lemma 5.4 and Lemma 5.6 into
Eq. (5.17), we can get
(5.21)

1
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By setting ⌘ 
�

2
p

2L2
F+10C4

g

, we complete the proof.

6 Experiment

6.1 Experimental Settings

Dataset Our experiment is conducted with four
image classification datasets: CIFAR10, CIFAR1001,
STL102, and CATvsDOG3. For CIFAR10 and CI-
FAR100, 10% samples are randomly selected as the test-
ing set. For CATvsDOG and STL10, 20% samples are
randomly selected as the testing set. Then, following
[14], we convert the training set of these four datasets
to imbalanced binary classification datasets. Specifi-
cally, the first half classes in CIFAR10, CIFAR100 and
STL10 are marked as negative and the other half classes
are treated as positive samples. Then, for these three
training sets, 98% of positive samples are randomly se-
lected and removed to construct imbalanced datasets.

Setup Our testbed is set on an HPC server which
has 8⇥ NVIDIA Tesla Volta V100 GPUs connected with
NVlink2 and 512GB of RAM. We implement our al-
gorithms with PyTorch and OpenMPI backends. In
particular, we write new loss and optimizer functions
with PyTorch distributed training framework to inte-
grate our decentralized momentum stochastic composi-
tional gradient descent methods. In our experiments,
we use ResNet18 as the classifier, and set � = 0.99, � =

1https://www.cs.toronto.edu/~kriz/cifar.html
2https://cs.stanford.edu/~acoates/stl10/
3https://www.kaggle.com/c/dogs-vs-cats
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(a) CIFAR10 (b) CIFAR100 (c) STL10 (d) CATvsDOG

Figure 2: The communication cost of SE-DSCGDM and CE-DSCGDM.

0.1, ⌘ = 0.0001, ⇢ = 5. The batch size of CATvsDOG
on each worker is set to 64 and that of other datasets
is set to 16. In addition, we compare our methods with
SOAP [14] and MOAP-V2 [16]. To make a fair compar-
ison, we parallelize these two baseline methods by using
the all-reduce communication.

6.2 Results and Analysis In Figure 1(a)-1(d), we
plot the testing AUPRC score of SE-DSCGDM and
baseline methods versus the number of epochs. In this
experiment, we use four devices (GPU) and the ring
topology. From them, it can be observed that our SE-
DSCGDM method can converge to almost the same
AUPRC score as the baseline methods for all datasets.
Similarly, we plot the testing AUPRC score of CE-
DSCGDM in Figure 1(e)-1(f) with di↵erent communica-
tion periods p. We can still observe that CE-DSCGDM
with di↵erent p converges to almost the same AUPRC
score with SE-DSCGDM, indicating p does not impair
the convergence performance. All of these observations
confirm the correctness of our proposed two methods.

To verify the communication e�ciency of our CE-
DSCGDM method, we plot the testing AUPRC score
versus the communication cost (MB) under di↵erent
communication periods p = 4, 8, 16 in Figure 2. It can
be observed that CE-DSCGDM with a smaller commu-
nication period incurs more communication costs, while
that with a larger communication period leads to less
communication costs. Moreover, those variants can fi-
nally achieve almost the same AUPRC score as baseline
methods, which confirms the communication e�ciency
of our proposed CE-DSCGDM method.

Additionally, to demonstrate the speedup of our
decentralized training methods, in Figure 3(a), we plot
the testing AUPRC score versus the consumed time
when using di↵erent number of devices. Due to the
space limitation, we only report the result of CIFAR10.
Here, we use K = 4 and K = 8 devices, respectively. It
can be observed that our methods converge faster when
using more devices. For instance, SE-DSCGDM with
p = 1 and K = 8 converges faster than that with p = 1
and K = 4. CE-DSCGDM with p = 8 and K = 8

converges faster than that with p = 8 and K = 4. All
these observations confirm the e�ciency of our methods.

(a) The consumed time of our

methods with di↵erent number

of devices for CIFAR10. p = 1

denotes SE-DSCGDM and p > 1

denotes CE-DSCGDM.

(b) The convergence perfor-

mance of our two methods with

the Ring and 3cube communica-

tion topology for CIFAR10. SE

denotes SE-DSCGDM and CE

represents CE-DSCGDM.

Figure 3: Ablation Studies

In Figure 3(b), we demonstrate the performance of
our two methods when using di↵erent communication
topology (di↵erent topology has di↵erent spectral gap).
Specifically, we use eight devices and then build the
Ring graph and the 3cube graph. In this experiment, we
use CIFAR10 dataset. The batch size on each worker is
set to 8. The other hyperparameters are set as those in
Figure 1. From Figure 3(b), we can observe that our two
methods achieve almost the same testing AUPRC score
for di↵erent communication topology, which confirms
that the spectral gap does not impair the convergence
performance of our algorithms.

7 Conclusion

In this paper, we developed two decentralized stochas-
tic compositional gradient descent methods to train the
large-scale AUPRC maximization problem. As for the
first method, which performs communication in every it-
eration, it can achieve a better sample complexity than
existing decentralized SCGD methods [4]. However, it
still has the same communication complexity as existing
methods. As for the second method, it enjoys better
sample and communication complexities than existing

Copyright © 2024 by SIAM
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methods by utilizing the periodic communication strat-
egy to reduce the communication cost. To the best of
our knowledge, this is the first work achieving these the-
oretical results. The extensive experimental results on
imbalanced datasets confirm the correctness and e↵ec-
tiveness of our proposed methods.
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