
1

Modeling Real-Time Task Assignment for Mobile
Crowdsourcing in Opportunistic Networks

Haruumi Imamura, Kazuya Sakai, Member, IEEE, Min-Te Sun, Member, IEEE,

Wei-Shinn Ku, Senior Member, IEEE, and Jie Wu, Fellow, IEEE

Abstract—Opportunistic network-based mobile crowdsourcing (MCS) outsources location-based human tasks to a crowd of workers,

where workers with mobile devices opportunistically have contact with the server. While a number of task assignment algorithms have

been proposed for different objectives, real-timeness is not considered. In this paper, we are interested in real-time MCS (RT-MCS), in

which tasks can be generated at any time step, and task assignment is performed in real-time. We first model an abstract RT-MCS and

then instantiate the real-time task assignment problem for opportunistic network-based RT-MCS. A generic real-time task assignment

(RTA) algorithm is designed based on the principle of the greedy approach, where each task is assigned to the best worker with the

highest expected completion probability. To understand the fundamental performance issues, we formulate closed-form solutions for

task completion probability as well as delay. In addition, we identify the critical condition that illuminates the busy state and the not-busy

state of an RT-MCS. Furthermore, the analytical and simulation results demonstrate that our analysis yields close approximation of

simulation results.

Index Terms—Mobile crowdsourcing, MCS, real-time mobile crowdsourcing, task assignment, opportunistic networks.

✦

1 INTRODUCTION

With the spread of smart devices with sensing and commu-

nication capabilities, mobile crowdsourcing (MCS) [1]–[3] has

become a popular application in city as well as community areas,

where a user/server called a requester outsources location-based

human tasks, such as photo taking [4], [5], park reservation [6],

bus arrival time prediction [7], indoor navigation [8]–[11], and

WiFi signal characterization [12]. The users who are willing to

work on these tasks for pay are called workers. Opportunistic

network-based (ON-based) MCS is one type of MCS where

communications among mobile users and access points/servers

are opportunistic. For example, MCS for disaster recovery [13],

[14] is of this type, in which network infrastructure is not readily

available and human contacts play the essential role to form a

network.

An ON is a special type of wireless ad hoc network, where

wireless links are often disconnected and no stable end-to-end

communication link is readily available. In such a network,

communication opportunities among the server and workers are

limited. That is, the server can communicate with each worker

only at a contact, i.e., the event in which the server and a worker

are within the communication range. This opportunistic nature

• Haruumi Imamura is with the Department of Electrical Engineering and

Computer Science, Tokyo Metropolitan University, 6-6 Asahigaoka, Hino,

Tokyo 191-0065, Japan. E-mail: imamura-haruumi@ed.tmu.ac.jp

• Kazuya Sakai is with the Department of Electrical Engineering and

Computer Science, Tokyo Metropolitan University, 6-6 Asahigaoka, Hino,

Tokyo 191-0065, Japan. E-mail: ksakai@tmu.ac.jp

• Min-Te Sun is with the Department of Computer Science and Information

Engineering, National Central University, Taoyuan 320, Taiwan. E-mail:

msun@csie.ncu.edu.tw

• Wei-Shinn Ku is with the Department of Computer Science and Soft-

ware Engineering, Auburn University, Auburn, AL 36849, USA. E-mail:

weishinn@auburn.edu

• Jie Wu is with the Department of Computer and Information Science,

Temple University, 1925 N. 12th St. Philadelphia, PA 19122. E-mail:

jiewu@temple.edu

of ONs forces us to exploit limited communication opportunities

in task assignment algorithm designs. To be specific, the task

assignment and collection delay must be considered when the

server assigns tasks to workers.

A number of works [13], [15]–[22] have been devoted to

designing task assignment algorithms in ON-based MCS. In

these works, a server (or a requester) assigns human tasks to a

crowd of workers with different design goals, such as maximiz-

ing a task completion rate and minimizing makespan. In addi-

tion, quality-awareness [17], expertise awareness [15], incentive

mechanisms [23], and priority-awareness [22] are also important

factors for designing task assignment algorithms. The existing task

assignment problems are batch-based. That is, a set of tasks is

given at the beginning, then the server (or the requester) assigns

tasks to workers in an online or offline fashion, and eventually task

processing is performed within an episode. In other words, the

real-timeness of MCS is not considered, i.e., new tasks are never

generated during an episode. While the real-time task assignment

problem for mobile crowdsourcing has been studied in [24], the

nature of opportunistic networks is not considered.

Therefore, in this paper, we are interested in real-time task

assignment for ON-based real-time MCS (RT-MCS). The contri-

butions of this paper are as follows.

• First, we introduce a framework of real-time mobile crowd-

sourcing (RT-MCS), where tasks are spontaneously gener-

ated at each time step. Then, ON-based RT-MCS is in-

stantiated with the probability distributions that characterize

the randomness of the system. In addition, we formulate a

real-time task assignment problem for RT-MCS, where the

server assigns tasks in its task queue to a crowd of workers

in real time. As performance metrics, the delay as well as

completion rate of tasks are quantified.

• Second, we define the optimal task assignment with respect

to the probability of tasks being completed by their dead-

2

line. Then, we propose a real-time task assignment (RTA)

algorithm based on the principle of the greedy strategy that

approximates the optimal assignment. The key idea of the

proposed algorithm is that each task is assigned to the best

worker with the highest probability of processing the task.

• Third, we derive the critical condition that clarifies the busy

state and the not-busy state for a given set of system param-

eters. In the busy-state, newly generated tasks at the server

cannot be completed by their deadline with a high proba-

bility. To understand the fundamental performance issues of

RT-MCS, we formulate closed-form approximate solutions to

estimate task completion probability and delay from system

parameters.

• Fourth, we conduct extensive computer simulations with

different system parameters to compare numerical and simu-

lation results. The performance evaluation demonstrates that

our models closely approximate the simulation results.

The rest of this paper is organized as follows. Related works

are reviewed in Section 2. In Section 3, the problem of the real-

time task assignment for ON-based RT-MCS is formulated. In

Section 4, the RTA algorithm is proposed. The analyses of the

expected completion probability and delay of completed tasks

are provided in Section 5. In Section 6, the results of computer

simulations are presented. Section 7 concludes this paper.

2 RELATED WORK

2.1 Mobile Crowdsourcing

A number of mobile crowdsourcing (MCS) methods have been

proposed so far. For example, photo crowdsourcing [4], [5]

recruits the workers who are willing to take photos at points of

interest in a city area for pay. Zhou et al. [25] propose a greedy

algorithm for photo selection performed by the server during

the server-to-requester stage. In [26], Hamrouni et al. propose

an MCS framework for event reporting which handles the photo

selection problem and eliminates wrong reports. In [27], an edge

computing-based photo crowdsourcing is proposed for real-time

3D reconstruction for 5G multi-access edge computing environ-

ments. In a park reservation application [6], human power is used

to monitor and find available parking slots in urban areas. In WiFi

signal characterization [12], channel states at points of interest are

surveyed to optimize the configurations of wireless access points.

In [28], Barrón et al. present a mobile crowdsourcing data hub

platform for urban infrastructure maintenance. Han et al. [23]

propose a quality-aware incentive mechanism that identifies an

appropriate price and assigns tasks to a group of workers with

reasonable qualities. Yan et al. [29] design privacy-preserving data

aggregation for an MCS with multiple requesters. Zhang et al. [30]

invent an online task assignment algorithm as well as its priority-

aware extension for a spatio-temporal MCS.

Different MCS methods rely on different mobility models,

such as geometric-based and opportunistic network-based (ON-

based) models. In geometric-based MCS [5], [31], an urban area

is divided into grids, and the semi-Markov model characterizes

the worker’s mobility, i.e., the transitions among grids. On the

contrary, in ON-based MCS, a network is constructed from op-

portunistic contact events among the server (or requesters) and

workers. In this paper, we are interested in ON-based MCS.

2.2 Task Assignment for ON-based Mobile Crowd-

sourcing

The most closely related works to this paper are task assignment

problems in ON-based MCS [13], [16]–[21], where an ON is used

as the underlying network model. In [16], Xiao et al. propose

an offline task assignment (FTA) algorithm and an online task

assignment algorithm (NTA). In FTA, all the assignment decisions

are made at the beginning; in NTA, a decision is made at every

contact event. Xiao et al. [18] propose the average makespan

sensitive online task assignment (AOTA) and the largest makespan

sensitive online task assignment (LOTA). The former tries to

shorten the average delay by the greedy strategy; the latter tries

to reduce the worst-case delay. Mizuhara et al. [13] introduce the

collaborative task assignment problem, where each task must be

processed by more than one worker at the same time. In [17],

Karaguchi et al. design the quality-aware task assignment (QA-

TA) algorithm, in which not only makespan (or delay), but also

the quality of processed tasks is considered. QA-TA applies the

optimal stopping, which is a well-known statistical technique, to

approximate the optimal assignment. Yucel et al. [19] present al-

gorithms for a matching problem with coverage-aware preferences

of requesters and profit-based preferences of workers in a budget

constrained opportunistic MCS. In [20], Yucel et al. introduce the

preference-aware task assignment problem in opportunistic MCS,

considering the uncertainty in worker trajectories and capacity

constraints of workers. Yucel et al. [21] design the metric that

measures the utility of users for completing tasks in specific

regions and propose protocols based on the metric. Sakai et

al. [22] propose online and offline priority-aware tasks assignment

(PNTA and PFTA) algorithms for ON-based MCS, in which some

emergency tasks are prioritized to be processed.

In the aforementioned task assignment problem, a set of tasks

is given at the beginning. The task assignment as well as task

processing are performed within an episode. In this sense, the

existing works are not real-time MCS.

3 PROBLEM FORMULATION

3.1 Generic Real-Time Mobile Crowdsourcing

As shown in Figure 1, a real-time mobile crowdsourcing (RT-

MCS) system is composed of one server and a set of n workers,

denoted by S and W = {w1, w2, · · · , wn}, where wi denotes

the worker with ID i. Let Hall be a set of human tasks (or simply

tasks) that can be generated. Each human task, denoted by hj ∈
Hall, is generated according to some probability distribution and

then stored in S’s task queue, denoted by QS with the maximal

length being BS . Server S will assign one or more tasks to a

worker, say wi, when they establish a communication session.

Each worker wi has a task queue as a buffer to store a set of tasks

assigned by S, which is denoted by Qi with the maximal length

being Bi. For simplicity, we assume Bi = Bmax for all wi ∈W .

Once tasks are assigned, wi can start processing the task at the

head of Qi. Task hj has its workload and deadline, denoted by τj
and Dj , respectively. The workload is the number of time steps

for wi to process task hj , and wi must process hj and return to

server S by Dj . For simplicity, we assume that the workload of

a task is the same for all workers. If hj is not processed within

the deadline Dj , that task will be dropped from S’s or wi’s task

queue, QS or Qi. Server S will collect completed tasks from wi’s

processed task set, denoted by Ji, when they again establish a

communication session.

3

!"#$"# !!

!"

!#

%&#'"#(

)*('

!""#$%&'%(

)*++')(#*%

,-*.

)*('

)*('

,-*.

Fig. 1. An overview of real-time task assignment.

!"#$ %&'($))!*+

!"#$%"&%'()$)

*++%'()$%,"-.+/'/0

1()$%,"-.+/'/0

Fig. 2. The state transition of each worker.

Figure 2 shows the state transition diagram of worker wi,

where there are idle and processing states. Worker wi is in the idle

state at the beginning and will switch to the processing state once

some tasks are assigned by server S. When worker wi finishes

processing all the assigned tasks, it goes back to the idle state.

The time sequence is assumed to be discrete. Let t denote a

time step ranging from 0 to T . An MCS starts from time step 0

and ends at T , and such a period is called an episode. The MCS

considered in this paper deals with real-time task assignments in

the sense that generated tasks are assigned to workers in real-time

and the episode is continuous, i.e., an MCS deals with an infinite

number of tasks (|Hall| =∞) until T =∞.

RT-MCS differs from the existing MCS task assignment prob-

lems, which are considered as batch-based task assignment. To be

specific, in [13], [15]–[18], the server (or the requester) assigns

a finite set of tasks to a crowd of workers. In these works, there

exists a certain time bound at which MCS terminates. Let Dmax

be the deadline of the task that has the largest timestamp among

all the tasks in a given finite set of tasks. In this case, an episode

completes before Dmax or terminates at Dmax, i.e., T ≤ Dmax.

On the contrary, RT-MCS may generate an infinite number of

tasks and there is no specific time step at which an episode ends.

Therefore, we may define the real-time task assignment in RT-

MCS by Definition 1.

Definition 1 (Real-Time Tasks Assignment) The task assign-

ment problem in MCS is said to be the real-time task assignment if

|Hall| = ∞, T = ∞, and Pr[hj is generated at t] > 0
for all t ∈ [0,∞].

Probability distributions, e.g., Poisson process and exponen-

tial distributions, are involved in RT-MCS. To be specific, task

generation as well as establishing communication sessions follow

some probability distributions, which are application dependent.

In this paper, we will instantiate an opportunistic network-based

(ON-based) MCS in the next subsection.

Similar to the existing works [13], [15]–[22], we assume that

workers always accept assigned tasks. This is because workers

participate in an MCS system for payoff, and thus, workers are

assumed to willingly accept tasks. If this assumption does not

hold, the delay will increase. However, the proposed RT-MCS

problem can easily handle the scenario in which workers may

reject assigned tasks. Let ri be the tasks rejection rate of worker

wi. When worker wi rejects assigned tasks, we may ignore the

contact event. In other words, the contact frequency of wi can be

defined by µi · ri, i.e., the inter-meeting time is 1
µi·ri

. Then, the

original RT-MCS is applied for an ON with the modified contact

frequency.

3.2 Instance of Opportunistic Network-Based MCS

An opportunistic network (ON) is a special type of ad hoc

network, where wireless links are intermittently disconnected and

no end-to-end communication path is available. The nodes in

an ON can communicate with each other at a contact. Here, a

contact is defined as an event in which two nodes, e.g., server

S and worker wi, are in the communication range. Hence, the

opportunity of establishing communication sessions depends on

the contact frequencies among server S and a set of workers W .

Let Λ = {µ1, µ2, · · · , µn} be a set of contact frequencies,

where µi denotes the contact frequency between S and wi ∈ W .

In general, µi is assumed to follow the exponential distribu-

tion [32]. In other words, the inter-meeting time between S and

wi is defined by 1
µi

. The probability density function of server S

meeting wi at time step t is obtained by µie
−µit. Let t0 be the

current time step. The probability of S meeting wi within a time

constraint, say T ′, is defined by Equation 1.

∫ T ′

t0

µie
−µitdt = e−µit0 − e−µiT

′

(1)

According to [33], task generation can be modeled as the

Poisson process with parameter λ. That is, a task is generated

for every 1
λ

time step on average.

With the aforementioned natures of ONs and the charac-

teristics of probability distributions, ON-based MCS works as

follows. For each time step, human task hj is generated according

to the Poisson process with parameter λ. In addition, for each

time step, the contact event between server S and each worker

wi ∈ W occurs according to the exponential distribution with

contact frequency µi. At a contact, server S can assign tasks to wi

and collect processed tasks from wi as described in the previous

section.

The notations used in this paper are listed in Table 1.

3.3 The Real-Time Task Assignment Problem

In this paper, two metrics, namely delay and completion rate, are

applied to quantify the performance of task assignment algorithms

as follows.

3.3.1 Delay

Let d(hj) be the delay of human task hj , which is defined by the

period of time required for server S to assign hj to a worker (say

wi), for wi to process hj , and for S to collect processed task hj

from wi. The delay d(hj) can be formulated by the sum of three

kinds of delays as follows.

4

TABLE 1: Definition of notations.

Symbols Definition

S The server

wi Worker wi

n The number of workers

W A set of workers, W = {w1, w2, · · · , wn}
µi The contact frequency between S and wi
1
µi

The inter-meeting time between S and wi

Λ A set of contact frequencies, Λ =
{µ1, µ2, · · · , µn}

λ The task generation rate
1
λ

The inter-generating times of tasks

hj Human task hj

τj The workload of task hj

Dj The deadline of task hj

Hall The set of all the human tasks

H The set of all the generated tasks

QS The server S’s task queue

Qi The worker wi’s task queue

BS , Bi The buffer sizes of QS and Qi

Q̃i The estimated queue state of worker wi

Ji A set of processed tasks of wi

t A time step

T The maximal time step

d(hj) The delay of task hj

c(hj) The indicator function of task hj

C(H) The completion rate of task set H

RT (., .) Expected remaining time

1) The task assignment delay, denoted by da, is defined

as the time elapsed in order for task hj to be assigned

to any worker, say wi, since it has been issued. The task

assignment delay is the sum of the queuing delay in S’s task

queue and the elapsed time since S meets wi, both of which

depend on the contact frequencies Λ and the queue’s state

of wi. Note that the number of tasks polled from S’s queue

depends on the capacity of wi (i.e., wi’s queue’s state).

2) The task processing delay, denoted by dp, is defined as the

required time for worker wi to process tasks hj since wi

receives hj . The processing delay depends on the amount

of time hj is in wi’s task queue and its workload τj .

3) The task collection delay, denoted by dc, is defined as the

required time for server S to collect processed task hj from

worker wi, which depends on the contact frequency between

S and wi, i.e., µi.

Therefore, the delay, d(hj), is defined by Equation 2.

d(hj) = da(hj) + dp(hj) + dc(hj) (2)

Since each task has its deadline Dj , only the tasks with

d(hj) + tj ≤ Dj are essential. Here, tj is the time step at

which task hj was generated. Thus, we define the essential delay,

denoted by d̂(hj), as shown in Equation 3.

d̂(hj) =







d(hj) if d(hj) + tj ≤ Dj

Dj − tj otherwise
(3)

3.3.2 Completion Rate

If task hj is processed and collected by its deadline, i.e.,

d(hj) + tj ≤ Dj , then hj is said to be completed. Let c(hj)
be the indicator of task hj , which equals to 1 if hj is completed

by Dj and 0 otherwise. Let H ⊆ Hall be the set of tasks issued

at server S and Ĥ be the set of completed tasks. We define the

task completion rate, denoted by C(H), as the ratio between the

number of completed tasks and the number of issued tasks as

formulated by Equation 4.

C(H) =
|Ĥ|

|H|
=

∑

∀hj∈H c(hj)

|H|
(4)

3.3.3 The Problem Definition

The most important metric in task assignment is the completion

rate. Thus, we define the real-time task assignment problem for

RT-MCS by Definition 2.

Definition 2 (Real-time Task Assignment Problem) The goal

of the real-time task assignment problem is to maximize the

completion rate C while keeping the essential delay d̂(hj) of each

task hj as small as possible.

3.4 Research Challenges

The real-time task assignment problem is a new class of task

assignment problems for MCS, and we are facing new research

challenges listed as follows.

• Challenge 1: Most of the existing task assignment algorithms

are batch-based, where the server (also called the requester)

assigns a given set of tasks to a crowd of workers and an

episode has a time bound. In other words, the task assignment

strategy can be derived with a complete model of an MCS,

i.e., the server knows the number of tasks, the workload of

each task, the contact frequency of each worker, and so on.

On the contrary, tasks may or may not be generated at each

time step in RT-MCS, and the episode is continuous. In this

case, the server must seek to find a better task assignment

strategy with incomplete knowledge of the task set. These

differences force us to take a different design approach from

the existing ones. Therefore, the first challenge is how to

integrate not only contact frequencies but also task generation

rate into algorithm designs.

• Challenge 2: In RT-MCS, at every contact with a worker, the

server decides whether or not to assign tasks to the worker

depending on many factors, e.g., the workload as well as

deadline of tasks, the contact frequency, and the worker’s

queue status. However, the worker’s capacity is time-varying,

which affects the processing delay and contact delay. There-

fore, the second challenge is how to model the time-varying

state of each worker to predict the expected processing delay

and contact delay toward deriving the closed-form solutions

of task completion probability and delay.

• Challenge 3: When too many tasks are generated with

respect to the capacity of an MCS, the newly generated

tasks cannot be completed within their deadlines with a

high probability. The state of such a situation is called the

busy state; otherwise, an MCS is said to be in the not-

busy state. The critical condition is extremely important

for fundamental understanding of the performance bound of

an MCS. Therefore, the third challenge is to discover the

5

critical condition of MCS’s busy state based on the system

parameters.

While some task assignment algorithms consider not only task

completion rates and delay but also expertise and reputation of

workers, we exclude such considerations from this paper. Our RT-

MCS is built upon an opportunistic network, where the contact

events among the requester and workers are opportunistic, i.e., the

opportunities that the requester can assign tasks to workers are

limited. Therefore, we emphasize the network aspect of the task

assignment particularly arisen in opportunistic networks without

considering the expertise/reputation of workers.

4 REAL-TIME TASK ASSIGNMENT ALGORITHM

4.1 Overview

In this section, the real-time task assignment (RTA) algorithm is

proposed, in which tasks are randomly generated according to the

Poisson distribution and server S dynamically assigns these tasks

to a crowd of workers at contacts.

First, the expected optimal assignment is introduced which

defines the best worker to process task hj . Here, the best worker

refers to the worker with the highest probability of processing

task hj and returning the processed task to server S by deadline

Dj . To this end, we will introduce the concept of the expected

remaining time, and then maximizing the expected remaining time

is equivalent to maximizing the completion probability.

In reality, the optimal assignment is unfeasible due to many

factors. Thus, we will design a greedy-based algorithm that deter-

mines the best worker based on server S’s state and worker wi’s

state for all wi ∈ W by approximating the expected remaining

time.

4.2 Expected Optimal Task Assignment

In this section, the expected optimal task assignment, which max-

imizes the completion rate, is formulated. Note that the expected

optimal task assignment differs from that of the batch-based task

assignment problem in the sense that the optimal assignment

defines the best worker, say w∗, who can process a given task,

hj , with the highest probability among all the workers.

Let RT (wi, hj) be the remaining time after server S collects

processed task hj from worker wi, which is defined by Equation 5.

RT (wi, hj) = Dj − t− da(hj)− dp(hj)− dc(hj) (5)

Let Wc(t) be the set of workers that server S has contact with

at time step t. For simplicity, we assume that task hj is generated

at time step t = 0. Assume that task hj is located at the head of

server S’s queue QS , and worker wi has no task in her task queue,

i.e., Qi = ∅. Such conditions can be met if |W | = ∞ (i.e., there

will be at least one worker with no task in her task queue) and

|Wc(t)| = ∞. That is, all the tasks in the queue are immediately

assigned to the workers in Wc(t). As a result, there will be no

queue delay at the server’s queue QS , and da(hj) is dominated

by the inter-meeting time. Thus, RT (wi, hj) is bounded from

above by Equation 6.

RT (wi, ht) ≤











Dj − τj −
1

µi

if wi ∈Wc(t)

Dj − τj −
2

µi

otherwise
(6)

We will show that minimizing the delay of task hj (i.e.,

maximizing the remaining time) is equivalent to maximizing

!

"!

!

"!

!

""

!!

!!

"!

""

Fig. 3. An example of optimal task assignment.

the completion probability of hj . Let c(wi, hj) be the indicator

function that returns 1 if task hj is completed by worker wi and

collected by server S by deadline Dj , and 0 otherwise. We may

derive Theorem 1.

Theorem 1 Pr[c(wi, hj) = 1] > Pr[c(wk, hj) = 1] for all

wk ∈W\{wi}, if and only if RT (wi, hj) > RT (wk, hj) holds.

Proof: The probability of c(wi, hj) = 1 at a particular time

instance t is formulated by Equation 7.

Pr[C(wi, hj) = 1]=1− exp

[

−µi

(

RT (wi, hj) +
1

µi

)]

(7)

=1−
1

exp [µiRT (wi, hj) + 1]
(8)

Hence, Pr[c(wi, hj) = 1] is monotonically increased when

RT (wi, hj) increases. Therefore, the above claim must be true.

The optimal assignment of hj is defined by the worker that

maximizes RT (wi, hj) for all wi ∈W by Definition 3.

Definition 3 The optimal assignment of hj is defined by worker

w∗, such that w∗ = argmax
∀wi∈W

RT (wi, hj).

Example of the optimal assignment Figure 3 shows an example

of the optimal task assignment. Consider that there are two

workers, w1 and w2, whose expected inter-meeting times are
1
µ1

= 40 and 1
µ2

= 30, respectively. Assume that task h1

with τ1 = 30 and D1 = 200 is issued at t = 0. Server

S has a contact with w1 at t = 10, and task h1 is at the

head of QS . If server S will determine which of w1 and w2

is the best worker to assign h1 to, according to Equation 5, we

can deduce RT (w1, h1) = 200 − 10 − 30 − 40 = 120 and

RT (w2, h1) = 200 − 10 − 30 − 30 − 30 = 100. Hence,

argmax
wk∈{w1,w2}

RT (wk, h1) = w1, and worker w1 is the best worker

for assigning task h1 to.

4.3 Expected Delay

The key to identifying the best worker for processing each task

is to approximate the expected remaining time in which the

delay of tasks must be estimated. The remaining time when

worker wi processes task hj is computed by RT (wi, hj) =
Dj − da(hj) − dp(hj) − dc(hj). However, all three kinds of

delays involve random variables. Among them, the task collection

delay dc(hj) can be easily estimated by 1
µi

.

6

(a) At t = 0, S meets w1. (b) At t = 15, S meets w1. (c) At t = 20, S meets w2. (d) At t = 35, S meets w1.

Task assignment delay Task processing delay Task collection delay

Fig. 4. Example of the real-time task assignment algorithm.

For the assignment delay and processing delay, we will

estimate da(hj) and dp(hj) as elaborated on the subsequent

subsections.

4.3.1 Expected Assignment Delay

For server S to assign task hj to a worker, the task must be at the

head of her task queue, QS . Thus, the remaining time toward the

deadline when hj moves to the head of QS will be Dj − t, where

the t represents the current time step. Recall that Wc(t) denotes

a set of workers who are in contact with server S at time step t.
If wi ∈ Wc(t), there will be no assignment delay for server S to

assign hj to wi. Otherwise, it will take 1
µi

on average. Therefore,

the assignment delay, da(hj), can be approximated by Equation 9.

da(hj) ≈







0 if wi ∈Wc(t)
1

µi

otherwise
(9)

4.3.2 Expected Processing Delay

For worker wi and task hj , the expected processing time of hj is

defined by the sum of the workload of the tasks that worker wi

currently has in her task queue, denoted by Qi, and the workload

of hj . However, server S does not have direct access to Qi.

Hence, we define the estimated queue state of worker wi at time

step t by Q̃i. Thus, processing delay dp(hj) can be estimated by

Equation 10.

dp(hj) ≈
∑

∀hk∈Q̃i

τk + τj (10)

4.3.3 Expected Remaining Time

The expected remaining time of hj when processed by worker wi

is approximated by Equation 11.

RT (wi, hj) = Dj − t− da(hj)− dp(hj)− dc(hj)

≈































Dj − t−





∑

∀hk∈Q̃i

τk + τj



−
1

µi

if wi ∈Wc(t)

Dj − t−





∑

∀hk∈Q̃i

τk + τj



−
2

µi

otherwise

(11)

4.4 RTA Algorithm

The input to the RTA algorithm includes server S, a set of workers

W , a set of human tasks Hall, a set of contact frequencies Λ,

and a task generation rate λ. In addition to these parameters, the

server S’s local variables include QS and Q̃i for all wi ∈ W ,

whose sizes are bounded by BS and Bmax, respectively. On the

contrary, worker wi has two local variables, Qi and Ji, both of

which are bounded by Bi = Bmax for all wi ∈ W . Here, Ji is

the set of tasks completed by wi.

The pseudocode of RTA is shown in Algorithm 1. The server

S’s task queue QS , the estimated worker’s state Q̃i, the worker

wi’s task queue Qi, and the worker wi’s processed task set Ji for

all wi ∈ W are initialized as empty sets. At each time step, a

new task is generated by the Poisson distribution with parameter

λ, which is written as h ←Poisson Hall. Then, the new task h is

enqueued to QS .

Upon having contact with worker wi at time step t, server

S runs the task assignment decision as shown in lines 7 to 16.

Server S peeks the task at the head of QS , say hj . Then, server

S approximates the best worker for processing tasks hj by w∗ =
argmax
∀wk∈Ŵ

RT (wk, hj), where Ŵ is a set of available workers with

their task queue not being full, i.e., Ŵ ⊆W such that 0 ≤ |Q̃i| <
Bi for all wi ∈ Ŵ . If w∗ = wi, then the contacted worker wi

is the best. In this case, server S assigns hj to wi and adds hj

to its local variable Q̃i. At the worker side, the assigned task is

enqueued to wi’s task queue, Qi. If worker wi is in the idle state,

she will switch to the processing state. Otherwise, server S skips

this assignment since wi is not the best one. Should the deadline

of a task expire, i.e., t > Dj for hj , then task hj is dropped from

QS (and from Q̃i if necessary).

The worker’s processes are shown in lines 17 to 22. At each

step, worker wi processes task hj at the head of Qi, which

will take τj time steps. When hj finishes task processing, hj is

removed from Qi and added to Ji. Note that Ji never overflows,

since Qj and Ji are of the same length. If Qi becomes empty, then

wi goes to the idle state. Otherwise, it will stay in the processing

state.

Upon having contact with server S, worker wi returns the

processed tasks to server S. The completed tasks are removed

from Ji. At the server side, the completed tasks are removed from

Q̃i. Should the deadline of task hj expire, i.e., Dj ≥ t, then task

hj will be dropped from Qi or Ji.

Example of the real-time task assignment algorithm Figure 4

shows an example of how server S assigns tasks by RTA. In

this example, there are three workers, w1, w2, and w3, whose

inter-meeting times 1
µ1

, 1
µ2

, and 1
µ3

are set to be 10, 15, and 25,

respectively. Assume that server S has three tasks in its queue,

7

Algorithm 1 RTA(S, W , Λ, λ, Hall)

1: /* Initialization */

2: Server S initializes Qs ← ∅ and Q̃i ← ∅ for 1 ≤ i ≤ n.

3: Worker wi initializes Qi, Ji ← ∅ for 1 ≤ i ≤ n.

4: /* Task generation at server S */

5: h←Poisson Hall.

6: h is enqueued to QS .

7: /* Task assignment : server S meets with worker wi*/

8: Peek hj at the head of QS .

9: w∗ ← argmax
∀wi∈W

R(wi, hj).

10: if w∗ = wi and |Qi| < Bmax then

11: S assigns hj to wi and adds hj to Q̃i

12: wi enqueue hj to Qi.

13: if wi is in the idle state then

14: wi goes to the processing state.

15: else

16: S does not assign hj to wi.

17: /* Task processing at worker wi */

18: wi processes hj at the head of Qi.

19: if wi finishes processing hj then

20: wi removes hj from Qi and adds it to Ji.
21: if Qi = ∅ then

22: wi goes to the idle state.

23: /* Task collection : server S meets with worker wi */

24: if Ji is not empty then

25: S collects all the tasks in Ji from wi.

26: wi initializes Ji ← ∅.
27: /* Handling the tasks with missed deadline */

28: if there exists hj such that t ≥ Dj in QS then

29: hj is dropped from QS .

30: else if there exists hj such that t ≥ Dj in Qi (or Ji) then

31: hj is dropped from Qi (or Ji) and Q̃i.

say QS = [h0, h1, h2] at time step t = 0. The workload and

deadline of these tasks are set to be τ0 = 30, D0 = 100,

τ1 = 20, D1 = 170, τ2 = 25, and D2 = 135. At the

beginning, each worker has no task in her queue, i.e., Qi = ∅
for 1 ≤ i ≤ 3. Assume that server S meets with w1 at

t = 0. Server S computes the expected remaining time for each

worker and obtains RT (w1, h0) = 90, RT (w2, h0) = 70, and

RT (w3, h0) = 50, as shown in Figure 4 (a). Since RT (w1, h0)
is larger than the others, server S will assign h0 to w1. Then,

worker w1 starts processing task h0. Consider that server S meets

worker w1 again at t = 15. The state of task assignment is as

shown in Figure 4 (b). At this moment, the expected remaining

time will be RT (w1, h1) = 115, RT (w2, h1) = 125, and

RT (w3, h1) = 105, respectively. At t = 15, worker w1 has

not finished task h0, and as a result, worker w1 is not the best

worker for processing task h1. In fact, assigning tasks to w2 results

in the largest remaining time. Hence, server S skips this contact

event with worker w1. At t = 20, S meets w2, S computes the

remaining time of each worker and obtains RT (w1, h1) = 100,

RT (w2, h1) = 135, and RT (w3, h1) = 100, as shown in

Figure 4 (c). Server S assigns task h1 to worker w2, because

RT (w2, h1) has the largest value among the other remaining

times. After this, assume that server S has a contact with worker

w1 at t = 35. At this moment, worker w1 is supposed to finish

task h0 at time step 30, since the task processing of h0 starts

at time step 0 and workload τ0 = 30. Thus, worker w1 returns

processed task h0 to server, and worker w1 has no tasks in her

queue Q1. On the contrary, worker w2 is still processing h1.

Thus, the state of task assignment is illustrated in Figure 4 (d).

The server computes RT (w1, h2) = 90, RT (w2, h2) = 50, and

RT (w3, h2) = 50, and concludes that worker w1 is the best

worker. Then, task h2 is assigned to worker w1.

5 ANALYSIS OF REAL-TIME TASK ASSIGNMENT

In this section, we first derive the critical condition to categorize

the state of RT-MCS into either the busy state or not-busy state.

If the RT-MCS is in the busy state, newly created tasks will not

be completed by their deadline with a high probability. Then, we

will model the expected completion probability of tasks and the

expected delay of completed tasks.

5.1 Critical Condition

Let µ̄, τ̄ , and D̄ be the average contact frequency of workers,

the average workload of tasks, and the average deadline of tasks,

respectively. The expected number of unprocessed tasks that a

worker has, denoted by N(τ̄), is formulated as follows.

N(τ̄) =
(τ̄ + 1

µ̄
) · λ

n
(12)

Recall that the delay of task hj is the sum of the assignment delay

da(hj), processing delay dp(hj), and collection delay dc(hj).
From Equation 12, the expected processing delay of an arbitrary

task, denoted by d̃p, is derived as follows.

d̃p = (N(τ̄) + 1) · τ̄ (13)

We introduce the effective contact frequency of an unspecified

worker, denoted by µ̂, which incorporates the contact frequency

and the expected workload of each worker, as follows.

µ̂ =
1

1
µ̄
+ (d̃p − τ̄)

(14)

Let ρ be the utilization of a worker’s task queue. Since the

frequency of contact with any of n workers can be obtained by

n · µ̄′, the utilization of a task queue is formulated by Equation 15.

ρ =
λ

n · µ̂
(15)

Let d̃ be the delay of a newly created task, which can be estimated

by the sum of assignment, processing, and collection delays, as

shown in Equation 16.

d̃ =
1

µ̂
+ (N(τ̄) +

1

n
) · τ̄ +

1

µ̄
(16)

The critical condition can be defined by Definition 4.

Definition 4 (Critical Condition) RT-MCS is said to be in the

busy state if Equation 17 holds, and in the not-busy state other-

wise.

ρ > 1−
1

n · µ̂ · (D̄ − d̃)
(17)

5.2 Completion Probability Analysis

The completion probability is defined as the probability that

unspecified task h is completed within its deadline. Recall that

c(h) is the indicator function that returns 1 if h is completed by

its deadline and 0 otherwise. We will approximate Pr[c(h) = 1].

8

5.2.1 Completion Probability Analysis in The Not-busy

State

Using the expected effective contact frequency of a worker, the

expected queuing delay in the not-busy state is computed based

on the queuing theory as follows.

d̃a =
1

n · µ̂− λ
(18)

Then, the expected completion probability of a task is formulated

by Equation 19.

Pr[c(h) = 1] =

∫ D̄−d̃a−d̃p

0
µ̄e−µ̄tdt

= 1− exp[−µ̄(D̄ − d̃a − d̃p)]

(19)

Here, D̄ − d̃a − d̃p is the remaining time for server S to collect

processed task h from a worker.

5.2.2 Completion Probability Analysis in The Busy State

In the busy state, some tasks could be dropped. Let N ′(τ̄) be the

size of a worker’s task queue for the busy state. Since many tasks

will be dropped from a worker’s task queue, N ′(τ̄) is relatively

small compared to N(τ̄). In addition, we define the expected

processing delay and the expected effective contact frequency

for the busy state, denoted by d̃′p and µ̂′, respectively. These

parameters can be estimated by Equations 20, 21, and 22.

N ′(τ̄) =











N(τ̄) ·
n · 1

τ̄

λ
if λ >

n

τ̄

N(τ̄) otherwise

(20)

d̃′p = (N ′(τ̄) + 1) · τ̄ (21)

µ̂′ =
1

1
µ̄
+ (d̃′p − τ̄)

(22)

Using µ̂′, the task dropping rate at server S’s task queue, denoted

by rS , can be formulated as follows.

rS =











n · µ̂′

λ
if λ ≥ n · µ̂′

1 otherwise

(23)

Then, the expected completion probability of tasks in the busy

state can be derived by Equation 24.

Pr[c(h) = 1] = rS

∫ D̄−(d̃′

p−τ̄)− 1

µ̄

0
µ̂′e−µ̂′tdt

= rS(1− exp[−µ̂′(D̄ − (d̃′p − τ̄)−
1

µ̄
)])

(24)

Here, D̄ − (d̃′p − τ̄) − 1
µ̄

indicates the remaining time for server

S to assign task h to any worker.

5.3 Delay Analysis

The delay of a completed task is defined as the number of time

steps for a task to be completed since it was generated. For the

busy state, the delay of tasks may be greater than the duration of

remaining until their deadline. As we define the essential delay in

Equation 3, the delay of only the completed tasks are important.

Thus, we will approximate the expected delay, d̃, of tasks for the

not-busy state.

Recall that d̃ is the sum of d̃a, d̃p, and d̃c. The assignment

delay can be obtained from Equation 18 and the processing delay

is formulated as (1 + ⌊N(τ̄)⌋) · τ̄ . In addition, the collection

delay is simply 1
µ̄

. Therefore, the expected delay of tasks can be

formulated by Equation 25.

d̃ = d̃q + d̃p + d̃c

=
1

n · µ̂− λ
+ (1 + ⌊N(τ̄)⌋) · τ̄ +

1

µ̄

(25)

The expected delay for the busy state is omitted, since the delay

of a newly created task, say d̂(hj) of hj , will be Dj with a high

probability.

6 PERFORMANCE EVALUATION

To evaluate the proposed analysis model, simulation is conducted.

The simulation settings are presented as follows.

6.1 Simulation Configuration

In our simulations, a mobile crowdsourcing system consists of one

server S and a set of n workers, W = {w1, w2, · · · , wn}, where

n ranges from 5 to 60. The inter-meeting time between server

S and each worker wi ranges from 5 to 50 time steps, and its

maximal variance is set to be 0.5µ̄, where µ̄ is the average contact

frequency. Each task hj is randomly generated according to the

Poisson distribution with parameter λ. The inter-generating times

of tasks 1/λ ranges from 5 to 25 time steps. The task workload

τj ranges from 10 to 100 time steps and the deadline of task Dj

ranges from 150 to 1050 time steps. The maximal variances of

task workload and deadline are set to be 0.5τ̄ and 0.5D̄, where τ̄
and D̄ are the average task workload and average duration until

deadline, respectively.

Depending on the parameter setting, a mobile crowdsourcing

system is either in the busy-state or not-busy-state. We will

indicate such a critical condition for individual simulation results.

The probability distributions for contact frequencies and task

generations are based on the observations in the works [32],

[33]. In order to make our simulations as reasonable as possible,

a various set of parameters are given to approximate the task

completion rate and delays. In addition, the server can store a

sufficiently large number of tasks in its hard disk, and thus, the

queue length limitation is excluded from the consideration of our

simulations.

Each simulation lasts 7000 time steps, which is sufficiently

large as a continuous episode. For each set of parameters, 1000

simulation experiments are conducted and the average perfor-

mance is computed.

As performance metrics, the completion rate and delay are

considered. The former is defined as the ratio between the number

of completed tasks collected by the server and the number of tasks

generated at the server. The latter is defined as the number of time

steps for a task to be collected by the server elapsed starting from

the time step when the task was issued.

6.2 Model Validations

Figures 5, 6, 7, 8, and 9 present the completion rate of tasks

for both the busy and not-busy states. In these figures, each

point illustrates the average completion rate of tasks, and the

range represents the variations of the completion rate obtained

by simulations.

9

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30 35 40 45 50

C
o

m
p

le
ti

o
n

 r
at

e

The number of workers

Analysis: 1/λ = 5
Simulation: 1/λ = 5
Analysis: 1/λ = 10

Simulation: 1/λ = 10
Analysis: 1/λ = 15

Simulation: 1/λ = 15

Fig. 5. The completion rate w.r.t. the number of workers.

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50 60 70 80 90 100

C
o

m
p

le
ti

o
n

 r
at

e

The average workloads

Analysis: 1/λ = 5
Simulation: 1/λ = 5
Analysis: 1/λ = 10

Simulation: 1/λ = 10
Analysis: 1/λ = 15

Simulation: 1/λ = 15

Fig. 6. The completion rate w.r.t. the average workloads.

 0

 0.2

 0.4

 0.6

 0.8

 1

 200 300 400 500 600 700 800 900 1000

C
o

m
p

le
ti

o
n

 r
at

e

The average deadline

Analysis: 1/λ = 5
Simulation: 1/λ = 5
Analysis: 1/λ = 10

Simulation: 1/λ = 10
Analysis: 1/λ = 15

Simulation: 1/λ = 15

Fig. 7. The completion rate w.r.t. the average deadline.

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30 35 40 45 50

C
o

m
p

le
ti

o
n

 r
at

e
The average inter-meeting time of workers

Analysis: 1/λ = 5
Simulation: 1/λ = 5
Analysis: 1/λ = 10

Simulation: 1/λ = 10
Analysis: 1/λ = 15

Simulation: 1/λ = 15

Fig. 8. The completion rate w.r.t. the average inter-meeting times of
workers.

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30 35 40 45 50

C
o

m
p

le
ti

o
n

 r
at

e

The average inter-generating time of tasks

Analysis: 1/µ
-
 = 50

Simulation: 1/µ
-
 = 50

Analysis: 1/µ
-
 = 45

Simulation: 1/µ
-
 = 45

Analysis: 1/µ
-
 = 40

Simulation: 1/µ
-
 = 40

Fig. 9. The completion rate w.r.t. the inter-generating times of tasks.

 95

 100

 105

 110

 115

 120

 125

 130

 15 20 25 30 35 40 45 50 55 60

D
el

ay

The number of workers

Analysis: 1/λ = 15
Simulation: 1/λ = 15

Analysis: 1/λ = 20
Simulation: 1/λ = 20

Analysis: 1/λ = 25
Simulation: 1/λ = 25

Fig. 10. The delay of completed tasks w.r.t. the number of workers.

Figure 5 shows the completion rate of tasks for different values

of inter-generating times of tasks with respect to the number of

workers. As can be seen in the figure, the completion rate increases

in proportion to the number of workers because increasing the

number of workers creates more opportunities for the server to

assign tasks, and a set of workers can process tasks in parallel.

Note that when ρ ≥ 1 (i.e., n ≤ 35 when 1
λ
= 5, n ≤ 20 when

1
λ
= 10, and n ≤ 10 when 1

λ
= 15), the completion rate is low

because the server’s queue will grow long, and many tasks will

be dropped. For both the not-busy and busy states, the analytical

results present the close approximation of the simulation results.

Figure 6 depicts the completion rate of tasks for different inter-

generating time of tasks with respect to the average workload. It

is intuitive that the completion rate decreases as the workload of a

task increases. This is because the larger the workload, the more

time a worker takes to process that task. This implies that the

total number of tasks that can be completed by the fixed number

of workers decreases. Furthermore, there are significantly lower

opportunities for the server to assign tasks to workers when the

system is in the busy state (i.e., τ̄ ≥ 30 when 1
λ
= 5 and τ̄ ≥ 80

when 1
λ
= 10). The analytical results present a similar trend as the

simulation results for both the not-busy state and the busy state.

Figure 7 gives the completion rate of tasks for different inter-

generating times of tasks with respect to the average deadline.

As the average deadline of tasks increases, the completion rate

increases. This is simply because workers will have sufficient

time to process tasks when the deadline is long. When 1
λ

= 5,

the system is extremely busy and many tasks have to wait at

the server’s queue before they are assigned to workers. Thus,

the completion rate when 1
λ

= 5 is much lower than the others

10

 20

 40

 60

 80

 100

 120

 140

 160

 10 20 30 40 50 60 70 80 90 100

D
el

ay

The average workloads of tasks

Analysis: 1/λ = 15
Simulation: 1/λ = 15

Analysis: 1/λ = 20
Simulation: 1/λ = 20

Analysis: 1/λ = 25
Simulation: 1/λ = 25

Fig. 11. The delay of completed tasks w.r.t. the average workloads.

 0

 20

 40

 60

 80

 100

 120

 140

 200 300 400 500 600 700 800 900 1000

D
el

ay

The average deadline of tasks

Analysis: 1/λ = 15
Simulation: 1/λ = 15

Analysis: 1/λ = 20
Simulation: 1/λ = 20

Analysis: 1/λ = 25
Simulation: 1/λ = 25

Fig. 12. The delay of completed tasks w.r.t. the average deadline.

 80

 90

 100

 110

 120

 130

 140

 150

 160

 5 10 15 20 25 30 35 40 45 50

D
el

ay

The average inter-meeting time of workers

Analysis: 1/λ = 15
Simulation: 1/λ = 15

Analysis: 1/λ = 20
Simulation: 1/λ = 20

Analysis: 1/λ = 25
Simulation: 1/λ = 25

Fig. 13. The delay of completed tasks w.r.t. the average inter-meeting
time of workers.

 90

 100

 110

 120

 130

 140

 150

 160

 10 15 20 25 30 35 40 45 50 55

D
el

ay
The average inter-generating time of tasks

Analysis: 1/µ
-
 = 35

Simulation: 1/µ
-
 = 35

Analysis: 1/µ
-
 = 30

Simulation: 1/µ
-
 = 30

Analysis: 1/µ
-
 = 25

Simulation: 1/µ
-
 = 25

Fig. 14. The delay of completed tasks w.r.t. the inter-generating
times of tasks.

regardless of the deadlines. For both the not-busy and busy states,

the analytical results present relatively close approximations of the

simulation results.

Figure 8 shows the completion rate of tasks for different values

of inter-generating times of tasks with respect to the average inter-

meeting times between the server and a worker. As can be seen

in the figure, the completion rate decreases as the average inter-

meeting time of workers increases, since increasing the inter-

meeting time of workers reduces the opportunities for the server

to assign tasks. As a result, many tasks must wait for a long time

in the server’s queue before they are assigned to workers. When
1
λ
= 5 (i.e., the system is in the busy state), the completion rate

of tasks is much lower than that of other cases. The analytical

results present a similar trend as the simulation results for both the

not-busy and busy states.

Figure 9 illustrates the completion rate of tasks for different

average inter-meeting times between the server and a worker

with respect to the inter-generating times of tasks. As the inter-

generating times of tasks increases, the completion rate increases.

This is because increasing the inter-generating times of tasks

reduces the number of tasks issued at the server. When 1
λr
≤ 10,

the system is in the busy state and the completion rate of tasks is

much lower than that of the other cases. For both the not-busy and

busy states, the analytical results present the close approximations

of the simulation results.

Figures 10, 11, 12, 13, and 14 present the delay of completed

tasks for the not-busy state. In these figures, each point depicts

the average delay of completed tasks, and the range represents the

variations of delay obtained by simulations.

Figure 10 shows the delay of completed tasks for different

values of inter-generating times of tasks with respect to the number

of workers. As shown in the figure, the delay of the completed

tasks gradually decreases as the number of workers increases.

This is because there are more opportunities for the server to

assign tasks to workers when there are more workers in the system.

However, when there exists a sufficient number of workers in the

system, say 35, the delay remains mostly the same. When the

system is in the not-busy state, the difference between analytical

and simulation results is not that significant.

Figure 11 illustrates the delay of completed tasks for different

values of inter-generating times of tasks with respect to the average

workload of tasks. It is intuitive that the larger workload causes

workers to take a longer time to process tasks. In other words, a

fixed number of workers completes fewer tasks when the workload

is large. In fact, as can be seen in the figure, the delay of the

completed tasks increases in proportion to the average workload

of tasks. The analytical results present the close approximation of

the simulation results.

Figure 12 gives the delay of completed tasks for different

values of inter-generating times of tasks with respect to the average

deadline of tasks. The delay of completed tasks is rarely affected

by the deadline except when D̄ ≤ 250. Note that all the tasks

that cannot be processed within the deadline are dropped. This

indicates that only the quickly processed tasks are considered

when the deadline is short, i.e., the delay is not normalized. As

a result, the delay tends to be short when D̄ ≤ 250. On the

contrary, the delay remains mostly the same for D̄ ≥ 300. As can

be seen in the figure, our analytical results closely approximate the

11

simulation results even for the extreme cases, such as D̄ = 150
and D̄ = 1050.

Figure 13 depicts the delay of completed tasks for different

values of inter-generating times of tasks with respect to the average

inter-meeting time between the server and a worker. The delay

of completed tasks increases in proportion to the average inter-

meeting time. According to the definition, a task is considered

to be completed when it is assigned to a worker, processed by

that worker, and then collected by the server. Thus, shorter inter-

meeting time between the server and each worker in the system

will have a significant impact on the delay. The analytical results

present the close approximation of the simulation results.

Figure 14 shows the delay of completed tasks of different

average inter-meeting time between the server and a worker with

respect to inter-generating times of tasks. When the value of inter-

generating times of tasks increases, there will be a smaller number

of tasks in the system and the assignment delay at the server, as

well as the processing delay at the worker, will decrease. As a

result, the delay of completed tasks gradually decreases as the

inter-generating time of tasks increases. As presented in the figure,

the proposed closed-form solution closely predicts the simulation

results.

6.3 Comparisons with Existing Algorithms

In Figures from 15 to 24, the proposed RTA is compared with

NTA [16] as an existing online task assignment algorithm. In order

to compare RTA and batch-based algorithms, we introduce the

task generation cycle. That is, a set of tasks are generated at the

server every 100, 300, and 500 time steps according to a Poisson

distribution. Each of these is denoted by Batch-100, Batch-300,

and Batch-500, respectively. Note that the total number of tasks

generated during the entire simulation execution is the same on

average regardless of the task generation cycle, as long as the

Poisson distribution parameter is the same. In addition, a cool-

down period is introduced at the end of simulation, during which

no task is generated, but the task processing still continues until

all the issued tasks are completed or discarded.

Figures 15, 16, 17, 18, and 19 show the completion rates of

different algorithms with respect to different parameter settings.

The completion rates of RTA present the same trend as those of

analyses. Our RTA always results in a higher completion rate

compared with batch-based algorithms. As can be seen in the

figures, Batch-100 presents a higher completion rate than Batch-

300 and Batch-500. As a rule of thumb, the shorter task generation

cycle leads to higher completion rates. This is because the queue

delay at the server and workers will be long, when the task

generation cycle is large. In contrast, tasks are generated in every

time step in RT-MCS, and thus, RTA efficiently assigns tasks to

workers.

Figures 20, 21, 22, 23, and 24 illustrate the delay of different

algorithms with respect to different parameters. The delay of RTA

in each figure presents the same trends as those of analyses. In

addition, the proposed RTA results in shorter delay compared with

the batch-based algorithms. For the batch-based algorithm, the

shorter task generation cycle results in shorter delay except in

the busy-state. For example, when the workload is 100, the inter-

meeting time is 50, or the number of workers is 5, the delay of

Batch-500 is shorter than or mostly the same as that of Batch-

300. This is because the delay is computed only for the completed

tasks. As a result, only the tasks with smaller workload are most

likely to be processed, which leads to the shorter delay.

6.4 Discussion

From the performance evaluation, our completion analysis and

delay models closely approximate the simulation results. For the

completion rate, the simulation results indicate the expected trends

as predicted by Equation 24. That is, the completion rate increases,

when the number of workers, the average deadline, or the average

inter-generation time of tasks increases; the completion rate de-

creases, when the average workload of tasks or the average inter-

meeting time of workers increases. For the delay, some parameters

make larger impact and the others do not, since there is no

exponential factor as shown in Equation 25. To be specific, the

delay increases in proportion to the average workload of tasks or

the average inter-meeting time of workers. On the contrary, the

number of workers, the average deadline, and the average inter-

generation time of tasks do not make much impact on the delay in

the non-busy state. This is because the delay is bounded between

the task workload and the deadline.

From the MCS service provider’s and MCS client’s per-

spectives, our approximate models can be used as follows. The

expected task completion probability can be used for admission

controls, i.e., the service provider can decide if new tasks gener-

ated at the server are accepted or not. The service provider can

tell the expected task delay for the MCS client, when she/he

outsources new tasks. The critical conditions for the busy and

non-busy states prompt the service provider to smarter actions,

e.g., more incentives are given to workers when the system is in

the busy state.

7 CONCLUSION

In this paper, we first introduce the real-time task assignment

problem for opportunistic network-based MCS, for which the goal

is to maximize completion rate while keeping the delay as short

as possible. Then, a generic real-time task assignment algorithm

is proposed, where randomly generated tasks are assigned to a

crowd of workers at a contact event based on the greedy strategy.

The optimal assignment strategy is approximated by estimating

the expected remaining time. Then, we build closed form approx-

imation solutions for the completion rate as well as delay in order

to illuminate the fundamental performance issues of the real-time

task assignment in MCS. The computer simulations demonstrate

that our analytical models provide close approximations of the

simulation results.

REFERENCES

[1] G. Chatzimilioudis, A. Konstantinidis, C. Laoudias, and D. Zeinalipour-
Yazti, “Crowdsourcing with Smartphones,” IEEE Internet Comput.,
vol. 16, no. 5, pp. 36–44, 2012.

[2] T. Yan, M. Marzilli, R. Holmes, D. Ganesan, and M. Corner, “mCrowd:
A Platform for Mobile Crowdsourcing,” in SenSys, 2009, pp. 347–348.

[3] X. Kong, X. Liu, B. Jedari, M. Li, L. Wan, and F. Xia, “Mobile
Crowdsourcing in Smart Cities: Technologies, Applications, and Future
Challenges,” IEEE Internet Things J., vol. 6, no. 5, pp. 8095–8113, 2019.

[4] Y. Wu, Y. Wang, and G. Cao, “Photo Crowdsourcing for Area Coverage
in Resource Constrained Environments,” in INFOCOM, 2017, pp. 1–9.

[5] E. Wang, Y. Yang, J. Wu, K. Lou, D. Luan, and H. Wang, “User Recruit-
ment System for Efficient Photo Collection in Mobile Crowdsensing,”
IEEE Trans. Human-Mach. Syst., vol. 50, no. 1, pp. 1–12, 2019.

[6] T. Yan, B. Hoh, D. Ganesan, K. Tracton, T. Iwuchukwu, and J.-S. Lee,
“Crowdpark: A Crowdsourcing-Based Parking Reservation System for
Mobile Phones,” University of Massachusetts at Amherst Tech. Report,
pp. 1–14, 2011.

[7] P. Zhou, Y. Zheng, and M. Li, “How long to wait? Predicting Bus Arrival
Time with Mobile Phone Based Participatory Sensing,” in MobiSys,
2012, pp. 379–392.

12

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 15 20 25 30 35 40 45 50

C
o
m

p
le

ti
o
n
 r

at
e

Number of workers

Batch-100
Batch-300
Batch-500

RTA

Fig. 15. The completion rate of different algorithms w.r.t. the number
of workers.

 0

 0.2

 0.4

 0.6

 0.8

 1

 20 30 40 50 60 70 80 90 100

C
o
m

p
le

ti
o
n
 r

at
e

Workload

Batch-100
Batch-300
Batch-500

RTA

Fig. 16. The completion rate of different algorithms
w.r.t. the average workloads.

 0

 0.2

 0.4

 0.6

 0.8

 1

 200 300 400 500 600 700 800 900 1000

C
o
m

p
le

ti
o
n
 r

at
e

Average deadline

Batch-100
Batch-300
Batch-500

RTA

Fig. 17. The completion rate of different algorithms
w.r.t. the average deadline.

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 15 20 25 30 35 40 45 50
C

o
m

p
le

ti
o
n
 r

at
e

Average inter-meeting time

Batch-100
Batch-300
Batch-500

RTA

Fig. 18. The completion rate of different algorithms
w.r.t. the average inter-meeting times of workers.

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25

C
o
m

p
le

ti
o
n
 r

at
e

Inter-generation time

Batch-100
Batch-300
Batch-500

RTA

Fig. 19. The completion rate of different algorithms
w.r.t. the inter-generating times of tasks.

 100

 120

 140

 160

 180

 200

 220

 240

 10 15 20 25 30 35 40 45 50

D
el

ay

Number of workers

Batch-100
Batch-300
Batch-500

RTA

Fig. 20. The delay of completed tasks of different algorithms
w.r.t. the number of workers.

[8] S. Teng, W. Ku, and K. Chuang, “Toward Mining Stop-by Behaviors in
Indoor Space,” ACM Trans. Spatial Algorithms Syst., vol. 3, no. 2, pp.
7:1–7:38, 2017.

[9] B. Hui, C. Jiang, P. Ankireddy, W. Wang, and W. Ku, “Indoor Navigation
for Users with Mobility Aids Using Smartphones and Neighborhood
Networks,” in MSN, 2021, pp. 681–682.

[10] A. I. Baba, M. Jaeger, H. Lu, T. B. Pedersen, W. Ku, and X. Xie,
“Learning-Based Cleansing for Indoor RFID Data,” in SIGMOD, 2016,
pp. 925–936.

[11] J. Yu, W. Ku, M. Sun, and H. Lu, “An RFID and Particle Filter-Based
Indoor Spatial Query Evaluation System,” in EDBT, 2013, pp. 263–274.

[12] A. Farshad, M. K. Marina, and F. Garcia, “Urban wifi Characterization
via Mobile Crowdsensing,” in NOMS. IEEE, 2014, pp. 1–9.

[13] R. Mizuhara, K. Sakai, and S. Fukumoto, “A Collaborative-Task Assign-
ment Algorithm for Mobile Crowdsourcing in Opportunistic Networks,”
in ICC, 2018, pp. 1–6.

[14] M. Garcia, J. Rodrigues, J. Silva, E. R. Marques, and L. M. Lopes,

“Ramble: Opportunistic Crowdsourcing of User-Generated Data using
Mobile Edge Clouds,” in FMEC. IEEE, 2020, pp. 172–179.

[15] X. Zhang, Y. Wu, L. Huang, H. Ji, and G. Cao, “Expertise-Aware Truth
Analysis and Task Allocation in Mobile Crowdsourcing,” IEEE Trans.

Mobile Comput., vol. 20, no. 3, pp. 1001–1016, 2021.

[16] M. Xiao, J. Wu, L. Huang, Y. Wang, and C. Liu, “Multi-task Assignment
for Crowdsensing in Mobile Social Networks,” in INFOCOM, 2015, pp.
2227–2235.

[17] S. Karaguchi, K. Sakai, and S. Fukumoto, “Quality-Aware Task Assign-
ment in Opportunistic Network-Based Crowdsourcing,” in IPCCC, 2018,
pp. 1–7.

[18] M. Xiao, J. Wu, L. Huang, R. Cheng, and Y. Wang, “Online Task
Assignment for Crowdsensing in Predictable Mobile Social Networks,”
IEEE Trans. Mobile Comput., vol. 16, no. 8, pp. 2306–2320, 2016.

[19] F. Yucel, M. Yuksel, and E. Bulut, “Coverage-Aware Stable Task Assign-
ment in Opportunistic Mobile Crowdsensing,” IEEE Trans. Veh. Technol.,
vol. 70, no. 4, pp. 3831–3845, 2021.

13

 60

 80

 100

 120

 140

 160

 180

 200

 220

 20 30 40 50 60 70 80 90 100

D
el

ay

Workoad

Batch-100
Batch-300
Batch-500

RTA

Fig. 21. The delay of completed tasks of different algorithms
w.r.t. the average workloads.

 100

 150

 200

 250

 300

 350

 200 300 400 500 600 700 800 900 1000

D
el

ay

Average deadline

Batch-100
Batch-300

Batch-500
RTA

Fig. 22. The delay of completed tasks of different algorithms
w.r.t. the average deadline.

 100

 120

 140

 160

 180

 200

 220

 10 15 20 25 30 35 40 45 50

D
el

ay

Average inter-meeting time

Batch-100
Batch-300
Batch-500

RTA

Fig. 23. The delay of completed tasks of different algorithms
w.r.t. the average inter-meeting time of workers.

 100

 120

 140

 160

 180

 200

 220

 5 10 15 20 25
D

el
ay

Number of workers

Batch-100
Batch-300
Batch-500

RTA

Fig. 24. The delay of completed tasks of different algorithms
w.r.t. the inter-generating times of tasks.

[20] F. Yucel and E. Bulut, “Online Stable Task Assignment in Opportunistic
Mobile Crowdsensing with Uncertain Trajectories,” IEEE Internet Things

J., 2021.

[21] ——, “Location-Dependent Task Assignment for Opportunistic Mobile
Crowdsensing,” in CCNC. IEEE, 2020, pp. 1–6.

[22] K. Sakai, K. Takenaka, M. Sun, and W. Ku, “Priority-Aware Task
Assignment in Opportunistic Network-Based Mobile Crowdsourcing,”
IEEE Trans. Netw. Sci. Eng., vol. 11, no. 2, pp. 2124–2137, 2024.

[23] K. Han, H. Huang, and J. Luo, “Quality-Aware Pricing for Mobile
Crowdsensing,” IEEE/ACM Trans. Netw., vol. 26, no. 4, pp. 1728–1741,
2018.

[24] I. Boutsis and V. Kalogeraki, “On Task Assignment for Real-Time
Reliable Crowdsourcing,” in ICDCS, 2014, pp. 1–10.

[25] T. Zhou, B. Xiao, Z. Cai, M. Xu, and X. Liu, “From Uncertain Photos
to Certain Coverage: A Novel Photo Selection Approach to Mobile
Crowdsensing,” in INFOCOM. IEEE, 2018, pp. 1979–1987.

[26] A. Hamrouni, H. Ghazzai, M. Frikha, and Y. Massoud, “A Photo-Based
Mobile Crowdsourcing Framework for Event Reporting,” in MWSCAS.
IEEE, 2019, pp. 198–202.

[27] S. Yu, X. Chen, S. Wang, L. Pu, and D. Wu, “An Edge Computing-Based
Photo Crowdsourcing Framework for Real-Time 3D Reconstruction,”
IEEE Trans. Mobile Comput., vol. 21, no. 02, pp. 421–432, 2022.

[28] J. P. G. Barrón, M. Á. Manso, R. Alcarria, and R. P. Gomez, “A Mobile
Crowdsourcing Platform for Urban Infrastructure Maintenance,” in IMIS.
IEEE, 2014, pp. 358–363.

[29] X. Yan, W. W. Ng, B. Zhao, Y. Liu, Y. Gao, and X. Wang, “Fog-
Enabled Privacy-Preserving Multi-Task Data Aggregation for Mobile
Crowdsensing,” IEEE Trans. Dependable Secur. Comput., pp. 1–13,
2023.

[30] Q. Zhang, Y. Wang, G. Yin, X. Tong, A. M. V. V. Sai, and Z. Cai,
“Two-Stage Bilateral Online Priority Assignment in Spatio-Temporal
Crowdsourcing,” IEEE Trans. Serv. Comput., vol. 16, no. 3, pp. 2267–
2282, 2023.

[31] W. Li, H. Chen, W.-S. Ku, and X. Qin, “Turbo-GTS: A Fast Framework
of Optimizing Task Throughput for Large-Scale Mobile Crowdsourcing,”
ACM Trans. Spat. Algorithms Syst., vol. 6, no. 1, pp. 1–29, 2020.

[32] X. Zhang, G. Neglia, J. Kurose, and D. Towsley, “Performance Modeling
of Epidemic Routing,” Comput. Netw., vol. 51, no. 10, pp. 2867–2891,
2007.

[33] M. S. Bernstein, D. R. Karger, R. C. Miller, and J. Brandt, “An-
alytic methods for optimizing realtime crowdsourcing,” CoRR, vol.
abs/1204.2995, 2012.

Haruumi Imamura is currently a graduate stu-
dent at the Department of Electrical Engineering
and Computer Science, Tokyo Metropolitan Uni-
versity. His research interests include distributed
algorithm designs for mobile and wireless net-
works.

Kazuya Sakai (S’09-M’14) received his Ph.D.
degree in Computer Science and Engineering
from The Ohio State University in 2013. He
is currently an associate professor at the De-
partment of Electrical Engineering and Com-
puter Science, Tokyo Metropolitan University. His
research interests are in the area of informa-
tion and network security, wireless and mobile
computing, and distributed algorithms. He re-
ceived the IEEE Computer Society Japan Chap-
ter Young Author Award 2016. He is a member

of the IEEE and ACM.

14

Min-Te Sun (S’99-M’02) received his B.S. de-
gree in mathematics from the National Taiwan
University in 1991, his M.S. degree in computer
science from Indiana University in 1995, and
his Ph.D. degree in computer and information
science from The Ohio State University in 2002.
Since 2008, he has been with the Department
of Computer Science and Information Engineer-
ing at National Central University, Taiwan. His
research interests include distributed algorithm
design and wireless network protocol develop-

ment.

Wei-Shinn Ku (S02-M07-SM12) received his
Ph.D. degree in computer science from the Uni-
versity of Southern California (USC) in 2007. He
also obtained both the M.S. degree in computer
science and the M.S. degree in electrical engi-
neering from USC in 2003 and 2006, respec-
tively. He is a professor with the Department of
Computer Science and Software Engineering at
Auburn University. He was a Program Director
with the National Science Foundation between
2019 and 2022. His research interests include

databases, data science, mobile computing, and cybersecurity. He has
published more than 170 research papers in refereed international jour-
nals and conference proceedings. He is a senior member of the IEEE
and a member of the ACM.

Jie Wu is Laura H. Carnell Professor at Temple
University and the Director of the Center for Net-
worked Computing (CNC). He served as Chair
of the Department of Computer and Informa-
tion Sciences from the summer of 2009 to the
summer of 2016 and Associate Vice Provost for
International Affairs from the fall of 2015 to the
summer of 2017. Prior to joining Temple Univer-
sity, he was a program director at the National
Science Foundation and was a distinguished
professor at Florida Atlantic University, where he

received his Ph.D. in 1989. His current research interests include mobile
computing and wireless networks, routing protocols, network trust and
security, distributed algorithms, applied machine learning, and cloud
computing. Dr. Wu regularly published in scholarly journals, conference
proceedings, and books. He serves on several editorial boards, including
IEEE Transactions on Service Computing, IEEE/ACM Transactions on
Networking, and Journal of Computer Science and Technology. Dr.
Wu is/was general chair/co-chair for IEEE DCOSS09, IEEE ICDCS13,
ICPP16, IEEE CNS16, WiOpt21, ICDCN22, IEEE IPDPS’23, ACM Mo-
biHoc’23, and IEEE CCGrid 2024 as well as program chair/cochair
for IEEE MASS04, IEEE INFOCOM11, CCF CNCC13, and ICCCN20.
He was an IEEE Computer Society Distinguished Visitor, ACM Dis-
tinguished Speaker, and chair for the IEEE Technical Committee on
Distributed Processing (TCDP). Dr. Wu is a Fellow of the AAAS and
a Fellow of the IEEE. He is the recipient of the 2011 China Computer
Federation (CCF) Overseas Outstanding Achievement Award. He is a
Member of the Academia Europaea (MAE).

