
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 1

Lightweight and Holistic-scalable Serverless Secure
Container Runtime for High-density Deployment

and High-concurrency Startup
Zijun Li, Chenyang Wu, Chuhao Xu, Quan Chen, Shuo Quan, Bin Zha, Qiang Wang,

Weidong Han, Jie Wu, Minyi Guo

Abstract—The secure container that hosts a single container in
a micro virtual machine (VM) is now used in serverless comput-
ing, as the containers are isolated through the microVMs. There
are high demands on the high-density container deployment and
high-concurrency container startup to improve both the resource
utilization and user experience, as user functions are fine-grained
in serverless platforms. Our investigation shows that the entire
software stacks, containing the cgroups in the host operating
system, the guest operating system, and the container rootfs for
the function workload, together result in low deployment density
and slow startup performance at high-concurrency.

We propose a lightweight and holistic-scalable secure container
runtime, named RunD-V, to resolve above problems in serverless
computing. RunD-V proposes a guest-to-host runtime template
for microVM scaling-out, and CR-bind feature in guest kernel
for microVM scaling-up. Using guest-to-host runtime template,
over 200 secure containers can be launched within 1s on a node
equipped with 104 vCPUs. It also enables more than 2,500 secure
containers to be deployed on a node with 384GB of memory.
The vertical scaling mechanism CR-bind further enhances both
startup concurrency and deployment density.

Index Terms—Serverless, MicroVM, Container, Template

I. INTRODUCTION

With serverless computing (Function-as-a-Service), tenants
submit functions directly to the Cloud without renting virtual
machines, and the cloud provider uses containers to host
invocations on-demand [1]–[5]. Most cloud providers publish
the serverless computing services with the pay-for-use pricing
model, such as Amazon Lambda, Microsoft Azure Functions,
Google Cloud Function and Alibaba Function Compute.

When hosting function invocations, traditional containers
(e.g., Docker, LXC) only provide process level isolation [6],
[7]. They cannot prevent privilege escalation, information dis-
closure side channels, and covert channel communication [8].
To this end, secure containers that achieve the same isolation
with the traditional virtual machines are often preferred, which
often creates a normal container within the microVM. As
depicted in Figure 1(a), microVM is for isolation, and the
container is for abstraction [9]. Kata Containers [10] provides
practical experience in implementing such secure container.

Zijun Li, Chenyang Wu, Chuhao Xu, Quan Chen and Minyi Guo are with
the School of Computer Science, Shanghai Jiao Tong University, Shanghai,
China, 200240. Shuo Quan are with the China Telecom Cloud Computing
Research Institute, Beijing, China, 100053. Jie Wu is with the China Tele-
com Cloud Computing Research Institute, Beijing, 100088, China and with
the Department of Computer and Information Sciences, Temple University,
Philadelphia, PA 19122, USA Bin Zha, Qiang Wang and Weidong Han are
with the Alibaba Group, Hangzhou, China, 310052.

Guest Kernel

Host Linux

MicroVMagent

Hypervisor

rootfs

Container

Cgroup

(a) Secure container

GuestOS

Container

MicroVM

GuestOS

Container

MicroVM

GuestOS

Container

MicroVM

Container Container

GuestOS

MicroVM Scaling-up

fork

×

Function A
Function B

(b) Multi-Replica paradigm

Fig. 1: The secure container architecture and the opportunity
of exploiting vertical scaling-up for microVMs.

The lightweight and short-term nature of functions em-
phasizes the necessity for high-density deployment and high-
concurrency startup of secure containers in serverless comput-
ing. For example, 47% of AWS Lambda functions operate with
the minimum memory specification of 128MB, and approxi-
mately 90% of applications on Microsoft Azure never exceed
a memory usage of 400MB [11]. Given that physical nodes
often have substantial memory capacities (e.g., 384GB), they
should theoretically accommodate many functions. Moreover,
a large number of function invocations may arrive in a short
time. However, the additional hierarchy of guestOS in secure
containers will significantly impact the deployment density
and the concurrency of container startups.

This paper re-examines the security model of secure con-
tainers in serverless and proposes a Multi-Replica paradigm
that preserves guestOS-level isolation between functions,
while enabling multiple container replicas of the same function
to coexist within a single microVM. As shown in Figure 1(b),
this paradigm significantly amortizes the memory footprint of
the guestOS and accelerates container startup by leveraging
fork. Comparing to the conventional Single-Replica paradigm
where each microVM hosts only one container replica, the
Multi-Replica paradigm effectively enhances deployment den-
sity and startup concurrency for serverless functions by inte-
grating both horizontal and vertical scaling mechanisms.

To achieve higher system-level startup concurrency and
deployment density, it is fundamental to identify and mit-
igate bottlenecks in existing scale-out mechanisms. Our in-
vestigations reveal that guest-side rootfs mounting introduces
redundant CPU/memory overhead, while host-side cgroup
operations are serialized by mutex locks. These inefficien-

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 2

cies hinder the high-density deployment and high-concurrency
startup capabilities of secure containers. To address these is-
sues, we propose a guest-to-host runtime template comprising:
(1) a hybrid rootfs template for serverless containers, and
(2) lightweight cgroup templates that utilize rename-based
pool management. These adaptations enhance system-level
microVM startup concurrency and deployment density.

When hosting multiple container replicas within a microVM
via vertical scaling, it is essential to tailor the guestOS for im-
proved sharing efficiency and to provide stable, low-overhead
resource hot-(un)plugging support, particularly for memory.
In our tailored guest kernel, the built-in feature CR-bind is
patched to the runtime template. CR-bind enables on-demand
memory hot-(un)plug operations and designates a specialized
memory region where a memory device can be exclusively
allocated to a container. Above efforts effectively enhance
function-level startup concurrency and deployment density.

Based on the guest-to-host runtime template and CR-bind,
we propose RunD-V, a lightweight and holistic-scalable server-
less secure container runtime. Both scaling-out and scaling-up
are supported within RunD-V, with a dedicated holistic scaling
strategy ensuring that they can cooperate in a harmonious and
efficient manner. To the best of our knowledge, RunD-V is
the first exploration to integrate both scaling-out and scaling-
up mechanisms to achieve high-density deployment and high-
concurrency startup for secure containers.

The main contributions of this paper are as follows.
1) The Multi-Replica paradigm re-examines the security

model and offers insights into scaling mechanisms. We
identify bottlenecks of horizontal scaling-out and explore
the opportunities afforded by vertical scaling-up.

2) RunD-V builds a guest-to-host runtime template for
horizontal scaling-out. The container rootfs template
based on hybrid read/write device mounting, and a
lightweight cgroup template with pool management ef-
fectively resolve the identified bottlenecks.

3) RunD-V proposes CR-bind for stable and efficient
memory hot-(un)plugging. We also design a holistic
scaling strategy that achieves an overlap and balance
between horizontal scaling-out and vertical scaling-up.

According to our evaluation, RunD-V boots to application
code in 88 ms using the guest-to-host runtime template. On a
node with 104 vCPUs, RunD-V can launch over 200 secure
containers per second. Similarly, on a node with 384GB of
memory, RunD-V is capable of deploying more than 2,500
secure containers. Furthermore, by enabling vertical scaling-
up with CR-bind, RunD-V can enhance function-level con-
currency by up to 2x while reducing the memory usage for a
single function to 1/8 of that required by the original setup.

II. RELATED WORK

The emerging serverless computing has attracted a lot
of valuable studies. They also recognize the importance of
deployment density and concurrency capabilities of serverless
containers in production scenarios.

Higher-density deployment. Regarding serverless comput-
ing, in the space of higher function deployment density of

Secure Containers and microVMs, the key is designing a more
lightweight container runtime both in guest and host. Uniker-
nel [12]–[14] runs as a built-in GuestOS without necessary
add-ons, demonstrating great potential for deploying contain-
ers with less overhead. Kuo [15] Explores lightweight guest
kernel configurations for use in Unikernel environments, which
has similarity to the approach towards reducing guest kernel
size. SAND [16] and Microless [17] colocate all functions
of a application to amortize the memory footprint of sand-
boxing. However, they fail to handle memory fragmentations
in a real-system with high-density deployment. Gsight [18]
observes that fine-grained function-level profiling can expose
more predictability system-level features in interference. With
accurate interference predicting [19], the function density can
get improved with QoS guaranteed.

The above studies make sense in improving the effective
density with less interference for serverless. They are orthog-
onal to our work, because RunD-V is motivated to improve
the maximum deployment density on a signe node.

Higher-concurrency startup. In the space of higher func-
tion startup concurrency, recent approaches leverage the con-
tainer prewarm pool [11], [20]–[22]. The state-of-the-art on
container prewarming, SOCK [22], uses a benefit-to-cost
model to select packages pre-installed in zygotes, and builds
a tree cache to ensure a fast zygote container forking without
unspecified packages. The C/R (Checkpoint/Restore) [5], [23]
supporting the microVM snapshotting [24]–[26] captures the
state of a running instance as a checkpoint, and then restores
it once cold startup. Observing that most functions only
access a small fraction of the files and memory loaded in
the initialization stage, Catalyzer [26] and Replayable Execu-
tion [27] extend the C/R mechanism to achieve a faster on-
demand recovery and paging when start containers. REAP [28]
proactively prefetches and load the pages that identified critical
of the startup from a microVM snapshot into the guest memory
for faster concurrency startup. Lambda [29] builds a container
image caching system that supports on-demand, deduplicated
loading, thereby enabling over 15,000 concurrent startups per
second across the cluster.

Above studies are orthogonal to RunD-V, as they concen-
trate on reducing startup and recovery latencies by leveraging
snapshots or images. RunD-V tries to address bottlenecks
through guest-to-host optimizations of the secure container
architecture, including container rootfs, guestOS and cgroup
resource management.

III. BACKGROUND AND MOTIVATION

This section first introduces the secure container and ana-
lyzes its security model, and how these considerations motivate
our Multi-Replica paradigm and holistic scaling mechanism.

A. Secure Container and In-production Requirements

When hosting function invocations, traditional containers
(e.g., Docker, LXC) only provide process-level isolation,
which can lead to security vulnerabilities [6], [7]. Conse-
quently, there is a growing trend toward adopting more secure
runtime environments. This shift has spurred the development

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 3

Fig. 2: The startup concurrency (Node-1) and sandbox density
trace (Node-2) from our Alibaba serverless platform. Observa-
tions of high-concurrency and high-density are typically occur
in different nodes due to load balancing.

of secure container architectures that incorporate a lightweight
microVM to provide an extra isolation layer while maintaining
compatibility with the existing container ecosystem (e.g., OCI
and CRI). For instance, Kata Containers [10] is the most
representative secure container implementation, where user
functions run inside a runc container that is hosted by own ded-
icated microVM operating a streamlined guestOS. For cloud
vendors, two key requirements for using this secure container
architecture in production are achieving high container startup
concurrency and high deployment density [8].

High-concurreny startup. In serverless computing, con-
current startup can be broadly classified into two scenarios.
One scenario involves the parallel execution of multiple in-
stances of the same function, such as video transcoding tasks
employing a map-reduce paradigm. The other scenario arises
when different function events are triggered simultaneously;
for example, different user functions might set the same timer
or invoke a microservice graph. Consequently, as illustrated
in the upper part of Figure 2, Alibaba’s serverless platform
can experience over 100 sandbox-launch requests on a single
node. High startup concurrency is crucial in serverless systems
as it ensures that containers can be initialized rapidly to handle
sudden spikes in function invocations effectively.

High-density deployment. In a traditional Infrastructure-
as-a-Service (IaaS) scenario, the overhead impact of a virtual
machine is mitigated by the large memory specifications typi-
cally allocated to each VM. In contrast, serverless computing
typically employs lightweight containers with much smaller
memory footprints, making the high memory overhead of a
guestOS a critical limiting factor for the number of deployable
sandboxes on a single node. For example, in an ideal scenario
without overhead, a node with 384GB of memory could theo-
retically host 8×384 = 3072 containers, each with a memory
footprint of 128MB. However, without further optimizations,
Alibaba’s platform supports fewer than 2,000 sandboxes per
node, as illustrated in the lower part of Figure 2. Achieving
a denser deployment of sandboxes is therefore essential for
maximizing resource utilization on a single physical machine.

B. Security Model and Execution Paradigm

For serverless platforms, the primary responsibility is to
ensure the security of the cloud infrastructure, including

Host

Hypervisor (QEMU)

GuestOS

Container

Fun A

GuestOS

Container

Fun A

GuestOS

Container

Fun B FunA

MicroVM

FunA

MicroVM

FunB

MicroVM

FunB

MicroVM

Scaling-out only！
Code

(a) Single-Replica Paradigm

MicroVM

FunAFunA FunA

MicroVM

FunBFunB

Scaling up

Scaling

out
Host

Hypervisor (QEMU)

GuestOS

Container

Fun A

Container

Fun A

GuestOS

Container

Fun B

Code ！

(b) Multi-Replica Pradigm

Fig. 3: The security model and execution logic of conventional
Single-Replica paradigm and our Multi-Replica paradigm. The
dashed line separates the trusted and untrusted environments.

mitigating security risks posed by malicious user codes. To
this end, secure containers leverage the security model of
hardware virtualization and hypervisor, explicitly treating the
guest kernel as untrusted by performing syscall inspections.

Existing serverless execution paradigms often adopt a
Single-Replica fashion, as illustrated in Figure 3(a). In this
paradigm, separate microVMs isolate different functions, and
each container replica of the same function is also deployed
with its own microVM (referred to as a ”sandbox”). Conse-
quently, serverless sandboxes rely exclusively on horizontal
scaling (aka. scaling-out) for resource management.

While this paradigm seems to provide strong isolation for
each individual sandbox, the fact that all microVMs of the
same function running identical code means that any attack
from malicious code in one container replica could compro-
mise all microVMs simultaneously. Based on the above analy-
sis, we can find that the Single-Replica paradigm additionally
allocates a guestOS layer to each replica, but it cannot reduce
the spread of threats to function replicas. This leads us to
rethink about the existing Single-Replica execution paradigm,
which may not be the most reasonable for the scenario of high
concurrency and high-density deployment for serverless.

If we allow a microVM hosts the container replicas of the
same function, the container replicas in the same microVM
can share the guestOS of the microVM, as illustrated in
Figure 3(b). This adaption not only accelerates the startup
process for replicas of the same function but also reduces the
memory overhead associated with the guestOS. This paradigm,
referred to as the Multi-Replica paradigm, is particularly
well-suited for serverless systems that demand high startup
concurrency and dense deployment. Importantly, the security
guarantees remain consistent with conventional Single-Replica
paradigm—microVMs continue to isolate different functions
rather than individual replicas of the same function.

Under the Multi-Replica paradigm, the computing resource
quota for a microVM should be dynamically determined
by the real-time aggregate of the resource quotas allocated
to the containers it hosts. Failure to align the microVM’s
resource allocation with its containers’ demands may lead to

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 4

either waste or insufficient provisioning of critical resources.
Multi-Replica also align with the core principle of serverless
computing, which is reflected in that the computing resources
allocated to a function microVM can scale up and down
elastically in response to workload changing.

C. Multi-Replica Paradigm with Holistic Scaling Mechanism

The Multi-Replica paradigm aligns with our production
scalability demands by requiring a holistic scaling strategy:
inter-function concurrency necessitates horizontal scaling-out,
while intra-function concurrency prioritizes vertical scaling-
up. Sharing a guestOS across replicas of the same function
reduces memory overhead in high-density deployments.

However, it remains unclear where the primary bottleneck
lies in scaling out under high concurrency and high-density
deployment scenarios, and whether current resource hotplug-
ging technologies can accommodate the frequent scaling up
and down required for adjusting microVM resources. Based
on our analysis, we derive three key insights for the Multi-
Replica paradigm:

• The isolation of different functions can rely on horizontal
microVM scaling out. By identifying and mitigating
bottlenecks in existing secure container architectures,
it is possible to achieve higher system-level startup
concurrency and deployment density.

• Multiple replicas of the same function can be hosted
within a microVM by vertically microVM scaling up.
MicroVMs should support a stable, low-overhead re-
source hot-(un)plugging, thereby enhancing function-
level startup concurrency and deployment density.

• Both scaling-out and scaling-up can be supported within
the serverless secure container runtime, with dedicated
strategies ensuring that they can cooperate in a harmo-
nious and efficient manner.

IV. RATIONALE OF HIGH-DENSITY DEPLOYMENT AND
HIGH-CONCURRENCY STARTUP

It is essential to examine the underlying technologies to
identify the bottlenecks and opportunities associated with
scaling-out and scaling-up. This section provides the roadmap
of scaling-out bottlenecks identification and opportunities of
resource hot-(un)plug for scaling-up.

A. Bottlenecks of Horizontal Scaling-out

1) Guest-side Container Rootfs: According to the Berke-
ley’s view [30], serverless applications are primarily web
applications, characterized by numerous I/O operations. There-
fore, containers root filesystem (rootfs) should provide robust
I/O read and write capabilities, as well as the ability to
withstand performance interference. In general, rootfs can be
exposed into the microVMs by filesystem (e.g., 9pfs [31],
virtio-fs [32]) or block device (e.g., virtio-blk [33]).

Figure 4 illustrates the IOPS (IO-Per-Second) and band-
width for random/sequential read/write operations using 9pfs,
virtio-fs, and virtio-blk in Kata Containers. For comparison,
the performance metrics of traditional containers using ext4
and overlayfs on the host node are also measured [34], [35].

Fig. 4: The IOPS/bandwidth performance of rand/seq direc-
tIO/BufferIO read/write when using different rootfs mapping
in Kata-runtime (dev-mapper represents that virtio-blk is used,
ext4+overlayfs represents the default runc-container rootfs).

While virtio-blk offers the best write performance, its high
memory overhead and concurrency limitations are significant
drawbacks. According to our measurement, it takes as high as
10 seconds to prepare rootfs when 200 microVMs are started
concurrently, while it only takes about 30 milliseconds for a
single microVM startup. Moreover, it does not support page
cache sharing between the host and guest operating systems.
When the virtio-blk backend reads rootfs files into the host
page cache, the same content is duplicated in the guest page
cache, leading to a high memory footprint.

On the other hand, virtio-fs [32] with DAX (Direct Access)
mode enables the guest to directly access the host’s page cache
for a file without replicating it in guest, thereby mitigating the
duplication of page caches. However, this approach comes at
the expense of write performance. Besides, the per-microVM
virtiofsd client daemon takes charge of container I/O opera-
tions, resulting in excessive CPU usage on the host with clients
increase. This issue is exacerbated under high I/O stress or
during intensive metadata operations, which are common in
serverless web applications.

The above investigation shows that either virtio-fs or virtio-
blk can compromise either deployment density or startup con-
currency of microVMs scaling-out. An exploratory alternative
would be: using virtio-fs to support the read only part of rootfs
for sharing page cache between host and guests,and using
virtio-blk to support the writeable part of rootfs for high I/O
performance. A solution is also required to further reduce the
duplicated writable part for rootfs.

2) Host-side Cgroups Efficiency: The sudden workload
spikes in our trace result in the rapid creation of a large number
of microVMs, quickly consuming the host’s memory space, as
the Azure serverless platform trace [11] also show the same
pattern. The rapid creation and deletion of a large number
of microVMs in a short period results in delayed exits from
critical sections of cgroups in multi-threaded scenarios.

We measure the performance of cgroup operations when
creating 2, 000 microVMs concurrently, using different num-

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 5

(a) Latency distribution

Timeline

Function stacks

(b) The flame graph of Perf

Fig. 5: The performance of cgroup operations when creating
2, 000 container cgroups concurrently. The stacked blocks in
the flame graph show the call chain, with the red segments
highlighting cgroup operations and experience long-term spin-
ning due to mutex locks.

bers of threads to perform cgroup operations. Figure 5(a)
shows the cumulative distribution of container creating laten-
cies. The reason behind the above fact is that the Linux kernel
introduces several global locks to serialize cgroup operations.
The flame graph of Figure 5(b) indicates that the red part
experiences the optimistic spinning if cgroups fail to acquire
the “mutex locks” during the timeline. Figure 5(b) highlights
the hot functions related to cgroup operations, marked in red.
The y-axis indicates that these functions are positioned at the
lower and critical levels of the call chain, while the x-axis
reveals that 2, 000 cgroup operations performed by 10 clients
experience optimistic spinning when they fail to acquire the
corresponding “mutex locks”.

On the other hand, when the deployment density exceeds
1000 microVMs, a significant increase in CPU overhead on
the node is observed. Massive instances attached to cgroups
are maintained within the system by the Completely Fair
Scheduler (CFS). In a serverless worker node, there can
be more than 10,000 cgroups with thousands of sandboxes.
The Per-Entity Load Tracking (PELT) mechanism used for
load balancing in the CFS must iterate over all cgroups and
processes. Therefore, frequent context switching and hotspot
functions that involve high-precision calculations in the sched-
uler become bottlenecks. According to our measurements, they
account for 7.6% of CPU cycles on the physical node.

The host-side overhead of cgroups prohibits the high density
deployment and high-concurrency startup when scaling out
microVMs. Simplifying the cgroup design,and reducing the
critical section introduced by the mutex locks, are fundamental
solutions to eliminate the high host-side overhead.

B. Opportunities of Vertical Scaling-up

1) GuestOS Overhead Amortization & Marginal Benefit:
As discussed before, the additional layer of isolation enhances
the overall security of the serverless environment. However,
this comes at the cost of introducing a full guest environ-
ment, which results in additional memory overhead and can
significantly reduce the deployment density per node. Taking
the Alpine Linux as a lightweight guest environment example,
we monitored the overall memory footprint of Kata microVM
using QEMU and Firecracker [8] as hypervisors respectively,
as illustrated in the Figure 6.

128 256 512 1024 2048 4096
0

50
100
150
200
250
300

M
em

or
y

ov
er

he
ad

 (M
B) kata-Qemu

kata-FireCracker

(a) Specification impact (solo)

1 10 100 500 1k 1.5k
0

50
100
150
200
250
300

kata-Qemu-Template
kata-FireCracker

(b) Density impact (128MB)

1 2 3 4 8 12 16 20 24 28 32
Number of container within the VM

0

100

200

300

Av
g.

 M
em

 U
sa

ge
 (M

B)

kata-FireCracker

(c) The container memory overhead within a microVM

Fig. 6: The memory overhead of a secure container when
kata uses qemu or FireCracker as the hypervisor. The template
and mmap helps microVM reduce the memory footprint but
still significant when 1000 sandboxes deployed. Multi-replica
paradigm can further amortize such overhead.

Figure 6(a) first presents the memory footprint and variation
of the microVM guest as its memory specification becomes
larger. The memory overhead for a 128MB container is
94MB with Kata-FireCracker and 168MB with Kata-qemu.
The use of struct page in the Linux kernel introduces memory
allocation overhead proportional to the microVM’s memory
size, with approximately 16MB of metadata required per 1GB
of allocated memory. However, compared to the overhead
of deploying a separate guestOS for each container replica,
this cost is negligible because it is amortized across multiple
container replicas within a single microVM.

Since the memory overhead of a microVM is amortized by
container replicas within it, there are two primary strategies to
increase deployment density: reducing the memory overhead
of the base guestOS and increasing the number of container
replicas hosted by a microVM. Templating [26], [28] is a
popular method to reduce the per-microVM memory overhead,
and using mmap of kernel also helps share the text/rodata
segment among multiple microVMs. Above methods enable
new microVMs created in CoW (Copy-on-Write) manner.
However, when 1,000 microVMs are deployed on a single
node using templating and kernel mmap, the overhead remains
significant for serverless containers with a 128MB memory
specification. For example, the per-microVM overhead de-
creases to 145MB for Kata-qemu using templating and 71MB
for Kata-Firecracker using mmap, respectively.

Though increasing the number of container replicas within
a microVM can amortize the overhead of guestOS to a greater
extent, a larger microVM size also leads to greater complexity
introduced by load balancing. An experiment was conducted
to determine the optimal number of containers a virtual
machine should host, with the results shown in Figure 6(c).
The application used in the experiment is a regularly sized
matrix multiplication (matmul) with a memory specification
of 256MB. The results indicate that for 2 to 8 containers, the

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 6

0 25 50 75 100
timeline (s)

0

2

4

6
m

em
or

y
us

ag
e

(G
B)

2.35 GB

5.0 GB

virtio-mem

(a) Virtio-mem

0 25 50 75 100
timeline (s)

0

2

4

6

m
em

or
y
us
ag
e
(G
B) 4.9 GB

1.90 GB
ACPI hot-unplug

(b) ACPI Hot-unplug

Fig. 7: The memory usage and that after memory hot-unplug.

benefits of sharing are significant. For 8 containers and above,
the amortized cost of the kernel becomes negligible, making
benefits of sharing marginal. Based on this observation, we
suggest that 8 container replicas per microVM is an ideal
limitation for general purposes.

Due to the marginal benefits of memory footprint amor-
tization and the constraints imposed by load balancing, the
number of container replicas that a microVM can host and
its memory specification are inherently restricted. These limi-
tations highlight the need to condense the base guestOS and
optimize the microVM templating efficiency.

2) Memory Hot-(un)plug Verification: The vertical scaling
of MicroVMs requires memory hot-plugging tools. Currently,
there are two mainstream implementations: virtio-mem and
ACPI hotplug. Virtio-mem is a semi-virtualized memory de-
vice based on VIRTIO, while ACPI hotplug simulates memory
hot-plugging based on DIMM. Both memory hot-plugging
methods effectively insert memory into the VM. However,
during our tests of memory hot-unplugging, we discovered that
the existing technologies each have their own shortcomings.

Figure 7 illustrates the memory changes within a microVM
using two different memory downsizing methods. In our
experiment, we creat three 2GB-sized containers within the
microVM and executed matrix multiplication within these
containers to simulate memory allocation. About 40 seconds
later, we trigger the sequential reclamation and memory hot-
unplugging of two internal containers. Our expected result
is that the memory usage atfer unplugging would equal the
memory allocated by the remaining container (approximately
2GB). However, as shown in Figure 7(a), virtio-mem method
returned 14.5% less memory than expected. It is because that
virtio devices may mark pages that have never been used
by the guestOS rather than previously used but currently
unallocated pages as offline first, when removing memory
pages from the guestOS memory manager. Therefore, virtio-
mem fails to guarante memory consistency between host and
guest after multiple unplug operations.

On the contrary, DIMM-based ACPI can correctly return the
to-be-unplugged pages (struct page overhead excluded). It ben-
efits from the memory device model that it must return all host
physical pages that were occupied by the corresponding phys-
ical memory of the guest. However, as the spike during each
unplugging shows in Figure 7(b), page migration issue arises
because each container does not exclusively allocate memory
from a single memory device.Consequently, the memory pages
allocated by a single container are dispersed across all memory
devices in guestOS. This fragmented page distribution triggers

Fig. 8: The lightweight serverless runtime RunD-V. Green and
blue blocks represent the Guest-to-Host template and CR-bind
supporting microVM scaling-out and scaling-up, respectively.

page migration which degrades the memory bandwidth during
device hot-unplugging.

Considering that the Multi-Replica paradigm necessitates
frequent scaling up/down of microVMs, ensuring the stability
and consistency of memory hot-(un)plug operations is fun-
damental. However, virtio-mem is not recommended because
of its inherent limitations. While ACPI can ensure consistent
memory reclamation, it does not provide sufficient stability
during hot-unplugging, and additional mechanisms is required
to prevent page migration issues.

V. DESIGN OVERVIEW OF RUND-V

RunD-V is therefore designed to maximize secure container
deployment density and startup concurrency by leveraging
the Multi-Replica paradigm, which extends the conventional
horizontal scaling-out approach with vertical scaling-up. The
RunD-V runtime architecture answers three critical questions
inherent to the Multi-Replica paradigm:

• How to provide specialized guest-side container rootfs
and host-side cgroup architecture that are tailored to the
requirements of serverless environments, thereby enhanc-
ing the efficiency of horizontal scaling-out? (§Section VI)

• How can we improve the efficiency of microVM templat-
ing, which also provides a stable and consistent memory
hot-(un)plug support to mitigate page migration issues
during vertical scaling-up? (§Section VII)

• How can we design an holistic scaling strategy that
optimizes load balancing and maximizes the scaling effi-
ciency of microVMs? (§Section VIII)

Figure 8 shows the RunD-V design and summarizes our
methodologies. The green blocks represents the Guest-to-
Host runtime template for microVM scaling-out, and blue
blocks represents a memory scaling technology call CR-bind
to support microVM scaling-up by forking inner containers.

Guest-to-Host Runtime Template for MicroVM. As
shown in Figure 8, RunD-V leverages the features of read-
only data/runtime and non-persistent storage in serverless
environments, proposing guest-to-host solutions. Specifically,
the RunD-V runtime performs a read/write device split by
providing the read-only layer to virtio-fs and using the built-
in storage to create a volatile writable layer for virtio-blk.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 7

These layers are mounted together as the final container rootfs
using overlayfs. When a secure container is created, RunD-V
renames and attaches a lightweight cgroup from the cgroup
pool for efficient management.

Container and Memory Region Binding (CR-bind).
As shown in the right part of Figure 8, the scaling-up

is facilitated by CR-bind, a feature that designed and built
into the guest kernel. CR-bind exploits the granularity char-
acteristic of memory allocation in serverless environments,
typically specified in increments of 128MB, to facilitate the
hot-(un)plug of memory regions within a Serverless microVM.
the principle of RunD-V for memory hot-(un)plug within a
Serverless microVM is to manage Memory Regions based on
container specifications. Each memory region is registered and
binded with a specific container within the microVM, ensuring
its exclusive usage to avoid page migration issue.

Holistic Scaling Strategy. It is imperative to note that
RunD-V enforces sequential memory hot-plugging within a
single microVM, due to the mutex lock maintained by the
Linux kernel’s memory management subsystem. To incor-
porates both vertical and horizontal scaling, the priority of
scaling strategies within RunD-V is designed as follows. (1)
Upon concurrent requests of a particular function arrive, the
serverless scheduler locates all microVMs of this function and
initiates a vertical scaling request to them. (2) MicroVMs
that do not have CR-bind active will accept the scaling-up
request by invoking CR-bind. It will dynamically allocate a
memory region, followed by the creation and binding of a new
container to this region. (3) MicroVMs that are either currently
running CR-bind or have reached their maximum container
replica capacity will reject vertical scaling-up requests. (4)
Unattended and rejected requests are then addressed through
horizontal scaling-out using RunD-V template.

VI. RUNTIME TEMPLATE FOR HORIZONTAL SCALING-OUT

In this section, we introduce the runtime template, a Guest-
to-Host solution that resolves the problem of duplicated data
across containers, and high host-side cgroup overhead.

A. Container Rootfs Template and Hybrid Mounting

We investigate the data in a sandbox in the serverless
computing scenario, and find that user-provided code/data is
read-only for the operating system, and the system-provided
runtime files are also read-only for user functions. Server-
less architectures primarily depend on external storage (e.g.,
S3 [36]) for data persistence, but ephemeral writable storage
remains crucial for scenarios in which sensitive data must
be transferred from a serverless instance to a secure private
environment, user-defined operations require ephemeral file
handling, or direct inter-function communication is neces-
sary [37]. Therefore, the inner runc-container may only require
a volatile writable device that shares the lifetime of its hosting
microVM, without any need for data persistence.

Figure 9 shows the way to mount rootfs template by a read-
only device and a volatile writable device. According to the
investigation in Section IV-A1, virtio-fs is used to handle the
read-only layer, and virtio-blk is used to handle the volatile

Fig. 9: For container rootfs, Virtio-fs and virtio-blk are used to
handle the read-only and volatile writable layer, respectively.

writable layer for better performance. The read-only layer is
stored in the host and can be prepared in negligible time
when using the overlay snapshotter provided by the container
runtime. When multiple container replicas are deployed within
a microVM, they share a common virtio-fs layer while each
mounts an ext4 filesystem at a isolated path.

We propose the volatile block device as the volatile writable
layer, which will not automaticly persist temporary data from
user functions. Specifically, the host pre-creates a storage
image template for all sandboxes, and the build-in storage
image of a microVM uses symbolic link (e.g., reflink [38]) to
link the storage image on the host to be block device in the
microVM. Once the hypervisor opens this block device, the
symbolic link is destroyed. By such means, the reflink copy of
the writable file template is imperceptible by guests, and only
the memory space is occupied in a Copy-on-Write fashion.
This volatile writeable layer design relieves the duplicated
page cache of container rootfs template for serverless.

According to our evaluation with a 200-concurrency setup,
the disk usage is considerably decreased from 60% (4500
IOPS, 100MB/s) to 20% (1500 IOPS, 8MB/s) using rootfs
template. The average latency of a rootfs provision is reduced
from 207ms to 0.2ms (a reduction of 4 orders of magnitude).

B. Lightweight Cgroup Template and Cgroup Pool

The multi-level design of cgroups leads to chaotic process
management, making it less suited as a custom-built solu-
tion for serverless environments with large-scale sandboxes.
Specifically, cgroups associate a set of tasks with a set of
parameters for one or more per-resource-type subsystems. The
complex implementation of cgroups involves more than 10
types of resource subsystems (aka. cgroup subsys), making it
difficult for multiple controllers to coordinate effectively.

Simplifying the cgroup subsystems and reducing the com-
plexity of cgroup operations is crucial to support high-density
deployment and high-concurrency startup in serverless scenar-
ios. An intuitive method is to reduce the scope of the critical
section in cgroup mutex, or find a fast path to perform cgroup
operations when secure containers are created and deleted.

Our further investigations reveal the optimization opportu-
nity that pre-creating and maintaining cgroups in a pool can
effectively reduce the creation overhead, since afterward only
the cgroup rename is used. The cgroup rename, as a special

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 8

ZONE_MOVABLE

ZONE_HIGHMEM

ZONE_NORMAL

ZONE_DMA

ZONE_DEVICE

Region_0Region_1Region_7Idle Region

Container 1

Mem Dev

Container 2

Mem Dev

×

CID MID

Region_0

Region_1

C1

C2

COMPILE_REGION = 8

CID-MID Map

Malloc

Hot-(un)plug

Fig. 10: The tailored guest kernel incorporates a patch that
partitions the ZONE_MOVABLE into several distinct regions.
Each container’s memory device is exclusively and indepen-
dently assigned to one of these regions for page isolation.

case, is a lightweight operation without acquiring any global
lock. To this end, we propose a lightweight cgroup template
and the cgroup template pool management.

Rather than creating the cgroup for each subsystem, a joint
cgroup controller aggregates necessary cgroup subsystems
(aka the cpu, cpuacct, cpuset, memory, and blkio) into one
dedicated lightweight cgroup template. RunD-V pre-creates
corresponding lightweight cgroup templates and maintains
them in a cgroup pool based on the pre-defined node capacity.
These cgroup templates are marked idle when initialized, and
are protected in a linked list. For each created container, RunD-
V simply allocates an idle cgroup template, updates the state
to busy, performs the cgroup rename, and then attaches the
container to this renamed cgroup template when a container
is started. If a container triggers deleting, RunD-V will take
the cgroup template back to the pool, kill the corresponding
instance process, and then update the returned cgroup template
state to idle for subsequent allocating and renaming.

Adopting the above optimizations in kernel mode, we replay
the evaluation in Section IV-A2. The cgroups creation only
consumes 0.09s (1 thread), 0.1s (50 threads), and 0.14s (200
threads), respectively. Compared with the default mechanism,
the lightweight cgroup and the rename-based cgroup pool
reduce 94% of the cgroups creation time.

VII. CR-BIND FOR VERTICAL SCALING-UP

In this section, we present our optimizations for tailoring the
guest kernel and introduce the CR-bind feature, which enables
stable and efficient memory hot-(un)plug operations.

A. Guest Kernel Tailoring

Because the guest environment management for serverless
containers is offloaded to the cloud provider, RunD-V can
leverage the opportunity to optimize microVM templating effi-
ciency by eliminating redundant features that are unnecessary
in a serverless setting. Specifically, we tailor the Linux-based
guest operating system kernel by disabling extraneous features:
loop device (2.2MB), acpi (2MB), ftrace (6MB), graphics-
related items (2MB), i2c and ceph (3MB).

Validating all features at compile-time case by case, RunD-
V effectively reduces the memory footprint of a CentOS 4.19
kernel by about 16MB and tailored the image by about 4MB.

Based on the tailored kernel, we further propose CR-bind, a
guest kernel feature that enables binding a container to a des-
ignated Memory Region. In Linux, ZONE_MOVABLE is a ded-

RunD-V

runtime

①

Lightweight

Cgroup

④

④

Fig. 11: The vertical scaling-up and resource management
workflow of RunD-V. The solid line indicates synchronization
and the dashed line indicates asynchronization.

icated memory zone intended for tasks such as memory com-
pression and migration. CR-bind subdivides ZONE_MOVABLE
into different regions that are arranged in a linear list ordered
from high to low addresses, as illustrated in Figure 10. These
regions are pre-compiled into the guest kernel via kernel
patch. The principle of CR-bind for memory hot-(un)plug
operations is to designate a specialized memory region that can
be exclusively allocated to a container. In this way, CR-bind
avoids fragmented page distribution, effectively addressing
potential memory fragmentation over time as containers are
frequently created and deleted.

Specifically, upon completion of a container replica fork,
the target RegionID (RID) is stored in the newly created
container’s task struct, and its corresponding ContainerID
(CID) is recorded in a CID-MID map. Subsequently, the
guestOS activates the memory device, which is then hot-
plugged into the region specified by the CID-MID map. When
the container initiates a page allocation request whether via
CoW or a direct allocation method such as mmap, CR-bind
modifies the allocation request’s maximum region index to
ensure that the page request is directed to the targeted region.

Similarly, when a container terminates, CR-bind initiates
region refreshing, and the binded memory device becomes
ready for hot-unplug and offline deactivation. The anonymous
pages and page cache of this container are released, and the
hypervisor deletes the virtual memory device backend on the
host, thereby releasing memory back to the host.

B. Workflow of CR-bind Resource Management

When multiple container replicas of a function coexist
within the same RunD-V sandbox using CR-bind, managing
resource contention among them becomes increasingly com-
plex. In addition to memory, other resources (e.g., CPU and
network) must also be dynamically adjusted and isolated as
required to maintain optimal performance and security.

It becomes essential to not only establish resource limits on
the host’s lightweight cgroup but also to utilize guest cgroups
to manage all resources for multiple container processes within
the microVM. For illustration, we take the CPU resource
scaling as an example, and other resources (e.g., Net TAP
devices) following a similar logic. The specific steps for CPU
vertical scaling in RunD-V are depicted in Figure 11.

First, the RunD-V runtime routes the request to the function
agent. Upon detecting that all containers within the microVM
are busy, RunD-V triggers vertical scaling by invoking CR-
bind to hot-plug a memory region for the container (Step
①). Second, CR-bind will fork the initial container and then

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 9

the memory region is then bound to the container, while the
container remains paused in the background (Step ②). Third,
the agent calls guest cgroups to limit CPU and memory usage
and attaches these limits to the container process (Step ③). The
separation ensures that resource management within the guest
can be handled independently without imposing additional
burdens on host cgroups. Concurrently, RunD-V locates the
lightweight cgroup attached to the microVM and increases
the resource limits according to the container’s specifications
(Step ④). Finally, the RunD-V runtime notifies the agent
within the microVM to add the new container to its scheduling
group, completing the vertical scaling (Steps ⑤ and ⑥).

VIII. METHODOLOGY OF HOLISTIC-SCALING

Supporting scaling-out and scaling-up within RunD-V, a
dedicated strategy is required to optimize load balancing and
maximizes the scaling efficiency of microVMs. A straightfor-
ward method is the vertical-first strategy, where a single mi-
croVM is filled to capacity before horizontally scaling-out the
next microVM. When the fluctuation in function requests does
not require a high frequency of container scaling, this method
can fully utilize the low memory overhead characteristic of
vertical scaling to maximize deployment density. However,
when high concurrency requests necessitate substantial scaling
of function containers, this approach is not optimal.

Firstly, in Linux memory management, the use of mu-
tex locks causes concurrent memory hot-plugging within a
microVM to degrade significantly. Secondly, the container
replicas of vertical scaling that a single microVM can support
is limited due to load balancing consideration (e.g., 8 discussed
in Section IV-B1). When the concurrency demand exceeds this
limit, the system will revert to a higher-overhead horizontal
scaling fashion. Therefore, there is a trade-off to be considered:
leveraging the higher density provided by vertical scaling
while sacrificing concurrency capability.

Based on above investigations, the principle of scaling for
RunD-V should follow two guidelines:

• When the container scaling frequency is low, vertical
scaling should be the primary approach to maximize the
deployment density of functions.

• When the container scaling frequency is high, it indicates
to leverage horizontal scaling-out as well, while perform-
ing vertical scaling-up within multiple microVMs.

To this end, we propose a holistic scaling strategy that com-
bines scaling-out and scaling-up mechanisms by maintaining
a CR-bind Flag. When a microVM is performing vertical
scaling via CR-bind, this Flag is set to True. Suppose there is
a function FunA that needs to create a container, as illustrated
in Figure 12(a). RunD-V first checks whether a candidate
microVM exists in FunA’s microVM pool that is capable of
vertical scaling-up. If such a candidate exists and its number
of inner container replicas is fewer than limit (e.g., 8), the
microVM is locked by setting Flag = True and then released
after the vertical scaling-up operation completes. Otherwise,
if no suitable candidate is found, the system directly triggers
scaling-out to create a new microVM to host the new container.

Figure 12(b) illustrates the logic for recycling container
replicas. When a container remains idle beyond the keep-

FunA
microVM

Pool

candidate

microVM

CR-bind set

Flag=True
Scaling-up

Scaling-out

exist microVM

with Flag=False

next candidate

capacity < 8

return microVM to pool

no microVM with Flag=False CR-bind set

Flag=False

(a) Holistic scaling policy when new a container is launched

candidate

microVM
CR-bind set

Flag=True
Scaling-down

Scaling-in

keep-alive

timeout Flag=False

next candidate

capacity>0return microVM to pool
CR-bind set

Flag=True
capacity=0

FunA
microVM

Pool

(b) Holistic scaling policy when recycling a timeout container

Fig. 12: The holistic scaling strategy of RunD-V that handles
creating and recycling a container in horizontal/vertical way.

alive timeout, RunD-V identifies the microVM that hosts this
container. If that microVM is currently performing memory
hot-unplugging, it is skipped in favor of the next candidate.
Otherwise, RunD-V performs a scaling-down operation to
reclaim this container within the microVM, and once the
microVM is empty, a scaling-in operation is triggered to
recycle this microVM.

By this method, we achieve an overlap of horizontal and
vertical scaling, striking a balance between high-density de-
ployment and high-concurrency startup capabilities.

IX. EVALUATION

In this section, we evaluate the performance of our proposed
guest-to-host runtime template and CR-bind in supporting
high-concurrency startup and high-density deployment.

A. Evaluation Setup

Since the holistic scalable RunD-V incorporates both hor-
izontal and vertical optimizations for serverless runtime, we
evaluate these two dimensions separately.

Scaling-out Baselines: In experiments B,C,D, we disable
CR-bind, at which point RunD-V degress to the Single-Replica
paradigm. This variant cannot support verticall scalng-up,
therefore we refer to it as RunD. We compare RunD with the
state-of-the-art secure container, Kata Containers [10] to eval-
uate the efficiency of our guest-to-host template for microVM
sacling-out. Specifically, we use three popular configurations
of Kata containers: Kata-qemu, Kata-template, and Kata-FC.
Kata-qemu uses QEMU [39] as the hypervisor, Kata-template
uses QEMU while integrating container template, Kata-FC
uses lightweight FireCracker [8] as the hypervisor.

Scaling-up Baseline: In experiments E,F,G, we compare the
performance of the variant RunD (only scaling-out) and RunD-
V that supports both guest-to-host runtime template and CR-
bind (both scaling-out and scaling-up). Besides efficiency of
scaling-up, we compare CR-bind with ACPI hot-plug to assess
the performance of memory hot-unplug operations. They are
all evaluated based on the integration within RunD-V. Table I
shows the detailed setups.

Testbed: we run the experiments on a node with 104
virtual cores, 384GB memory, and two SSD drives of 100GB

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 10

(a) End-to-end startup latency with different concurrency

0 5 10 15 20
Startup latency (s)

0.00

0.25

0.50

0.75

1.00

CD
F

Kata-qemu
Kata-template

Kata-FC
RunD

(b) Latency distribution

Kata-
qemu

Kata-
template

Kata-
FC

RunD0.0

0.5

1.0

1.5

2.0

2.5

3.0

To
ta
l C

PU
 ti
m
e
(s
)

10-concurrency
50-concurrency
100-concurrency
200-concurrency
400-concurrency

(c) CPU time

Fig. 13: The startup metrics with different runtime and concurrency: (a) e2e latencies of concurrent startups. The right figure
shows y ∈ [0, 10]. (b) CDF of startup latencies (200-way concurrent launch). (c) CPU usage of concurrent startups.

TABLE I: Experiment setup in our evaluation.

Configuration

Hardware CPU: 104 vCPUs (Intel Xeon Platinum 8269CY)
Memory: 384GB, two SSD drives: 100GB, 500GB

Software OS: CentOS7, kernel: Linux kernel 4.19.91

Runtime

kata-qemu containerd 1.3.10, kata 1.12.1
kata-FC containerd 1.5.8, kata 2.2.3
kata-template containerd 1.3.10, kata 1.12.1
RunD-V (RunD) containerd 1.3.10

and 500GB. Such specification is widely-used in production
clouds. The 100GB drive is used as the root filesystem of
the host operating system, and the 500GB drive is used by the
secure containers. We use Alpine Linux as the guest operating
systems in the microVM for a low memory footprint.

Measurement: The actual memory usage of a container
is collected using the smem command. In evaluations B, C,
and D, we create pod sandboxes using the crictl com-
mand without including function containers. Since the variant
RunD aims to maximize container startup concurrency and
deployment density only using guest-to-host runtime template,
we initiate empty secure containers without user codes or
data. This approach reflects a common practice in serverless
environments, where empty containers are often started con-
currently for prewarming purposes.

In evaluations E, F, and G, we assess memory hot-plug
efficiency. Since CR-bind focuses on optimizing memory
usage across containers rather than on CPU utilization, we
use the matmul workload from FunctionBench [40] to eval-
uate CR-bind’s memory efficiency. This workload allows us
to thoroughly test CR-bind’s capability to manage memory
effectively. Memory addition or removal, whether for a single
container or through parallel hot-(un)plug operations, is exe-
cuted synchronously for both CR-bind and ACPI hot-(un)plug.
Additionally, we measure end-to-end latency based on the
atomic operations of container creation and deletion.

B. Concurrent Scaling-out Measurement

In this experiment, we focus on three critical metrics related
to user experience: (1) the time needed to start a large number
of sandboxes concurrently, (2) the startup latency distribution
of the sandboxes, and (3) the CPU overhead on the host. The
first metric reveals the throughput of starting sandboxes, and
the second metric reveals the experience of every user.

As for the first metric, Figure 13(a) shows the time needed
to start sandboxes concurrently. In the figure, the x-axis shows
the number of sandboxes to be started concurrently, the y-axis
shows the overall time needed to startup all the sandboxes.

As shown in the figure, RunD uses the shortest time to start
a large number of sandboxes for all concurrency levels. When
200 containers are created concurrently (we already observe
such high-concurrency in Alibaba serverless platform), Kata-
FC, kata-qemu, kata-template, and RunD needs 47.6s, 6.85s
and 2.98s and 1s to create them. Kata-FC requires a much
longer time to startup the sandboxes when the concurrency
is high. This is because Kata-FC uses virtio-blk to create
rootfs, and the performance is poor at high-concurrency, as
we measured in Section IV-A1. There is no such bottleneck
in Kata-template and Kata-qemu. Kata-template simply uses
template to reduce the overhead of guest kernel and rootfs
loading, but the inefficient rootfs mapping, untailored guest
kernel and high host-side overhead of the cgroup operations
still exists. As a result, it performs worse than RunD at high
startup concurrency. The overall optimizations suggest that
RunD provides the performance improvement of about 40%
over its nearest baseline, Kata-template, at high-concurrency
(e.g., 400-way) startup.

As for the second metric, Figure 13(b) shows the latency
distribution of starting each sandbox, when 200 sandboxes are
started concurrently. RunD and Kata-template are able to start
sandboxes in a stable short time, but the latencies of starting
sandboxes with others are out of expected. Users can have
identical good experiences with RunD.

As for the CPU overhead, Figure 13(c) shows the CPU time
needed on the host to startup sandboxes. When the concur-
rency is high, RunD greatly reduces the CPU overhead. For
instance, when 200 sandboxes are started concurrently, RunD
reduces 89.3%, 74.5% and 62.1% CPU overhead compared
with Kata-qemu, Kata-template, and Kata-FC, respectively. In
addition, the CPU overhead of RunD only increases slightly,
when the concurrency increases. This is due to the container
rootfs template and the reduction of compute-intensive opera-
tions in cgroups. Therefore, RunD is scalable in starting more
sandboxes concurrently.

C. Deployment Density of Guest-to-Host Runtime Template
In this experiment, we evaluate the effectiveness of RunD

in increasing the sandbox deployment density. In general, the

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 11

128MB
256MB

512MB
1024MB

2048MB
4096MB

0

50

100

150

200

250
M
em

or
y
ov

er
he

ad
 (M

B) Kata-qemu
Kata-template

Kata-FC
RunD

(a) Specification

1 10 100 500 1000
2000

Kata-qemu
Kata-template

Kata-FC
RunD

(b) Amortization

Fig. 14: The memory overhead of specification and the amor-
tizated memory. The missing point around 2,000 in figure(b)
indicates the over-subscription for physical memory space.

memory used by each container determines the deployment
density, while the CPU time needed by each function invoca-
tion is minor in the serverless platform. Figure 14 shows the
memory overhead when 100 sandboxes are deployed on the
experimental node. In the figure, the x-axis shows the memory
specification of each sandbox.

As observed in Figure 14(a), RunD has the least memory
overhead among four runtimes, and does not increase with
the memory specification. The memory overhead is less than
20MB per sandbox with RunD. Compared to kata-qemu,
kata-template and kata-FC, the overhead of RunD is reduced
by 88.2%, 82.9%, and 76.1%, respectively, even when the
memory specification is 128MB. The memory overhead does
not increase, because the microVM template technique uses
the on-demand memory loading for the containers. Therefore,
the page table required for memory management is determined
by the actually used memory space. On the contrary, the
memory overheads introduced by Kata-qemu and Kata-FC
increase with larger memory specifications, as the page table
is built for all available memory.

Figure 14(b) shows the average memory overhead of sand-
boxes when more sandboxes are deployed on a node. The x-
axis shows the deployment density. As observed, the average
memory overhead reduces with the deployment density, as
the sandboxes share the mapped code/data segments. RunD
reduces the memory overhead by 87.7%, 82.4%, and 75.1%
when 1,000 sandboxes are deployed, respectively, compared
with kata-qemu, kata-template, and kata-FC.

D. Impact of Deployment Density on Scaling-out

When some sandboxes are already deployed on a node,
the performance of starting sandboxes concurrently is af-
fected. Figure 15 shows the time needed to boot 10 and 200
sandboxes, when some sandboxes are already deployed on
the node. The x-axis shows the number of already deployed
sandboxes. The y-axis is in the log10 scale.

When 1,000 sandboxes are already deployed, the time
needed to startup 10 containers increases by 1.69s, 0.41s,
10.8s, and 0.22s compared with the cases in Figure 13(a) with
Kata-qemu, Kata-template, Kata-FC, and RunD. In addition,
the time needed already increases with the number of already
deployed sandboxes. For RunD, the time needed only increases
slightly beacuse of reduced cgroup operations.

100-density 200-density 500-density 1000-density

0.1

1

10

100

St
ar

tu
p

la
te

nc
y

(s
)

kata-qemu(10c)
Delta(200c)

kata-template(10c)
Delta(200c)

kata-FC(10c)
Delta(200c)

RunD(10c)
Delta(200c)

Fig. 15: The end-to-end startup latency at different deploy-
ment densities. (10c/200c means a 10/200-way concurrent
startup, and the Delta means the overhead increment compared
with a 10-way concurrent statrup).

1 2 4 8 16
Number of background VMs

0.4

0.5

0.6

0.7

En
d-
to
-e
nd

 L
at
en

cy
 (s

)

RunD
RunD-V

(a) End-to-end latency

1 2 4 8 16
Number of background VMs

0.0

0.5

1.0

1.5

M
em

or
y
ov

er
he

ad
 (G

B)

RunD
RunD-V

(b) Total memory overhead

Fig. 16: The end-to-end latency and total memory overhead of
burst load (QPS=24) when function have different background
secure container. Each microVM creates 8 containers at most.

We can also observe that, the time needed to start 200
sandboxes is at least 10 times as much as that needed to
start 10 sandboxes at a 1,000-density deployment in all the
tests. The significant increase originates from a large number
of cgroups in the host operating system. Scheduling and
managing containers with these cgroups consume more CPU
cycles, thus resulting in CPU bottlenecks appearing earlier
than a low-density deployment. The increased time is the
smallest with RunD, because it already eliminates many time-
consuming cgroup operations.

E. Popularity Impact for Scaling-up Efficiency

In evaluating the efficiency of vertical scaling in terms of
concurrency capacity and memory usage, we identified two
primary influencing factors. One is the number of microVMs
already created in the background for the current function, and
the other is the number of concurrent requests.

In this experiment, we fixed the number of concurrent QPS
(Queries Per Second) at 24 and studied the impact of the
number of background microVMs on vertical scaling 128MB-
sized containers. It is important to note that the number of
background microVMs reflects the current load popularity to
some extent; the more microVMs there are, the higher the
invocation frequency of the current function.

Figure 16(a) shows that the e2e invocation latencies de-
crease with more microVMs (or as popularity increases),
regardless of whether CR-bind is enabled. When the number of
microVMs reaches 16, the current QPS can be fully managed
through container reuse, so RunD-V will not further trigger
vertical scaling. However, when the number of microVMs is

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 12

4 8 16 24 32
Burst load (QPS)

0.4

0.5

0.6

0.7
En

d-
to

-e
nd

 L
at

en
cy

 (s
)

RunD
RunD-V

(a) End-to-end latency

4 8 16 24 32
Burst load (QPS)

0.0

0.5

1.0

1.5

M
em

or
y

ov
er

he
ad

 (G
B)

RunD
RunD-V

(b) Total memory overhead

Fig. 17: The end-to-end latency and total memory overhead
when 4 background VMs serve different burst loads.

4 8 16 32
Burst load (QPS)

0

10

20

30

Nu
m
 o
f T
rig

ge
re
d
Sc
al
in
g

Horizontal
Vertical

(a) 1 MicroVM

4 8 16 32
Burst load (QPS)

0

10

20

30
Horizontal
Vertical

(b) 2 MicroVMs

4 8 16 32
Burst load (QPS)

0

10

20

30
Horizontal
Vertical

(c) 4 MicroVMs

Fig. 18: The number of triggered horizontal and vertical
scaling when different number of background microVMs exist.

lower, the CR-bind feature effectively reduces the frequency of
scaling-out, decreasing request queuing and container creation
by 57.9% compared to the variant RunD without CR-bind.

Similarly, Figure 16(b) shows that enabling vertical scaling
in RunD-V results in a more efficient amortization of the
guestOS overhead by the containers, leading to a lower overall
memory footprint. Notably, when the number of background
microVMs is fewer than 4, the overlap mechanism of vertical
and horizontal scaling primarily triggers container creation
within microVMs, resulting in lower memory overhead—at
least 40% lower than RunD without CR-bind enabled. How-
ever, when the number of microVMs exceeds 4, background
microVMs are sufficiently numerous, reducing the frequency
of vertical scaling, which in turn increases memory usage.

F. Burst Load Impact for Scaling-up Efficiency

In contrast to the previous experiment, we fixed the number
of background microVMs at 4 and continuously increased the
concurrent QPS to observe its impact on request end-to-end
latency and overall memory overhead.

As shown in Figure 17(a), with an increasing QPS, RunD-
V’s holistic scaling strategy reduces the latency that queuing
for sandboxes creation. For low-popularity functions, the re-
quest processing efficiency at QPS=8 and QPS=16 of RunD
is roughly equivalent to RunD-V’s concurrent processing ca-
pability at QPS=24 and QPS=32.

Similarly, as shown in Figure 17(b), memory usage in-
creases at QPS=24 due to the triggering of horizontal mi-
croVM scaling-out. The reduction in memory usage is pro-
portional to the maximum number of containers that a single
microVM can support. Since we recommend setting this
number to 8, the memory overhead for the same function is
approximately reduced to 1/8.

1 2 3 4 5 6 7 8
Number of concurrent containers

0.0

0.1

0.2

0.3

0.4

Ho
t-u

np
lu

g
la

te
nc

y
(s

)

Latency of CR-bind

CR-bind ACPI0.0

0.2

0.4

0.6

0.8

1.0

Re
so

ur
ce

 o
ve

rh
ea

d CPU usgae
Bandwidth

Fig. 19: The memory hot-unplug comparison when different
number of containers release memory. The overhead is nor-
malized to the resource occupation of a idle container.

Figure 18 illustrates the benefits of vertical scaling-up,
complementing the data shown in Figure 17 and 16. It depicts
the number of horizontal and vertical scaling events initiated
by RunD-V when handling burst loads at various QPS levels
with different number of background microVM. Under high
QPS conditions, RunD-V initially scales out a little number
of microVMs due to memory lock constraints; subsequent
requests are then handled through vertical scaling and reuse
of existing container replicas, reducing end-to-end latency and
average memory consumption.

G. MicroVM Scaling-down and Interference

Although scaling up microVMs requires low latency, the
serverless scheduler do not impose strict latency constraints
for resource recycling, such as deleting containers and memory
devices. As illustrated in Figure 19, the latency for deleting
containers and hot-unplugging memory devices remains low,
even under 8 concurrent requests, thus can meet the real-time
resource monitoring requirements of the scheduler. Our main
concern is whether hot-unplugging memory incurs significant
overhead on other containers within the same microVM.

We manually triggered a container reclamation within the
microVM and monitored the CPU overhead and memory
bandwidth consumption of the thread responsible for hot-
unplugging devices within the guest. The right part of Fig-
ure 19 presents the collected data. Since CR-bind is imple-
mented on top of ACPI hot unplug, it binds the container
process and memory region to avoid the page migration issues
that typically occur during memory device hot-unplugging.
Compared to the resource usage in an idle state, the CPU and
memory bandwidth consumption were reduced from 41.6%
and 56.5% to 10.3% and 9.1%, respectively.

H. Discussion and Future Work

RunD-V is primarily focused on the architecture of secure
containers. However, emerging processors include various
built-in accelerators (e.g., QAT, IAA and DSA), presenting
opportunities to offload the high CPU-overhead and memory-
sensitive operations during secure container launching. The
adaption of these features on hostOS is a promising solution
to futher improve the concurrency/denisty of secure containers.

When discussing the security model of the Multi-Replica
paradigm, containers are not treated as a shareable layer.
Although a container can host multiple user code processes,

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 13

such sharing needs intrusive runtime adaptation which risks
compromising the isolation and correctness of function exe-
cution. Enhanced isolation mechanisms that leverage language
runtimes for managing multiple function processes present a
promising research direction to enable such container sharing.

X. CONCLUSION

In serverless computing, the lightweight and short-term
nature of functions necessitates high-density container de-
ployment and high-concurrency container startup. This work
addresses bottlenecks across the entire software stack and pro-
poses RunD-V, a lightweight and holistic-scalable serverless
secure container runtime. RunD-V achieves its goals through a
guest-to-host runtime template for scaling-out and CR-bind for
scaling-up. The holistic scaling mechanism enables the overlap
of these two scaling methods, further enhancing high-density
deployment and high-concurrency startup capabilities.

ACKNOWLEDGMENTS

This work is partially sponsored by National Natural Sci-
ence Foundation of China (62232011, 62302302, 61832006).
Quan Chen is the corresponding author. Jie Wu’s work was
done while he was on leave working as a scientist in China
Telecom. We acknowledge the Alibaba Cloud for their techni-
cal contributions to horizontal scaling implementations in our
prior work RunD [41], published at USENIX ATC’2022.

We further acknowledge the China Telecom Cloud Com-
puting Research Institute for their research collaboration and
deployment support in advancing the vertical and holistic
scaling methodologies of RunD-V in this extended study.

REFERENCES

[1] Z. Li, Y. Liu, L. Guo, Q. Chen, J. Cheng, W. Zheng, and M. Guo, “Faas-
flow: enable efficient workflow execution for function-as-a-service,”
in ASPLOS ’22: 27th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems. ACM,
2022, pp. 782–796.

[2] R. Buyya, S. N. Srirama, G. Casale, R. N. Calheiros, and et al., “A
manifesto for future generation cloud computing: Research directions
for the next decade,” ACM Comput. Surv., vol. 51, no. 5, pp. 105:1–
105:38, 2019.

[3] M. Shahrad, J. Balkind, and D. Wentzlaff, “Architectural implications
of function-as-a-service computing,” in Proceedings of the 52nd An-
nual IEEE/ACM International Symposium on Microarchitecture, MICRO
2019. ACM, 2019, pp. 1063–1075.

[4] L. Wang, M. Li, Y. Zhang, T. Ristenpart, and M. M. Swift, “Peeking
behind the curtains of serverless platforms,” in 2018 USENIX Annual
Technical Conference, USENIX ATC 2018, Boston, MA, USA, July 11-
13. USENIX Association, 2018, pp. 133–146.

[5] S. Hendrickson, S. Sturdevant, E. Oakes, T. Harter, V. Venkataramani,
A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau, “Serverless compu-
tation with openlambda,” login Usenix Mag., vol. 41, no. 4, p. 33–39,
2016.

[6] S. Barlev, Z. Basil, S. Kohanim, R. Peleg, S. Regev, and A. Shulman-
Peleg, “Secure yet usable: Protecting servers and linux containers,” IBM
J. Res. Dev., vol. 60, no. 4, p. 12, 2016.

[7] M. Mattetti, A. Shulman-Peleg, Y. Allouche, A. Corradi, S. Dolev, and
L. Foschini, “Securing the infrastructure and the workloads of linux
containers,” in 2015 IEEE Conference on Communications and Network
Security, CNS 2015. IEEE, 2015, pp. 559–567.

[8] A. Agache, M. Brooker, A. Iordache, A. Liguori, R. Neugebauer,
P. Piwonka, and D. Popa, “Firecracker: Lightweight virtualization for
serverless applications,” in 17th USENIX Symposium on Networked
Systems Design and Implementation, NSDI 2020, Santa Clara, CA, USA,
February 25-27. USENIX Association, 2020, pp. 419–434.

[9] D. R. Engler, M. F. Kaashoek, and J. W. O. Jr., “Exokernel: An op-
erating system architecture for application-level resource management,”
in Proceedings of the Fifteenth ACM Symposium on Operating System
Principles, SOSP 1995, M. B. Jones, Ed. ACM, 1995, pp. 251–266.

[10] “Kata containers.” https://katacontainers.io/, 2024.
[11] M. Shahrad, R. Fonseca, I. Goiri, G. Chaudhry, and et al., “Serverless

in the wild: Characterizing and optimizing the serverless workload at a
large cloud provider,” in 2020 USENIX Annual Technical Conference,
USENIX ATC 2020, Virtual, July 15-17, 2020. USENIX Association,
2020, pp. 205–218.

[12] P. Olivier, D. Chiba, S. Lankes, C. Min, and B. Ravindran, “A
binary-compatible unikernel,” in Proceedings of the 15th ACM SIG-
PLAN/SIGOPS International Conference on Virtual Execution Environ-
ments, VEE 2019. ACM, 2019, pp. 59–73.

[13] F. Schmidt, “uniprof: A unikernel stack profiler,” in Posters and Demos
Proceedings of the Conference of the ACM Special Interest Group on
Data Communication, SIGCOMM 2017. ACM, 2017, pp. 31–33.

[14] F. Manco, C. Lupu, F. Schmidt, J. Mendes, S. Kuenzer, S. Sati,
K. Yasukata, C. Raiciu, and F. Huici, “My VM is lighter (and safer) than
your container,” in Proceedings of the 26th Symposium on Operating
Systems Principles. ACM, 2017, pp. 218–233.

[15] H. Kuo, D. Williams, R. Koller, and S. Mohan, “A linux in unikernel
clothing,” in EuroSys ’20: Fifteenth EuroSys Conference 2020. ACM,
2020, pp. 11:1–11:15.

[16] I. E. Akkus, R. Chen, I. Rimac, M. Stein, K. Satzke, A. Beck, P. Aditya,
and V. Hilt, “SAND: towards high-performance serverless computing,”
in 2018 USENIX Annual Technical Conference, USENIX ATC 2018,
Boston, MA, USA, July 11-13. USENIX Association, 2018, pp. 923–
935.

[17] J. Cheng, Y. Zhao, Z. Li, Q. Chen, W. Cui, and M. Guo, “Microless:
Cost-efficient hybrid deployment of microservices on iaas vms and
serverless,” in 29th IEEE International Conference on Parallel and Dis-
tributed Systems, ICPADS 2023, Ocean Flower Island, China, December
17-21, 2023. IEEE, 2023, pp. 2303–2310.

[18] L. Zhao, Y. Yang, Y. Li, X. Zhou, and K. Li, “Understanding, predicting
and scheduling serverless workloads under partial interference,” in SC
’21: The International Conference for High Performance Computing,
Networking, Storage and Analysis. ACM, 2021, pp. 22:1–22:15.

[19] Q. Chen, S. Xue, S. Zhao, S. Chen, Y. Wu, Y. Xu, Z. Song, T. Ma,
Y. Yang, and M. Guo, “Alita: comprehensive performance isolation
through bias resource management for public clouds,” in Proceedings
of the International Conference for High Performance Computing,
Networking, Storage and Analysis, SC 2020. IEEE/ACM, 2020, p. 32.

[20] Z. Xu, H. Zhang, X. Geng, Q. Wu, and H. Ma, “Adaptive function
launching acceleration in serverless computing platforms,” in 25th IEEE
International Conference on Parallel and Distributed Systems, ICPADS
2019. IEEE, 2019, pp. 9–16.

[21] A. Mohan, H. Sane, K. Doshi, and S. Edupuganti, “Agile cold starts for
scalable serverless,” in Proceedings of the 11th USENIX Conference
on Hot Topics in Cloud Computing, ser. HotCloud’19. USENIX
Association, 2019, p. 21.

[22] E. Oakes, L. Yang, D. Zhou, K. Houck, T. Harter, A. C. Arpaci-
Dusseau, and R. H. Arpaci-Dusseau, “SOCK: rapid task provisioning
with serverless-optimized containers,” in 2018 USENIX Annual Techni-
cal Conference. USENIX Association, 2018, pp. 57–70.

[23] M. G. McGrath and P. R. Brenner, “Serverless computing: Design, im-
plementation, and performance,” in 37th IEEE International Conference
on Distributed Computing Systems Workshops, ICDCS Workshops 2017.
IEEE Computer Society, 2017, pp. 405–410.

[24] “Firecracker snapshotting,” https://github.com/firecracker-microvm/
firecracker/blob/master/docs/snapshotting/snapshot-support.md, 2024.

[25] M. Nelson, B. Lim, and G. Hutchins, “Fast transparent migration for
virtual machines,” in Proceedings of the 2005 USENIX Annual Technical
Conference, Anaheim, CA, USA, April 10-15. USENIX, 2005, pp. 391–
394.

[26] D. Du, T. Yu, Y. Xia, B. Zang, G. Yan, C. Qin, Q. Wu, and
H. Chen, “Catalyzer: Sub-millisecond startup for serverless computing
with initialization-less booting,” in ASPLOS ’20: Architectural Support
for Programming Languages and Operating Systems. ACM, 2020, pp.
467–481.

[27] K. A. Wang, R. Ho, and P. Wu, “Replayable execution optimized for
page sharing for a managed runtime environment,” in Proceedings of the
Fourteenth EuroSys Conference 2019. ACM, 2019, pp. 39:1–39:16.

[28] D. Ustiugov, P. Petrov, M. Kogias, E. Bugnion, and B. Grot, “Bench-
marking, analysis, and optimization of serverless function snapshots,”
in ASPLOS ’21: 26th ACM International Conference on Architectural

https://katacontainers.io/
https://github.com/firecracker-microvm/firecracker/blob/master/docs/snapshotting/snapshot-support.md
https://github.com/firecracker-microvm/firecracker/blob/master/docs/snapshotting/snapshot-support.md

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 14

Support for Programming Languages and Operating Systems, 2021.
ACM, 2021, pp. 559–572.

[29] M. Brooker, M. Danilov, C. Greenwood, and P. Piwonka, “On-demand
container loading in AWS lambda,” in Proceedings of the 2023 USENIX
Annual Technical Conference, USENIX ATC 2023, Boston, MA, USA,
July 10-12, 2023. USENIX Association, 2023, pp. 315–328.

[30] E. Jonas, J. Schleier-Smith, V. Sreekanti, C. Tsai, and et al., “Cloud
programming simplified: A berkeley view on serverless computing,”
CoRR, vol. abs/1902.03383, 2019.

[31] R. Pike, D. L. Presotto, S. Dorward, B. Flandrena, K. Thompson,
H. Trickey, and P. Winterbottom, “Plan 9 from bell labs,” Comput. Syst.,
vol. 8, no. 2, pp. 221–254, 1995.

[32] “virtio-fs.” https://virtio-fs.gitlab.io, 2024.
[33] R. Russell, “virtio: towards a de-facto standard for virtual I/O devices,”

ACM SIGOPS Oper. Syst. Rev., vol. 42, no. 5, pp. 95–103, 2008.
[34] V. Tarasov, L. Rupprecht, D. Skourtis, and et al., “In search of the ideal

storage configuration for docker containers,” in 2nd IEEE International
Workshops on Foundations and Applications of Self* Systems, 2017.
IEEE Computer Society, 2017, pp. 199–206.

[35] V. Tarasov, L. Rupprecht, D. Skourtis, W. Li, R. Rangaswami, and
M. Zhao, “Evaluating docker storage performance: from workloads to
graph drivers,” Clust. Comput., vol. 22, no. 4, pp. 1159–1172, 2019.

[36] “Amazon s3-cloud object storage,” https://aws.amazon.com/cn/s3/, 2024.
[37] Z. Li, C. Xu, Q. Chen, J. Zhao, C. Chen, and M. Guo, “Dataflower:

Exploiting the data-flow paradigm for serverless workflow orches-
tration,” in Proceedings of the 28th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems, Volume 4, ASPLOS 2023, Vancouver, BC, Canada, March 25-
29, 2023. ACM, 2023, pp. 57–72.

[38] Y. Zhan, A. Conway, Y. Jiao, N. Mukherjee, I. Groombridge, M. A.
Bender, M. Farach-Colton, W. Jannen, R. Johnson, D. E. Porter, and
J. Yuan, “How to copy files,” in 18th USENIX Conference on File and
Storage Technologies, FAST 2020, Santa Clara, CA, USA, February 24-
27. USENIX Association, pp. 75–89.

[39] F. Bellard, “Qemu, a fast and portable dynamic translator,” in Pro-
ceedings of the FREENIX Track: 2005 USENIX Annual Technical
Conference, Anaheim, CA, USA, April 10-15. USENIX, 2005, pp.
41–46.

[40] J. Kim and K. Lee, “Functionbench: A suite of workloads for serverless
cloud function service,” in 12th IEEE International Conference on Cloud
Computing, CLOUD 2019. IEEE, 2019, pp. 502–504.

[41] Z. Li, J. Cheng, Q. Chen, E. Guan, Z. Bian, Y. Tao, B. Zha, Q. Wang,
W. Han, and M. Guo, “Rund: A lightweight secure container runtime
for high-density deployment and high-concurrency startup in serverless
computing,” in 2022 USENIX Annual Technical Conference. USENIX
Association, 2022, pp. 53–68.

XI. BIOGRAPHY SECTION

Zijun Li is currently a postdoc research fellow
working with Prof. Xueyan Tang and Prof. Minyi
Guo, jointly supported by the Nanyang Technolog-
ical University, Singapore, and Shanghai Jiao Tong
University, China. He received his Ph.D. degree from
Shanghai Jiao Tong University, China. His research
interests include cloud-native system and general-
purpose serverless computing.

Chenyang Wu is currently a MSc student in the field
of computer science supervised by Prof. Quan Chen
in Department of Computer Engineering Faculty of
Shanghai Jiao Tong University, China. He received
his BSc degree from Shanghai Jiao Tong Univer-
sity, China. His research interests include serverless
computing, distributed and parallel computing.

Chuhao Xu is currently a Ph.D student in the field
of computer science supervised by Prof. Quan Chen
in Department of Computer Engineering Faculty of
Shanghai Jiao Tong University, China. He received
his B.Sc. degree from Shanghai Jiao Tong Univer-
sity, China. His research interests include serverless
computing and datacenter resource management.

Quan Chen is a professor in the Department of
Computer Science and Engineering, Shanghai Jiao
Tong University, China. His research interests in-
clude High performance computing, task scheduling
and resource management in various architectures,
runtime system and operating system. He got his
Ph.D. degree at June 2014 from the Department of
Computer Science and Engineering, Shanghai Jiao
Tong University, China.

Shuo Quan receivedthe B.S. and M.S. degrees from
the School of Software, Beijing University of Posts
and Telecommunications, Beijing, China, in 2013
and 2016, respectively. He is currently an Engineer
with the China Telecom Research Institute, Beijing.
His current research interests include deep learning,
big data, and cloud computing.

Bin Zha is an Engineer with Alibaba Cloud. His pri-
mary focus includes working on operating systems,
virtualization, serverless computing, and secure con-
tainers. Currently, he is responsible for constructing
the AI serverless infrastructure, ensuring its robust-
ness, scalability, and security.

Qiang Wang is currently a Research and Develop-
ment Expert at Alibaba Cloud, with primary interests
in the technical research and development of security
containers, confidential containers, Al Serverless in-
frastructure, and the landing of enterprise production
applications.

Weidong Han is a Technical Director in the Elastic
Computing department, Alibaba Cloud. His research
interests include virtualization, operating system and
serverless computing. Now he is currently working
on system software technology research and devel-
opment.

Jie Wu (Fellow, IEEE, AAAS and CCF) is the
director of the Center for Networked Computing and
Laura H. Carnell professor with Temple University.
His research interests include mobile computing
wireless networks, routing protocols, network trust
and security, distributed algorithms, applied machine
learning, and cloud computing. He is now on the
editorial board of IEEE/ACM Transactions on Net-
working.

Minyi Guo (Fellow, IEEE and CCF) is currently
Zhiyuan Chair professor and head of the Department
of Computer Science and Engineering, Shanghai
Jiao Tong University, China. His present research
interests include parallel/distributed computing, em-
bedded systems, big data and cloud computing. He is
now on the editorial board of IEEE Transactions on
Parallel and Distributed Systems, IEEE Transactions
on Cloud Computing and JPDC.

https://virtio-fs.gitlab.io
https://aws.amazon.com/cn/s3/

	Introduction
	Related Work
	Background and Motivation
	Secure Container and In-production Requirements
	Security Model and Execution Paradigm
	Multi-Replica Paradigm with Holistic Scaling Mechanism

	Rationale of High-density Deployment and High-concurrency Startup
	Bottlenecks of Horizontal Scaling-out
	Guest-side Container Rootfs
	Host-side Cgroups Efficiency

	Opportunities of Vertical Scaling-up
	GuestOS Overhead Amortization & Marginal Benefit
	Memory Hot-(un)plug Verification

	Design Overview of RunD-V
	Runtime Template for Horizontal Scaling-out
	Container Rootfs Template and Hybrid Mounting
	Lightweight Cgroup Template and Cgroup Pool

	CR-bind for Vertical Scaling-up
	Guest Kernel Tailoring
	Workflow of CR-bind Resource Management

	Methodology of Holistic-scaling
	Evaluation
	Evaluation Setup
	Concurrent Scaling-out Measurement
	Deployment Density of Guest-to-Host Runtime Template
	Impact of Deployment Density on Scaling-out
	Popularity Impact for Scaling-up Efficiency
	Burst Load Impact for Scaling-up Efficiency
	MicroVM Scaling-down and Interference
	Discussion and Future Work

	Conclusion
	References
	Biography Section
	Biographies
	Zijun Li
	Chenyang Wu
	Chuhao Xu
	Quan Chen
	Shuo Quan
	Bin Zha
	Qiang Wang
	Weidong Han
	Jie Wu
	Minyi Guo

