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Abstract—In online social networks (OSNs), it is an open
challenge to select proper recommenders for predicting the
trustworthiness of a target. In real life, people who are close and
influential to us can usually make more proper and acceptable
recommendations. Based on this observation, we present the
idea of recommendation-aware trust evaluation (RATE). We
further model the recommender selection problem into an optimal
problem, with the objectives of higher accuracy, lower risk
(uncertainty), and less cost. Four metrics, trustworthiness,
influence, uncertainty, and cost, are identified to measure the
quality of recommenders. Experimental results, with the real
social network data set of Epinions, validate the effectiveness of
RATE: it can predict trust with higher accuracy (at least 22.4%
higher), lower risk, and less cost.

Keywords—recommendation-aware, recommender selection,
trust evaluation, online social networks (OSNs)

I. INTRODUCTION

Online social networks (OSNs) are organized around users.
In (OSNs), various applications have motivated the tremendous
attention of trust evaluation, such as hiring managers who want
to recruit new employees, service consumers who are looking
for service providers, etc. In other words, trust issues exist
in any application whenever a person (e.g., source s) needs
to estimate the trust level of another (e.g., target t), so as to
decide whether or not to conduct further interactions.

The Motivation. A single person usually has a limit
of known persons, due to his limited time and energy [1].
Hence, friends take an important role of recommendation
(Fig. 1). Several models have been proposed to estimate the
trustworthiness of a given target from a source, taking the
advantage of the transitive property of trust: if s trusts u, and
u trusts t, then it is with high probability that s trusts t. Many
useful findings have been made. However, most of the existing
trust models deal with the information aggregation in small
trusted graph, for which several challenges remain open: (1)
It is unclear which users should be selected into the trusted
graph. (2) There is no ground truth on how much the real trust
s falls on t, especially when s knows little about t. (3) Existing
models are solely based on trust ratings. Other closely related
concepts in practical applications, e.g., social relationships, the
possible cost, and the risk (uncertainty) are usually overlooked.

In reality, it usually happens that a user has many friends;
selecting different subsets of these friends may lead to making
different decisions, paying different costs, and taking different
risks. Therefore, we focus on exploring the factors that are
involved in the process of trust evaluation, and developing an
efficient scheme to solve the recommender subset selection
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Fig. 1. (a) An example social network showing s has many friends who can
provide recommendations on t; (b) The objective graph, in which a subset of
friends are selected as recommenders, {r1, ..., rm} ⊆ {u1, ..., un}.

problem, to meet the goals of higher prediction accuracy, lower
risk (uncertainty), and less cost.

Main Ideas. “It is not what you know, but who you know
that makes the difference.” Our basic idea is to find people
who are the most suitable for becoming a recommender, as
to help the source make a proper decision. That is, choosing
the one who can enhance the visibility of the source. To
make it simple, we are coping with “How do you find the
users that reflect your tastes the most?” We try to apply the
idea of recommendation [2] to trust evaluation, based on the
observation that people who are close and influential to us can
make more proper and acceptable recommendations for us.

Our Contributions. We propose a novel model to select
proper neighbors, which we call recommenders, for evaluating
a target’s trustworthiness. Our goal is to develop a compre-
hensive model, which can tell what the trust level of a target
is; more importantly, it can provide through whom the goal
can be realized. Our contributions are as follows: (1) To the
best of our knowledge, we are the first to propose the idea
of recommendation-aware trust evaluation (RATE for short).
Since trust itself is usually personalized, it is natural to identify
some proper recommenders who often have similar ideas or
opinions as the source, as to estimate the trustworthiness of
the target. (2) We evaluate RATE using a real trust network,
Epinions (www.epinions.com). The results demonstrate how
each metric can impact the performance of RATE, and show
that RATE can predict trust with higher accuracy (at least
22.4% higher), lower risk, and less cost.

II. PROBLEM FORMULATION

Recommender Selection Problem (RSP). Given a social
network G = (V,E), V is the set of nodes and E is the set
of edges. For two nodes, s and t in V , s is the source and
t is the target. For the safety of user interactions in OSNs,
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we wonder how to design an efficient scheme to select the
best recommenders R = {r1, ..., rm}, from the neighbor set
of s Ns = {u1, ..., un} (m ≤ n), with the goals of making a
proper decision (to trust or not trust t), meeting the optimal
requirements of higher accuracy, lower risk (uncertainty), and
less cost.

According to the distance from recommenders to the
source, the problem can be divided into two sub-issues, to
cope with 1-hop neighbors (the direct neighbors of source)
and multi-hop chains, respectively. The task of selecting 1-
hop neighbors is similar to, but more challenging than, the
Jury Selection Problem (JSP) [3]. For the determination of
multi-hop chains, it can be modeled as a Multi-Constrained
Optimal Path (MCOP) selection problem [4].

Preliminary: Jury Selection Problem (JSP). It is used
to choose the most reliable and feasible subset of all possible
“jurors” to vote on a question. In JSP of [3], each juror has only
two choices of 0 or 1; some jurors are selected by considering
the two factors of the jury error rate and the cost. In our
problem of RSP, each recommender may give a trust level
in [0, 1], i.e., more choices; and we consider more metrics to
measure the quality of recommenders.

Related Work. Cao et al. [3] studied the Jury Selection
Problem (JSP) by utilizing crowdsourcing for decision-making
tasks on micro-blog services. Liu et al. proposed H OSTP
[5] and MFPB-HOSTP [4] to deal with the multi-constrained
optimal trusted path selection problem. In previous work [6],
we focused on generating small trusted graphs for large OSNs.

III. SOLUTION OVERVIEW

The goal of trust evaluation is to estimate the trustwor-
thiness of an unknown target, through proper intermediate
recommenders. Our solution framework is as follows:

Step 1: Metrics identification. We identify some metrics to
describe the trust related user features, and to regulate the trust
evaluation systems.

Step 2: 1-hop recommender selection. We aim to explore a
rational approach to select an optimal subset of recommenders,
when there are enough 1-hop (or direct) neighbors of s who
know t. Many issues need to be addressed, such as “what
kind of neighbor can be deemed as a good one,” “how many
neighbors should be selected,” and “what can we do if the
selected neighbors have different opinions towards t?”

In addition, we also consider multi-hop scenario when it
need multi-hops for s to reach t.

Metrics. For the recommender selection of 1-hop neigh-
bors, a similar approach to the recommender system can be
applied. That is, we choose people who are most likely to
be selected as a recommender to current user u. A key step
is to calculate the metric values of a neighbor v from the
view of u. We present the following four metrics: (1) The
trustworthiness of v, denoted as tuv. (2) The influence between
u and v, denoted as wuv. (3) The uncertainty of v, denoted as
uuv . (4) The cost of v, denoted as cuv. We combine the four
metrics as a metric vector Muv =< tuv, wuv, uuv, cuv >. All
the variables are normalized into the range of [0,1].

Trustworthiness. We use trustworthiness to represent two
things: honesty, and the capability to provide real information.
This metric is a subjective opinion of current user u, according
to his direct experience of interactions with v.

Influence. Unlike trustworthiness, which is usually sub-
jective, the metric of influence is a more objective measure
according to the historical contacts. The closer the relationship
exists between two persons, the larger the possibility that one’s
opinion will influence the other’s [7].

Uncertainty. Uncertainty increases the risks of transaction.
Our objective is to reduce the uncertainty so that risk of
failure is lowered and a long-term exchange relationship is
sustained. This metric indicates an accumulative measure of
the fluctuation of v, according to the historical interactions.

Cost. Just as in daily life, the source wants to contact the
target. Regardless of whether it contacts directly or indirectly,
some cost will be charged. Note that direct contacts may lead
to a larger cost than indirect contacts. In an extreme case,
a source can conduct multiple direct contacts to any target,
as to test the trustworthiness himself, which may be quite
resource-consuming. Therefore, the essence of trust prediction
is to search the proper recommenders, who already know the
target well, through their previous experiences.

Utility Functions and the Objective. In our model, we
define two utility functions, denoted as F and G, as the
measurements of the quality and the risk/cost of social trusted
paths, respectively. The functions take the above four metrics
t, w, u, and c as the arguments in the following two equations:

FP (a1,...,an) = ωt · tP (a1,...,an) + ωw · wP (a1,...,an) (1)

GP (a1,...,an) = ωu · uP (a1,...,an) + ωc · cP (a1,...,an) (2)

where ωt, ωw, ωu and ωc are the weights of t, w, u, and
c, respectively (the weights are determined by the source s);
Moreover, 0 < ωt, ωw, ωu, ωc < 1, ωt+ωw = 1, ωu+ωc = 1.

We combine F and G in a normalized utility function as
λ·F+(1−λ)·(1−G), with λ ∈ [0, 1]. The objective is to select
the neighbors that satisfies multiple constraints and yields the
best utility (maximize F and minimize G, i.e., maximize the
normalized utility), with the weights specified by the source
participant.

IV. RATE: 1-HOP RECOMMENDER SELECTION

In this section, we focus on how to select the 1-hop
recommenders, for which two issues need to be addressed:

Issue 1: How to measure the quality of a recommender?
We should know what kind of recommender can be taken as
‘good’, before identifying good ones.

Issue 2: How many recommenders are enough, and are
efficient for, decision-making? Intuitively, it will be much safer
if we select more recommenders, to avoid bias and make a
comprehensive decision. Then comes the question “when to
stop (selecting more)?”, i.e., deciding the size of the optimal
recommender set.

The Quality of Recommenders. Incited by the well-
known concept of “quality of service (QoS)”, which consists of
several attributes, and is used to illustrate the ability of services
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Fig. 2. A toy example of 1-hop recommender selection.

to guarantee a certain level of performance, we present a new
concept, quality of recommender (QoR).

Definition 1: Quality of recommender (QoR) comprises
requirements on a recommender, taking trustworthiness,
influence, uncertainty, and cost, as attributes.

In RATE, users can set multiple quality constraints, denoted
as Qθ(θ ∈ {t, w, u, c}). Only neighbors who meet all the
requirements can be selected as recommenders. We use QoR
constraints as the thresholds of the four metrics. Taking Fig. 2
for instance, s may specify Qt > 0.5, Qw > 0.4, Qu < 0.3,
Qc < 0.5, then u1 and u2 can be selected. In another case,
s, who cares more about trustworthiness, may even specify
Qt > 0.8; then, only u1 can be selected. From the example, we
can see that there is a tradeoff between the quality requirements
and the availability of qualified recommenders. We take a
neighbor as “qualified” if he meets the quality requirements
specified by the source.

The Size of an Optimal Subset. Suppose there are n
neighbors, then the possible size of a subset has 2n cases.
Generally speaking, the more recommenders we select, the
higher the probability that we may predict properly; however,
this will lead to a higher cost to pay, and more complexity
in the aggregating of different options. Therefore, we expect
to select less recommenders, while guaranteeing a higher
utility (larger F and smaller G). There are many choices:
(1) Selecting all qualified neighbors. (2) Selecting a fixed
number of qualified neighbors, e.g., 3, 6, etc. (3) Selecting a
fixed proportion of qualified neighbors, e.g., 1/3, 1/6, etc. (4)
Flexibly selecting some top m qualified neighbors, m ≤ n.

For Choice 4, we present a heuristic approach (lines 5-8,
Algorithm 1): we continue to select qualified recommenders
until the number of next hop neighbors is larger than the
current ones. The basic intuition comes from the view of
information diffusion [8], which says the information can be
propagated if there are more next hop neighbors than current
ones. Algorithm 1 shows the process of 1-hop recommender
selection. It takes a total time complexity of O(n · log n).

Trust Aggregation. We make use of the aggregation
method in the reliability model (e.g., [6]), where the trust
value in the last hop to t is the direct trust, and the trust
value from the source to the last intermediate node is taken as
the reliability (of direct trust). Trust aggregation calculates the
final trust value. Two commonly used aggregation functions are
MaxT and WAveT . MaxT takes the trust value of the most
reliable neighbor of t. WAveT takes the weighted average
value of all qualified neighbors of t. Taking Fig. 2 for instance,
tuit, i ∈ {1, 2, 3, 4} are direct trust, while tsui , i ∈ {1, 2, 3, 4}
are their reliability. Suppose u1 and u2 are selected quali-
fied recommenders. Taking MaxT aggregation, we will get

Algorithm 1 BasicRATE(G, s, t)
Input: G, a social network; s, source; t, target.
Output: Rs, an optimal subset of referrals.

1: for each neighbor u in Ns do
2: Calculate the metric vector Msu.
3: Keep the qualified neighbors who meet constraints.
4: end for
5: Sort the qualified neighbors in descending order.
6: for i : [0,m] do
7: Add the best recommender ri ∈ Ns to Rs.

i← i+ 1.
8: if the neighbor set of Rs is larger than Ns then
9: End the selection process.

10: end if
11: end for

tst = tu1t = 0.8; taking WAveT aggregation, we will get
tst = (0.8 · 0.8 + 0.7 · 0.6)/(0.8 + 0.7) = 0.7067.

V. EXTENSION: MULTI-HOP SCENARIO

When it needs multi-hops to reach the target, the prop-
agation operations of the four metrics, trustworthiness,
influence, uncertainty, and cost, should be determined. We
define the four equations for a trusted path.

Trustworthiness of a path. Again, we use the idea of the
reliability model, in which trust propagation calculates the re-
liability of a trusted path. A commonly used method is Multi,
which takes the product of trust values in all edges, as in the
following: tP (a1,...,an) =

∏
e(ai,ai+1)∈P (a1,...,an)

tai,ai+1 .

Influence of a path. We use a similar method with trust-
worthiness when calculating the influence through a path, as in
the following: wP (a1,...,an) =

∏
e(ai,ai+1)∈P (a1,...,an)

wai,ai+1 .

Uncertainty of a path. If we take uncertainty as the
probability of failure, then the uncertainty of a path is defined
as the following: uP (a1,...,an) = 1−

∏
e(ai,ai+1)∈P (a1,...,an)

(1−
uai,ai+1).

The above equation can be seen like this: the probability
that the trusted path P (a1, ..., an) comes to a success, is the
same that all intermediate nodes behave well and finally come
to a success, i.e.,

∏
e(ai,ai+1)∈P (a1,...,an)

(1 − uai,ai+1). Then
the probability of failure is what remains.

Cost of a path. It is natural to summarize all the costs of
each intermediate recommender to get the cost of a path, as in
the following: cP (a1,...,an) =

∑
e(ai,ai+1)∈P (a1,...,an)

cai,ai+1 .
It is straightforward that a shorter path will lead to less cost
if the average cost on each edge is the same.

The process of the multi-hop scenario is as follows: Start
from s, and do a local greedy bread-first search with Algo-
rithm 1. If there exist paths from s to t, calculate the metric
vector for the paths. Then aggregate their results by MaxT or
WAveT , as mentioned before.

VI. EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of RATE with
experiments in a real trust network data set, Epinions.com
(www.epinions.com). We use the subset and the same method
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Fig. 3. The comparison of accuracy, average cost, and uncertainty.

to treat trust values in [6]. We use a standard evaluation
technique in machine learning: leave one out. If there is an
edge between two nodes, that edge is masked, and trust is
calculated through algorithms; then, we compare the calculated
value with the masked value.

We mainly consider the metric of trust accuracy [6], which
represents the ability to predict whether a user will be trusted
or not: (1) Precision: At ∩Bt/Bt, (2) Recall: At ∩Bt/At, (3)
FScore: 2· Recall · Precision/(Recall+Precision), where At is
the number of edges on which s trusts d directly, and Bt is
the number of edges on which s trusts d, by trust calculated
through an algorithm. The FScore metric is used to measure
the accuracy using recall and precision jointly.

In the experiments, we implement four trust prediction s-
trategies for comparison, they are: AveR-MaxT, AveR-WAveT,
MaxR-MaxT, and MaxR-WAveT. If there are multiple paths
from s to a node in Nt, AveR will take the average path weight
as the reliability, while MaxR will take the maximal one.
Experimental parameters are set as the following: L ∈ [2, 6],
th ∈ [0.5, 0.9], wt = ww = wu = wc = 0.5, λ = 0.8, and
(Qt, Qw, Qu, Qc) = (0.5, 0.5, 0.5, 0.7). For the fixed-number
approach, we select at most 6 qualified neighbors. For the
fixed-proportion approach, we select at most 1/3 of all qualified
neighbors. For all the strategies, we select the first 20 trusted
paths to construct the trusted graph. To test the effects of
RATE, we conduct experiments for the four strategies. Since
all the results show similar patterns, we only present the result
using AveR-MaxT in Fig. 3.

The Effects of QoR. Figs. 3(a) and 3(b) show the results
of prediction accuracy. We gain several findings: (1) It shows
significant improvements by sorting qualified neighbors with
their QoR, which indicates the effects of RATE. It gains
at least 22.4% higher accuracy. (2) Also, the fixed-number
strategy shows its advantage when compared to the heuristic
and fixed-proportion strategies. The reason is that it actually
uses more qualified neighbors than other two strategies. We
also record the uncertainty and cost. Here, only the results of
fixed-proportion selection, are shown in Figs. 3(c) and 3(d).
The results indicate that both the average uncertainty and the
average cost are decreased with sorted neighbors, which shows
the advantage of RATE. In all the possible parameters settings,
the least improvement occurs when L = 6; it is 33.45% for
uncertainty, and 52.13% for cost (Note that it is only a rough
estimation since some edges may be counted multiple times).

The Effects of Max Length. If the max length is large,
then there will be more hops from source to destination. Also
see the results in Fig. 3. With the increase of max length,

the prediction accuracy is decreased. Taking the fixed-number
selection (without sorting) strategy for instance, the decrease
percentage is at least 2.55% comparing L = 6 to L = 2.
Meanwhile, the uncertainty and the cost are increased. The
increased percentages are 232.94% and 148.03%. The finding
is consistent with real life, i.e., shorter path is better, since
people tend to trust close friends rather than strangers.

The Effects of Trust Threshold. Fig. 3(b) shows the
effects of increasing trust threshold. The prediction accuracy
decreases more significantly compared to that of increasing
max length. Taking fixed-number (without sorting) for in-
stance, the FScore of Qt = 0.5 is 0.6622, while Qt = 0.9, only
0.1754 remains. We analyze the reason to be that, too large
of a trust threshold makes many paths as not trustful, and less
information can be used to predict trust. This finding validates
that there is a tradeoff between the quality of recommenders
and the availability of qualified recommenders.

VII. CONCLUSION

We propose a recommendation-aware trust evaluation
(RATE) scheme, where we take a new perspective on the
selection of good recommenders, to help people make proper
decisions. The experiments in a large social network data set
validate the effectiveness of RATE. In the future work, we
will analyze the theoretical bounds of the size of an optimal
recommender subset and the probability of success to make a
trust decision.

REFERENCES

[1] R. I. M. Dunbar. Neocortex size as a constraint on group size in primates.
Journal of Human Evolution, vol. 20:469–493, 1992.

[2] P. Massa and P. Avesani. Trust-aware recommender systems. In Proc.
ACM RecSys, pages 17–24, 2007.

[3] C. Cao, J. She, Y. Tong, and L. Chen. Whom to ask? jury selection for
decision making tasks on micro-blog services. Proc. VLDB, 5(11):1495–
1506, 2012.

[4] G. Liu, Y. Wang, M. A. Orgun, and E. Lim. Finding the optimal social
trust path for the selection of trustworthy service providers in complex
social networks. IEEE Transactions on Services Computing, 2011.

[5] G. Liu, Y. Wang, M. A. Orgun, and E. Lim. A heuristic algorithm for
trust-oriented service provider selection in complex social networks. In
Proc. IEEE SCC, pages 130–137, 2010.

[6] W. Jiang, G. Wang, and J. Wu. Generating trusted graphs for trust
evaluation in online social networks. Future Generation Computer
Systems, 10.1016/j.future.2012.06.010, 2012.

[7] L. Rashotte. Social influence. A.S.R. Manstead, M. Hewstone (Eds.),
The Blackwell Encyclopedia of Social Psychology, Malden: Blackwell
Publishing, pages 562–563, 2007.

[8] M. Newman. Networks: An Introduction. Oxford University Press, Inc.,
New York, NY, USA, 2010.


