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1 INTRODUCTION

W ITH the technological advancements and the popularity
of Mobile Devices (MDs), Internet of Things (IoTs)

has opened up a number of attractive application types with
computation-intensive features, such as intelligent transportation,
health care, Augmented/Virtual Reality (AR/VR), etc [1], [2],
[3]. Indeed, the flourishing IoT applications always have intense
requirements for users’ Quality of Service (QoS) and computation
resources, which leads to higher computation loads and energy
consumption than traditional applications. Furthermore, consid-
ering the physical size and cost constraints, current MDs have
suffered from the limitation of computation resources, which may
become an inevitable bottleneck to support these computation-
intensive applications in the future IoTs [4], [5], [6].

Recently, cloud computing has greatly relieved the conflict
between IoT applications and resource-constraint MDs, which
enables convenient access to a shared resource pool in the
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Cloud Service Center (CSC) [7], [8], [9]. However, for delay-
sensitive IoT services, cloud computing may not be feasible as
the long transmission distance in remote cloud-based processing
contributes to extra transmission cost and delay [10]. Furthermore,
according to Cisco’s recent report [11], the number of Mobile
Devices (MDs) is expected to increase from 21.5 billion in 2019
to 28.5 billion by 2022. The CSC’s existing infrastructure is
difficult to provide high-quality services for so many resource-
constrained devices in the future [12]. Fortunately, Mobile Edge
Computing (MEC) enables MDs to offload workloads to nearby
edge servers [13]. Such capability not only meets the expansion
requirements of computation capabilities of MDs, but also im-
proves the QoS of IoT applications with considerably reduced
delay and cost [14], [15], [16]. By now, computation offloading in
MEC networks has been well investigated in the area of system
architecture [17], [18], energy efficiency [19], [20], computation
resources optimization [21], [22], etc.

Nevertheless, implementing computation offloading in MEC
networks still faces many critical issues. The computation of-
floading process inevitably consumes a lot of computation and
communication resources. From the economical perspective, given
that edge server owners (in this paper we refer to Small Base
Stations (SBSs) equipped with edge servers) are commonly ratio-
nal and selfish as they are owned by third-party companies, they
have no responsibility to participate in the computation offloading
process without receiving any economic reimbursement [23], [24].
Therefore, it is imperative to develop incentive mechanisms, which
can encourage idle SBSs with edge servers to assist the CSC in
computation offloading by offering them proper rewards for their
resource consumptions.
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Some researches have put forward different incentive mecha-
nisms to resolve the incentive issues of computation offloading in
MEC [25]. However, to our knowledge, the design of incentive
mechanisms in mobile Cloud-Edge computing still lacks due
attention. In mobile Cloud-Edge computing, we assume that MDs
requesting computation offloading services have subscribed to
CSC for computation offloading services and paid related fees
monthly or yearly. The CSC has a lot of tasks offloaded by
resource-constraint subscribed MDs to implement, while SBSs
usually have idle computation resources. Long transmission dis-
tance and resource shortage caused by the increasing number
of offloaded MDs may make CSC be unable to satisfy the
delay requirements of MDs. Hence, CSC can recruit SBSs to
replace it to accommodate offloaded computation from nearby
MDs. Therefore, from the perspective of CSC, it remains open
to encourage the participants of SBSs while reducing the cost
of CSC. Furthermore, since the same SBS may cover multiple
MDs at the same time, and the communication and computation
resources of SBSs are limited, it is necessary to jointly consider the
computation offloading strategy and resource allocation strategy.

Based on the above analysis, we consider the following issues
in this paper: (i) How to develop the reasonable strategy of compu-
tation offloading and resource allocation with low-complexity so-
lutions? (ii) How to stimulate SBSs to participate in the offloading
process and what is the corresponding payment of the CSC to each
SBS? (iii) How to minimize the cost of CSC while satisfying some
specific constraints? We answer these issues by proposing a novel
Reverse Auction-based Computation Offloading and Resource
Allocation Mechanism, named RACORAM. In RACORAM, we
use the reverse auction to stimulate SBSs to participate in the
offloading process, where CSC acts as the auctioneer and SBSs
act as the bidders [26]. Then, we formulate the reverse auction-
based computation offloading and resource allocation problem as a
Mixed Integer Nonlinear Programming (MINLP) problem, aiming
to minimize the cost of CSC. We further modify the constraints of
the original problem appropriately and decompose the original
problem into an equivalent master problem and subproblem,
respectively. After that, we propose low-complexity algorithms
to solve the related optimization problems. Finally, simulations
are conducted to demonstrate the effectiveness of our proposed
method. The key contributions are summarized as follows:

1) We propose the system architecture of RACORAM and
use the reverse auction to stimulate SBSs equipped with
edge servers to participate in the offloading process.

2) The reverse auction-based computation offloading and
resource allocation problem is formulated as a Mixed-
Integer Non-Linear Programming (MINLP) problem,
aiming to minimize the cost of CSC.

3) We decompose the original problem into an equiva-
lent master-problem and sub-problem, and propose low-
complexity algorithms to solve the problems. Specifi-
cally, we first propose a Constrained Gradient Descent
Allocation Method (CGDAM) to determine the resource
allocation strategy, and then propose a Greedy Ran-
domized Adaptive Search Procedure based Winning Bid
Selection Method (GWBSM) to determine the computa-
tion offloading strategy. Meanwhile, the CSC’s payment
determination for the winning SBSs is also presented.

4) Simulation results show that RACORAM is very close
to the optimal method with significantly reduced com-

putational complexity, and greatly outperforms the other
baseline methods in terms of the CSC’s cost under differ-
ent scenarios.

The remainder of this paper is organized as follows. In
Section 2, we review the related work. We introduce the system
model in Section 3. In Section 4, we formulate the problem as a
MINLP problem with the objective of minimizing the cost of the
CSC. Then, we decompose the original problem into an equivalent
master problem and sub-problem in Section 5, and present two
low-complexity algorithms to resolve the optimization problem in
Section 6. Furthermore, we introduce and analyze the simulation
results in Section 7. Finally, Section 8 gives the conclusion.

2 RELATED WORK

Recently, MEC has attracted extensive attention and research
efforts, which effectively mitigates the conflict between high-
resource application demands and MDs with limited resources. Es-
pecially, since the computation task processing in MEC is usually
based on distributed collaboration, its core is to achieve dynamic
task scheduling by effectively allocating computation, storage, and
communication resources in the edge environment [27]. Some
studies have investigated the resource allocation in MEC from the
aspect of system utility [28]-[32]. Chen et al. in [28] proposed an
efficient three-step algorithm to minimize the cost of computation
offloading in MEC for all MDs in the system. In [29], the authors
established a non-convex optimization problem to minimize the
delay of all nodes under the framework of collaborative com-
puting, and transformed the problem into convex optimization
through the classical successive convex approximation method for
processing. Tran et al. in [30] considered a multi-MEC server
system that assists mobile users in computation offloading, and
proposed a heuristic algorithm to maximize MDs utility from the
perspective of task delay and energy consumption. In [31], the
authors studied the problem of computation resource allocation
based on price, and established a two-layer Stackelberg game
model to maximize the utility of both the server and the user in
the system. In [32], the instance provisioning of a reliability-aware
Network Function Virtualization (NFV) in MEC was investigated
to maximize the network throughput, which is achieved by pro-
viding a primary NFV and a secondary NFV for each MD. Some
studies have also investigated the resource allocation in MEC from
the aspect of energy consumption [33]-[35]. Yang et al. in [33]
proposed a multi-access MEC servers system based on Orthogonal
Frequency Division Multiplexing Access (OFDMA), so as to
minimize the computation energy consumption of MDs. Chen
et al. in [34] constructed an energy-saving resource allocation
scheme while considering the constraints of delay, channel quality
and transmission power, which aims to minimize the energy
consumption of task offloading. However, these studies assume
that edge server owners are cooperative.

Some studies have focused on the incentive mechanism design
for MEC. In [36], the authors proposed an online incentive-
driven task allocation scheme in the context of the Industrial
Internet of Things, and jointly considered energy consumption,
execution time, and available resources to maximize system utility.
In [37], the authors utilized an optimal price-based scheme to
provide computation offloading services for MDs by charging
an appropriate fee, and proved that the proposed scheme can
balance individual interests with the overall system interests. Liu
et al. in [38] proposed a two-stage Stackelberg game between the
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Fig. 1. System Architecture of Mobile Cloud-Edge Computation
Offloading.

Cloud Service Operator (CSO) and Edge Server Owners (ESO),
which enables CSO to allocate computation tasks based on ESO
status information. In [39], the authors proposed a fully distributed
and partially distributed multi-hop network incentive mechanism,
which can significantly reduce the node’s computation cost by
avoiding the unreal behavior of the node. In [40], the author
proposed a profit maximization-based incentive mechanism, which
can maximize the profit of edge servers while ensuring the Quality
of Experiment (QoE) of MDs. In [41], the authors proposed an
online incentive mechanism that allows the base station to perform
task scheduling, resource allocation and pricing decisions without
knowing any future information, aiming to maximize the utility of
the system.

Furthermore, some auction-based incentive mechanisms have
been studied and applied to resource allocation, task scheduling,
and other applications in MEC. Ma et al. in [42] proposed a
truthful combined double auction mechanism, which can stimulate
edge servers to provide services to nearby mobile users while
ensuring budget balance. In [43], the authors introduced two
double auction-based dynamic pricing strategies, named BDA and
DPDA respectively, to determine the matched pairs between MDs
and edge servers, as well as resource allocation schemes which
meet the economic properties. The authors in [44] proposed an
auction-based mechanism to stimulate edge nodes to allocate their
virtual machine resources to MDs for computation offloading in
MEC, aiming to maximize the total social welfare. Sun et al.
in [45] modeled the interaction between edge servers and MDs
as a breakeven and breakeven-free based double auction, so as to
maximize the efficiency of the system. Le et al. in [46] proposed
a two-stage incentive mechanism combined with the auction game
to minimize the total network delay under the background of
the vehicle network. In [47], the authors regarded the resource
allocation in MEC as an auction problem and proposed a multi-
task resource allocation algorithm based on double auction to
improve system utility. He et al. in [48] proposed an auction-
based online incentive mechanism that can optimize the long-term
utility of the system without knowing the future information.

Previous studies on the auction-based incentive mechanism in
MEC mainly formulate the auction from the perspective of SBSs,
where some SBSs with computation capabilities act as sellers, and
MDs requesting computation offloading services act as buyers. In
contrast with the previous studies, this paper assumes that MDs

requesting computation offloading services have subscribed to the
CSC for computation offloading services and paid related fees
monthly or yearly. From the perspective of the CSC, it remains
open to encourage the participants of SBSs while reducing the
cost of the CSC. Therefore, this paper proposes a reverse auction-
based incentive mechanism to stimulate the participation of SBSs,
where the CSC acts as the auctioneer and SBSs act as bidders.
Then, this paper formulates the reverse auction-based computation
offloading and resource allocation problem as a MINLP problem,
which aims to minimize the CSC’s cost by jointly considering
the computation offloading decision and resource allocation. In
addition, since emerging delay-sensitive applications have strong
requirements for QoS, MDs’ QoS is also considered in the
optimization problem.

3 SYSTEM MODEL

This section first presents the system architecture and elaborates
the model involved in the system architecture. Then, a detailed
definition of the wireless communication model and the model of
reverse auction are given.

3.1 System Architecture
As shown in Fig. 1, this paper considers a three-tier mobile Cloud-
Edge computation offloading structure, including a single-cell
network, a core network, and a Cloud Service Center (CSC). The
core network can communicate with the CSC in the cloud and the
base stations in the cellular network through wired links, which
is responsible for scheduling the computation task load. For the
single-cell network, it consists of a Macro Base Station (MBS),
several Small Base Stations (SBSs) equipped with edge servers,
and a set of Mobile Devices (MDs). Each MD can communicate
with the edge server through the wireless channel provided by the
corresponding SBS, and can also communicate with CSC through
the wireless channel provided by the MBS. In addition, we assume
that each MD has subscribed to CSC for computation offloading
services and paid related fees monthly or yearly (including traffic
fees caused by data transmission, and service fees caused by
occupying server computation resources, etc.).

Since the computation and communication resources of CSC
are limited, the long transmission distance and resource short-
ages caused by the increasing number of offloaded MDs will
make CSC be unable to satisfy the delay requirements of MDs.
Therefore, CSC can request SBSs near MDs to assist in providing
computation offloading services to reduce delay and cut down
the cost, especially when the CSC is under high load. Similarly,
the communication and computation resources of SBSs are also
limited, so multiple MDs might compete for the same SBS
simultaneously. Thus, we should jointly consider the computation
offloading strategy and resource allocation strategy.

Moreover, assisting the CSC in computation offloading will
inevitably generate additional resource consumptions (including
communication resources, computation resources, etc.), so SBSs
owned by third-party companies will not be willing to participate
in computation offloading without economic compensation. In
order to encourage SBSs to assist the CSC in computation of-
floading, the CSC should compensate for the additional resources
consumed by SBSs. The specific compensation scheme will be
introduced in the model of reverse auction.

We assume that the set of MDs and SBSs in the single-
cell network are N = {1, 2, ..., N} and S = {1, 2, ..., S},
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TABLE 1. Notations and Explanation

Notation Explanation

CSC The abbreviation of Cloud Service Center
MD The abbreviation of Mobile Device
SBSs The abbreviation of Small Base Stations
QoS The abbreviation of Quality of Service
N The set of all MDs
S The set of all SBSs
qn The information of MD n’s computation task
tmax
n The maximum tolerable delay of MD n
cn The amount of required computation capacity of MD n
dn The amount of input data of MD n
es The state information of SBS s
fs The idle computation resources of SBS s
φs SBS s’ bid of per unit computation resource
vs SBS s’ true value of per unit computation resource
B The uplink bandwidth of each SBS
ε The CSC’s cost of per unit computation resource
M The set of M orthogonal sub-bands
ain,s Binary variable that indicates whether MD n will offload

its computation task to SBS s on sub-band i
A The set of offloading strategy
Ns The set of MDs offloading their task to SBS s
Nc The set of MDs offloading their task to the CSC
rn,s The transmission rate from MD n to SBS s
F The computation resource allocation strategy for each SBS
fn,s The computation resource allocated by SBS s to task of

MD n
tupn,s The delay of MD n uploading its task to SBS s
texen,s The execute delay of task of MD n execution on SBS s
rn,c The transmission rate from MD n to the CSC
fn,c The computation resource allocated by the CSC to task of

MD n
tupn,c The delay of MD n uploading its task to the CSC
texen,c The execute delay of computation task of MD n execution

on the CSC
tn(A,F) The total delay of MD n
λn The CSC’s preference towards MD n
ω The revenue conversion coefficient

respectively. More specifically, the relevant information of MDs,
SBSs and the CSC are introduced in detail as follows:

• Since each MD has subscribed to the CSC’s computation
offloading service, when the MD runs a deadline-sensitive
application, it first generates a computation task and then
submits the task information to the CSC. We use a three-
tuple qn = (tmaxn , cn, dn) to denote the information of
MD n’s computation task, where tmaxn [seconds] rep-
resents the maximum tolerable delay, cn [Megacycles]
represents the amount of required computation capacity,
and dn [MBs] represents the amount of input data. In
addition, we assume that the computation task is atomic
and cannot be divided into subtasks.

• We use a three-tuple es = (fs, φs, vs) to represent the
state information of SBS s ∈ S , where fs [cycles/s]
denotes idle computation resources of SBS s, φs denotes
SBS s’s bid of per unit computation resource, and vs de-
notes SBS s’s true value of per unit computation resource.
Note that vs is the private information belonging to SBS
s.

• The CSC provides computation services to subscribed
MDs and charges service fees. However, long transmission
distance and resource shortage caused by the increasing
number of offloaded MDs may make the CSC unable to
satisfy the delay requirements of MDs. Hence, the CSC
can purchase a portion of computation resources from

SBSs to assist MDs in computation offloading to reduce
its cost. We use ε to represent the CSC’s cost of per
unit computation resource. In this paper, we clarify that
ε includes not only the execution cost of the task, but also
the procurement and deployment cost of cloud servers.
Therefore, we claim that ε is much larger than φs, and the
CSC will prioritize offloading computation tasks to SBSs
for execution.

For ease of reference, we have listed the notations used in this
paper and provided corresponding explanations in Table 1.

3.2 The Model of Wireless Transmission
For the channel model between each SBS and MDs, we consider
using OFDMA as the multiple access scheme in the uplink, in
which the bandwidth of each SBS is B [MHz]. The bandwidth of
each SBS is divided into M equal sub-bands, so the bandwidth of
each sub-band is W = B/M .

We define the set of available sub-bands at each SBS as
M = {1, 2, ...,M}. Let A = {ain,s|n ∈ N , s ∈ S, i ∈ M}
denote the set of offloading strategies, in which ain,s = 1
indicates that SBS s is selected to provide computation offloading
service for MD n on sub-band i, otherwise ain,s = 0. Further-
more, we denote Ns = {n ∈ N|

∑
i∈M ain,s = 1} as the

set of MDs offloading their computation tasks to SBS s, and
Nc = {n ∈ N|

∑
s∈S

∑
i∈M ain,s = 0} as the set of MDs

offloading their computation tasks to the CSC.
The Signal-to-Interference-plus-Noise Ratio (SINR) from MD

n to SBS s on sub-band i is expressed as follows:

SINRi
n,s =

ain,spng
i
n,s∑

v∈S\{s}
∑
l∈Nv

ail,vplg
i
l,s + σ2

, (1)

where σ2 is the Gaussian noise of channel, gin,s is the uplink
channel gain between MD n and SBS s on sub-band i and pn
is the transmission power of MD n when uploading its task to
the SBS. The first term at the denominator is the accumulated
inter-cell interference. Then, the achievable rate of MD n when
uploading data to SBS s is given as:

rn,s = W log2

(
1 +

∑
i∈M

SINRi
n,s

)
,∀s ∈ S, n ∈ Ns. (2)

Thus, the transmission time of MD n when sending its task
input data dn to SBS s in the uplink can be calculated as:

tupn,s =
dn
rn,s

. (3)

Let F = {fn,s|n ∈ N , s ∈ S} denote the computation
resource allocation strategy for each SBS, in which fn,s > 0 is
the amount of computation resources that SBS s allocates to the
computation task of MD n. Obviously, fn,s = 0, ∀n /∈ Ns. When
MD n offloads the computation task to SBS s, its execution delay
texen,s can be calculated as follows:

texen,s =
cn
fn,s

,∀n ∈ Ns. (4)

3.3 The Model of Reverse Auction
This paper uses the reverse auction to motivate SBSs to take
part in the computation offloading process, where the CSC acts
as the auctioneer and SBSs act as the bidders. SBSs lease their
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idle resources as commodities and report their status information
(bids) to the CSC.

Specifically, the auction procedure includes the following three
steps:

• Each MD submits the task information qn to the CSC
for task scheduling. Meanwhile, each SBS reports its bid
vector [fs, φs] to the CSC.

• Based on the received task information from MDs and
the bids from SBSs respectively, the CSC determines the
winners of the auction from the perspective of saving
its cost, and then makes the scheduling decision for the
winners.

• After receiving offloaded tasks from MDs, winning SBSs
will complete the tasks and return the output results back
to MDs. When MDs receive the returned results, the CSC
will be informed that the tasks are completed, and then the
CSC will pay the corresponding rewards to SBSs.

4 PROBLEM FORMULATION

In this section, we formulate the objective function of the CSC,
and model the reverse auction-based computation offloading and
resource allocation problem as a MINLP problem, aiming to
minimize the cost of the CSC.

According to Eq. (3) and Eq. (4), the total delay of MD n
offloading its task to SBS s can be calculated as follows:

tn,s = tupn,s + texen,s =
dn
rn,s

+
cn
fn,s

,∀n ∈ Ns. (5)

Note that, it is common to ignore the backhual delay of task
execution result as we also assume that the task execution result
data is very small, e.g., number or text [1], [2], [4]. Without loss
of generality, we assume that the average upload rate of MD
uploading input data to the CSC via MBS is rn,c. Let fn,c > 0
denote the amount of computation resources that the CSC allocates
to MD n, and fn,c = 0,∀n /∈ Nc. Then, we can get the total delay
for MD n to offload the computation task to the CSC as:

tn,c = tupn,c + texen,c =
dn
rn,c

+
cn
fn,c

,∀n ∈ Nc, (6)

where tupn,c and texen,c are the transmission delay and execution delay
of the MD respectively. Thus, let tn(A,F) denote the total delay
of MD n, which is given as:

tn(A,F) =

{
tn,s = tupn,s + texen,s = dn

rn,s
+ cn

fn,s
, n ∈ Ns

tn,c = tupn,c + texen,c = dn
rn,c

+ cn
fn,c

, n ∈ Nc
(7)

Considering that in a realistic scenario, MDs’ QoS has a
crucial impact on whether MDs will continue to subscribe to
CSC’s computation offloading service in the future. In our system
model, MDs’ QoS is mainly characterized by the computation
task completion time. Therefore, while considering the actual cost
generated in the system, we also consider the impact of MDs’ QoS
on the expected revenue of CSC in the future. Then, the CSC’s cost
can be given as:

Y (A,F) =ε
∑
n∈Nc

fn,c +
∑
s∈S

φs
∑
n∈Ns

fn,s

−
∑
s∈S

∑
n∈Ns

λnω (tmax
n − tn(A,F)) ,

(8)

where the first term is the cost of resources consumed by CSC to
assist MDs in computation offloading, the second item is the cost
generated by the CSC to compensate for SBSs participating in
computation offloading, and the third item represents the expected
total revenue brought by QoS improvement when MDs offload
computation tasks to SBSs, in which tmax

n − tn(A,F) represents
the total saved delay of MD n. In addition, ω represents the
revenue conversion coefficient, and λn ∈ (0, 1] represents the
CSC’s preference towards MD n. For example, depending on the
service level subscribed by MDs, the CSC will set a higher value
of λn for MD n who has paid a higher subscription fee to provide
higher-quality services (such as VIP MDs). In other words, λn
is used to indicate the service level of MDs. MDs with higher
subscribed service levels will bring higher expected revenue to
CSC. In return, CSC will provide higher-quality services.

Remark 1. Compared with SBSs, the CSC has much more
computation resources. Therefore, to guarantee MDs’ QoS and
simplify the problem, we assume that the computation resources
allocated by the CSC to MD n (fn,c) is a constant, which is
positively related to the CSC’s preference towards MD n (λn), i.e.,
if λn is larger, then fn,c is greater, and should meet the maximum
delay requirement of MD n, i.e., fn,c ≥ fminn,c ,∀n ∈ Nc. To
obtain fminn,c , we first set tn,c to:

tn,c = tmaxn ,∀n ∈ Nc. (9)

Then, according to Eq. (6), fminn,c can be calculated as:

fminn,c =
cn

tmax
n − dn

rn,c

,∀n ∈ Nc. (10)

Now, we formulate the optimization problem as a system cost
minimization problem, which can be expressed as:

min
A,F

Y (A,F) (11)

s.t. ain,s ∈ {0, 1}, ∀n ∈ N , s ∈ S, i ∈M, (12)

fn,s > 0, ∀n ∈ Ns, s ∈ S, (13)∑
n∈Ns

fn,s ≤ fs, ∀s ∈ S, (14)∑
s∈S

∑
i∈M

ain,s ≤ 1, ∀n ∈ N , (15)∑
n∈N

ain,s ≤ 1, ∀s ∈ S, i ∈M, (16)

tn(A,F) ≤ tmaxn , ∀n ∈ N . (17)

With Y (A,F) given in Eq. (8), the meaning of the constraints
can be explained as follows: constraints (12) and (15) indicate
that each MD can offload to the CSC or at most one SBS on
one sub-band; constraint (16) implies that each SBS can serve at
most one MD per sub-band; constraints (13) and (14) imply that
each SBS must allocate a positive computation resource to the
associated MDs and the total computation resources allocated to
all the associated MDs must not excess the SBS’s idle computation
resources; constraint (17) guarantees that the total delay of the
offloaded computation task does not exceed its maximum toler-
able delay. Moreover, the optimization problem has both binary
variables and continuous non-integer variables. Therefore, the
proposed optimization problem is a complex non-convex MINLP
problem, which has been demonstrated to be a typical NP-hard
problem [43], [51], [52], [53].
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5 PROBLEM TRANSFORMATION AND DECOMPOSI-
TION

In this section, we first modify the constraints of the original
problem appropriately so that the constraints on the offloading
strategyA and the resource allocation strategy F can be separated
from each other. Then, we decompose the original problem into
an equivalent master-problem and sub-problem.

To meet the delay requirement of Constraint (17), we first have
to obtain the minimum computation resources fminn,s that need to
be provided if MD n is assisted by SBS s to perform computation
offloading. According to Eq. (7), Constraints (13) and (17) can be
rewritten as follows:∑

n∈Ns

fmin
n,s ≤ fs, ∀s ∈ S, (18)

fn,s ≥ fmin
n,s , ∀n ∈ Ns, s ∈ S, (19)

fminn,s > 0, ∀n ∈ Ns, s ∈ S, (20)

where fminn,s = cn
tmax
n − dn

rn,c

denotes the minimum computation

resources that need to be provided if MD n is assisted by SBS s to
perform computation offloading. Obviously, fminn,s = 0, ∀n /∈ Ns.

Hence, if A and F satisfy the Constraints (18)(19)(20), the
Constraints (13) and (17) are also satisfied. Thus, we can rewrite
the original problem as follows:

min
A

(
min
F

Y (A,F)

)
(21)

s.t. (12), (15), (16), (18), (20), (22)

(14), (19). (23)

It is worth noting that the constraints on the offloading strategy
A in (22), and the resource allocation strategy F in (23), are
decoupled from each other. Now, solving the problem in (21) is
equivalent to solving the following problem:

min
A

Y ∗(A) (24)

s.t. (12), (15), (16), (18), (20), (25)

in which Y ∗(A) corresponds to the optimal-value function when
the resource allocation strategy F takes the optimal solution under
the fixed offloading strategy Ã, written as:

Y ∗(A) = min
F

Y (Ã,F) (26)

s.t. (14), (19). (27)

Moreover, decomposing problem (21) into problems (24) and
(26) can still keep the optimality of the solution. In the next
section, we will propose two low-complexity algorithms to obtain
the suboptimal resource allocation strategy F and offloading
strategy A.

6 MAIN APPROACH

This section presents our low-complexity approaches to solve
the above optimization problem. We first propose a computation
resource allocation method, and then a winning bid selection
method. Finally, we present the CSC’s payment determination for
the winning SBSs.

6.1 Computation Resource Allocation

This part proposes a Constrained Gradient Descent Allocation
Method to allocate computation resources for each MD that
offloads tasks to the SBS, named CGDAM.

Once a feasible offloading strategy Ã that satisfies constraint
(22) is given, then according to Eq. (8), the objective function
in (26) can be expressed as follows:

Y (Ã,F) = ε
∑
n∈Nc

fn,c + Z(Ã,F), (28)

where Z(Ã,F) =
∑
s∈S

φs
∑
n∈Ns

fn,s−∑
s∈S

∑
n∈Ns

λnω (tmax
n − tn,s) .

(29)

The first item in Eq. (28) represents the actual cost generated
by the CSC, while the second item represents the expected cost
generated by SBSs. Obviously, the first item of Eq. (28) is constant
when the offloading strategy Ã is fixed, so Z(Ã,F) can be
regarded as a new objective function. Therefore, problem (26) can
be rewritten as:

min
F

Z(Ã,F) (30)

s.t. (14), (19). (31)

Next, according to Eq. (29), the second-order derivative of
Z(Ã,F) is calculated to get w.r.t fn.s, which is expressed as:

∂2Z
∂2fn,s

= 2cnλnω
f3
n,s

> 0, ∀s ∈ Sn ∈ Ns,
∂2Z

∂fn,s∂fv,w
= 0, ∀(n, s) 6= (v, w),

(32)

where the Hessian matrix of Z(Ã,F) is diagonal with strictly
positive elements, so it is positive-definite. Hence, problem (30)
is convex and can be solved with the Lagrangian duality and
Karush-Kuhn-Tucker (KKT) conditions [49]. However, solving a
multi-variable system of non-linear equations brings high com-
plexity [50].

In order to reduce the algorithm complexity, we design Algo-
rithm 1 to solve this sub-problem. We first divide the computation
resources of each SBS into many tiny atomic pieces, denoted by ϕ,
and then allocate these computation resources pieces to each MD
one by one. The key of the Algorithm 1 is to allocate computation
resources pieces to the MD with the fastest change (which means
that the gradient is negative and smallest) in each assignment.
It is worth noting that the smaller the division of computation
resources, the closer the final solution is to the optimal solution.
More details are shown in Algorithm 1.

Remark 2. (Complexity Analysis of Algorithm 1)
In Algorithm 1, we denote frems as the remaining computation

resources of SBS s under a fixed offloading strategy Ã, and
Swin = {s ∈ S|

∑
n∈N

∑
i∈M ain,s > 0} as the set of winning

bids in the reverse auction. The complexity of Algorithm 1 depends
on |Swin| and the number of computation resources pieces νs
(which is calculated by ϕ and frems ). In the worst case, the loop
complexity of the inner layer is up to O(νs), while the complexity
of the outer layer is O(|Swin|). In summary, we can know that
the maximum complexity of Algorithm 1 is O(|Swin| × ν).
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Algorithm 1 Constrained Gradient Descent Allocation Method
(CGDAM).

Require: Ã, ϕ;
Ensure: F ;

1: function CGDAM(Ã)
2: for each SBS s ∈ Swin do
3: for each MD n ∈ Ns do
4: fn,s ← fminn,s ;
5: end for
6: frems ← fs −

∑
n∈Ns

fn,s;
7: νs ← bfrems /ϕc,∀s ∈ Swin;
8: end for
9: for each SBS s ∈ Swin do

10: σ ← ∂Z
∂fn,s

, count← 0;
11: G = {gn = σ (fn,s) | n ∈ Ns};
12: while count < νs and ∃gn ∈ G : gn < 0 do
13: n← argminn∈Ns

{G};
14: fn,s ← fn,s + ϕ; gn ← σ (fn,s);
15: count← count+ 1;
16: end while
17: end for
18: return F
19: end function

6.2 Winning Bid Selection

With Algorithm 1, we can obtain the solution of computation
resource allocation strategyF∗ under the fixed offloading strategy.
Then, according to Eqs. (26), (28) and (30), we have:

Y ∗(A) = ε
∑
n∈Nc

fn,c + Z(A,F∗). (33)

According to Eq. (33), we can rewrite the problem in (24) as:

min
A

ε
∑
n∈Nc

fn,c + Z(A,F∗) (34)

s.t. (12), (15), (16), (18), (20). (35)

Obviously, it is very difficult to solve this combinatorial
optimization problem in polynomial time. The simplest way to
solve this problem is by using the exhaustive method, but it takes
2N×S×M times to search all the solutions, which is obviously
impractical. Therefore, we design a Greedy Randomized Adaptive
Search Procedure based Winning Bid Selection Method, named
GWBSM to solve this master-problem, which can find approx-
imate solutions in polynomial time. We first give some related
definitions.

Definition 1. We define costin,s to indicate the minimum actual
cost generated by MD n offloading the computation task to SBS s
on sub-band i, which is given as:

costin,s = φsf̂
min
n,s =

φscn

tmax
n − dn

r̂n,s

, (36)

where f̂minn,s = cn
tmax
n − dn

r̂n,c

denotes the minimum computation

resource required when SBS s provides offloading services to MD
n without considering inter-cell interference.

Algorithm 2 Construct Greedy Randomized Solution (CGRS).

Require: θ;
Ensure: A;

1: function CGRS(θ)
2: A = {ain,s = 0|∀n ∈ N , s ∈ S, i ∈M};
3: P = {profitin,s}; . According to Definition 3
4: while P 6= ∅ do
5: profitmin ← min{P}, profitmax ← max{P};
6: RCL← {profitin,s ∈ T | profit

i
n,s ≥

profitmin + θ
(
profitmax − profitmin

)
};

7: Randomly select an element profitjh,k from RCL;
8: Ψ = {profitln,s|n = h, s = k, ∀l ∈M};
9: for each profitlh,k ∈ Ψ do

10: Ã ← A\{alh,k}, alh,k ← 1;
11: Ã ← Ã ∪ {alh,k};
12: if Ã satisfies constraints (27),(28) then
13: A ← Ã, j ← l;
14: Skip to step 17;
15: end if
16: end for
17: P ← P\

{
profitin,s ∈ P | n = h,∀s ∈ S, i ∈M

}
;

18: P ← P\
{
profitin,s ∈ P | s = k, i = j,∀n ∈ N

}
;

19: end while
20: return A
21: end function

Definition 2. Similar to Definition 1, we define costin,c to indicate
the minimum actual cost for MD n to offload the computation task
to the CSC, which is given as:

costn,c = εfminn,c =
εcn

tmax
n − dn

rn,c

. (37)

Definition 3. According to Definition 1 and Definition 2, we define
profitin,s to represent the cost saved (also called the increased
profit) for the CSC when the computation task of MD n is offloaded
to SBS s on sub-band i, which is given as:

profitin,s = costn,c − costin,s. (38)

As shown in Algorithm 4, each iteration of GWBSM mainly
includes two stages: construct greedy randomized solution and
local search. The construction stage is mainly used to generate a
feasible solution, and then its solution will be put into the local
search for neighborhood search until a local optimal solution is
found. Next, we introduce these two stages in detail.

6.2.1 Construct Greedy Randomized Solution
A simple way to construct the greedy solution is to select the
offloading strategy that can bring the largest profit to the CSC
according to Definition 3. However, the solution obtained in this
way will make GWBSM fall into a local optimum, so we introduce
a random factor that is the greedy value denoted by θ ∈ (0, 1).

According to Definition 3, we first evaluate the profits of
offloaded tasks to SBSs by each MD. Then, we build a Restricted
Candidate List (RCL) based on the greedy value θ (Lines 5-6), and
randomly select an element from RCL to determine whether it can
be added to the current offloading strategy (Lines 7-16). In each
while-loop of the selection of the element from RCL, regardless of
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Algorithm 3 Local Search (LS).

Require: A;
Ensure: A,F ;

1: function LS(A)
2: F ← CGDAM(A);
3: for each SBS s ∈ Swin do
4: For MDs assisted by SBS s for computation offload-

ing, we use 2-opt operations to exchange MDs between
different sub-bands to obtain a new offloading strategy Ã.

5: if Ã satisfies constraints (24)-(28) then
6: F̃ ← CGDAM(Ã)
7: if Y (A,F) > Y (Ã, F̃) then
8: A ← Ã, F ← F̃ ;
9: end if

10: end if
11: end for
12: for each sub-band m ∈M do
13: For MDs that offload tasks on sub-band m of SBSs,

we use 2-opt operation to exchange MDs between different
SBSs to obtain a new offloading strategy Ã.

14: if Ã satisfies constraints (24)-(28) then
15: F̃ ← CGDAM(Ã)
16: if Y (A,F) > Y (Ã, F̃) then
17: A ← Ã, F ← F̃ ;
18: end if
19: end if
20: end for
21: return A,F
22: end function

whether this element is added to the current offloading strategy or
not, the relevant element needs to be removed from the remaining
optional elements to ensure that the constraints (15)(16) are
satisfied (Lines 17-18). More details are shown in Algorithm 2.

6.2.2 Local Search
In the first stage of construction, the feasible solution obtained
may not be optimal, so a local search should be performed in the
neighborhood of the feasible solution. The basic idea of this stage
is to search the neighborhood of the feasible solution generated in
the construction stage, and replace the current feasible solution
with the optimal adjacent solution to find the current optimal
solution (Lines 7-9 and Lines 16-18). The design of the specific
neighborhood operator is introduced in Line 4 and Line 13 of
Algorithm 3. More details are shown in Algorithm 3.

It can be found that GWBSM has two main parameters: greedy
value θ and Max-Iteration. The number of elements in RCL
depends on θ. θ = 0 means that any feasible element will be
randomly selected in the construction stage, which will make the
solution search range too wide and difficult to find the optimal
solution. On the contrary, θ = 1 means that only the elements with
the largest profits will be selected, which makes GWBSM fall into
a local optimum. For the Max-Iteration, it is the condition for
the termination of GWBSM. In each iteration, GWBSM will find
a new solution to replace the current optimal solution (Lines 4-8
in Algorithm 4), but the probability that the new solution is better
than the current solution will decrease as the number of iterations
increases. Therefore, the larger the value of Max-Iteration, the
better the quality of the final solution. However, the complexity
of GWBSM is linearly related to Max-Iteration, so how to set a

Algorithm 4 Greedy Randomized Adaptive Search Procedure
based Winning Bid Selection Method (GWBSM).

Require: qn, en, ϕ, θ, Max-Iteration;
Ensure: A, F ;

1: A,F ← Set to offload all MDs’ tasks to the CSC;
2: for iter to Max-Iteration do
3: Ã ← CGRS(θ);
4: Ã, F̃ ← LS(Ã);
5: if Y (A,F) > Y (Ã, F̃) then
6: A ← Ã, F ← F̃ ;
7: end if
8: end for
9: return A,F

proper Max-Iteration is also crucial. The detail of the proposed
GWBSM is shown in Algorithm 4.

Remark 3. (Complexity Analysis of Algorithm 4)
Obviously, the complexity of Algorithm 4 depends on Algo-

rithm 2, Algorithm 3, and Max-Iteration. For Algorithm 2, only
one layer of while-loop is included, and its maximum complexity
is O(N). For Algorithm 3, its complexity depends on Algorithm 1
and the neighborhood size of the current feasible solution. Then,
according to Remark 2, we can get the complexity of Algorithm 3

as O(
M |Swin|(|Swin|+M)

2
× |Swin| × ν). We use ξ to repre-

sent Max-Iteration and let |Swin| be equal to W . Since the com-
plexity of Algorithm 2 is too small to be ignored, the complexity of

Algorithm 4 can be obtained as O(
MW 2(W +M)× ν × ξ

2
).

Furthermore, since GWBSM is a multi-start heuristic algorithm,
and the solution in each iteration can be computed independently,
the runtime can be greatly reduced by utilizing parallel computing.

6.3 Payment Determination

For each winning bid, the CSC needs to make a reasonable
payment determination to ensure that each SBS will honestly
report the value of its resources. In this paper, we adopt a payment
rule based on the standard Vickrey-Clarke-Groves (VCG) scheme
for GWBSM [26]. The proposed payment rule can encourage
SBSs to participate in computation offloading, while ensuring the
individual rationality and truthfulness properties.

In the standard VCG scheme, each winner will pay the “oppor-
tunity cost” caused to other participants. The “opportunity cost”
of bidder s is defined as the total bids of all the other bidders that
would win without the participation of bidder s, minus the sum
of bids of all the other actual winning bidders. Next, we introduce
the following definitions:

Definition 4. We define βs to represent the increment in CSC’s
revenue after choosing SBS s to participate in the computation
offloading, which is given as:

βs = ε
∑
n∈Ns

fminn,c +
∑
n∈Ns

λnω (tmax
n − tn(A,F)) . (39)

Definition 5. We define αs to represent the sum cost of SBS s by
serving its associated MDs, which is given as:

αs = φs
∑
n∈Ns

fn,s. (40)
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Algorithm 5 Payment Determination in GWBSM.

Require: A, F
Ensure: ps

1: for each SBS s ∈ S do
2: ps ← 0;
3: end for
4: for each SBS s ∈ Swin do
5: Y −sS (A,F) = YS(A,F) + (βs − αs);
6: S ← S\{s}
7: Update Swin according to Algorithm 4;
8: Calculate ps according to Eq. (42);
9: S ← S ∪ {s};

10: end for
11: return ps,∀s ∈ Swin

According to Definition 4 and Definition 5, we define
Y −sS (A,F) as the optimal solution without considering the profit
brought by SBS s, which can be expressed as:

Y −sS (A,F) = YS(A,F) + (βs − αs). (41)

Furthermore, we use YS\{s}(A,F) to denote the new optimal
solution without considering the participation of SBS s. Then, the
payment paid to SBS s is given as:

ps = βs −
(
Y −sS (A,F)− YS\{s}(A,F)

)
. (42)

Let σs = vs
∑
n∈Ns

fn,s denote the sum of the true valuation
consumed by SBS s in the computation offloading process. Then,
the utility of each SBS s ∈ Swin is defined as:

δs = ps − σs. (43)

We define the payment of those SBSs s /∈ Swin as 0, then
the details of the proposed Payment Determination are shown in
Algorithm 5.

Remark 4. (Complexity Analysis of Algorithm 5)
According to Remark 3, we know that the complexity of

Algorithm 5 is O(
MW 3(W +M)× ν × ξ

2
).

6.4 Proof of Properties
In this part, we prove that the payment rule satisfies two crucial
properties: individual rationality and truthfulness. The individual
rationality guarantees that each winner can get a non-negative
utility, which is essential for SBSs to participate in the computa-
tion offloading process. The truthfulness prevents SBSs obtaining
higher utility by bidding untruthfully.

Theorem 1. (Individual Rationality). The payment rule defined
in Eq. (42) satisfies the individual rationality property, i.e., ∀s ∈
S, δs = ps − σs ≥ 0.

Proof. Based on Eq. (42), we can get:

ps = βs −
(
Y −sS (A,F)− YS\{s}(A,F)

)
= βs −

(
YS(A,F)− YS\{s}(A,F) + βs − αs

)
= YS\{s}(A,F)− YS(A,F) + αs.

When each SBS s ∈ S bids truthfully, i.e., αs = σs, we can
obtain:

δs = ps − σs
= YS\{s}(A,F)− YS(A,F)

≥ 0.

Hence, the individual rationality property is satisfied.

Theorem 2. (Truthfulness). The payment rule defined in Eq. (42)
satisfies the truthfulness property, i.e., it is a weakly dominant
strategy for each SBS to set the bid φs = vs.

Proof. We assume that a certain SBS s declares the bid φ
′

s

untruthfully, i.e., φ′s > vs. According to Eq. (43), the utility that
SBS s receives becomes:

δ′s = p′s − σs
= β′s −

(
Y −sS (A′,F ′)− YS\{s}(A,F)

)
− vs

∑
n∈Ns

fn,s.

Then, the difference of SBS s ∈ Swin’s utility after submitting
the untruthful bid and the truthful bid is given by:

δ̂s = δ′s − δs
= β′s −

(
Y −sS (A′,F ′)− YS\{s}(A,F)

)
− vs

∑
n∈Ns

fn,s

−

YS\{s}(A,F)− YS(A,F) + αs − vs
∑
n∈Ns

fn,s


= β′s − Y −sS (A′,F ′) + YS(A,F)− αs
= β′s − (YS(A′,F ′) + β′s − α′s) + YS(A,F)− αs
= YS(A,F)− αs − (YS(A′,F ′)− α′s).

Since Swin is the solution that minimizes the objective func-
tion Eq. (8), we have:

YS(A,F)− αs ≤ YS(A′,F ′)− α′s.

Therefore, δ̂s ≤ 0, which means SBSs cannot increase their
utility by bidding untruthfully.

7 PERFORMANCE EVALUATION

The optimization problem in this paper belongs to NP-hard, and
it is impossible to obtain the optimal solution in polynomial time.
Therefore, we cannot obtain the optimality gap of the proposed
algorithm theoretically. We analyze the optimality gap of the
proposed algorithm through simulation. This section evaluates the
performance of RACORAM as well as compares it with other
baseline methods, and studies the impact of parameters on the
performance of RACORAM.

7.1 Simulation Settings
In the simulation, we consider that in a single-cell scenario,
there are several SBSs uniformly distributed and multiple MDs
randomly distributed. Parameters in the simulation are mainly set
according to the parameters in [1], [2], [4], [5]. For each SBS,
unless otherwise specified, we assume that the uplink bandwidth
is set to B = 20/40 MHz, and the idle computation resources fs
is in the range of [10, 20] GHz. For the uplink channel gain, we
use the distance-dependent path-loss model to calculate, which
is given as L[dB] = 140.7 + 36.7 log10 d[km] [54], and the
log-normal shadowing standard deviation is set to 8 dB. The
background noise power is set to σ2 = −100 dBm, and the
MDs’ transmission power is set to pn = 20 dBm. In addition,
each SBS’s bid of per unit computation resource φs is normally
distributed over [0.1, 0.2] monetary units (e.g., US dollars, or
RMB)/(Megacycle). Similarly, the CSC’s cost of per unit com-
putation resource ε is set to 0.3/(Megacycle). We assume that
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TABLE 2. Computation Task Type

Type Data Size CPU Cycle Maximum Tolerable
[MBs] [Megacycles] Delay [s]

Type 1 0.1 3000 1
Type 2 0.2 2000 1.5
Type 3 0.3 1500 2

there are three types of computation tasks generated by MDs, and
the specific information is shown in Table 2. In the simulations,
unless stated otherwise, the computation tasks generated by each
MD will randomly be one of the three types.

7.2 Compared Baselines

The proposed RACORAM is compared with the following base-
lines.

• Exhaustive Offloading and Joint CGDAM (EOJC): As we
mentioned before, the exhaustive method takes 2N×S×M

times to find out the optimal offloading strategy. Because
of the enormous computational complexity of this method,
we only evaluate its performance in the sparse network.
Furthermore, CGDAM is used to allocate computation
resources.

• Random Offloading and Joint CGDAM (ROJC): The
computation tasks of MDs are randomly assigned to the
nearby SBSs, and tasks which cannot be handled by the
SBSs will be uploaded to the CSC. Meanwhile, CGDAM
is also used to allocate computation resources.

• Greedy Offloading and Joint Minimum Resource Alloca-
tion (GOJMRA): In GOJMRA, offloaded tasks prioritize
selecting the offloading strategy that can bring the largest
profits to the CSC according to Definition 3. Moreover, the
computation resources allocated to each task offloaded to
SBSs only meet their maximum delay requirements.

• ALL Cloud Execution (ACE): All computation tasks are
served by the CSC. Certainly, this method performs worst,
and will not be analyzed in the following performance
evaluation.

• Winning Bid Selection (WBS) [44]: WBS is divided into
two phases. In phase 1, the bid set and the SBS set
are updated, and the bids which cannot satisfy the delay
constraints are removed; In phase 2, an n-to-one weighted
bipartite graph with capacity constraints is constructed, the
CSC selects suitable SBSs to form a maximum matching
with the approximately maximum weight. The computa-
tion resources for each MD are allocated according to
Algorithm 1, and phases 1 and 2 are repeated until the
suitable SBS set is empty.

For fairness, the payment rules of the above five methods
are the same as that in RACORAM, which has been shown in
Algorithm 5.

7.3 Impact of Greedy Value and Max-Iteration

This part evaluates the impact of greedy value θ and Max-
Iteration on the performance of the proposed RACORAM. We
design four types of RACORAM with different greedy values,
which are {0.2, 0.4, 0.6, 0.8} respectively. Meanwhile, the value
of Max-Iteration is in the range of [1, 30]. We set the number of

Fig. 2. The cost of the CSC under RACORAM with different
greedy values.
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Fig. 3. Comparison of the CSC’s cost under different computation
task types.

MDs as N = 25, the number of SBSs as S = 8, and each SBS
has M = 4 sub-bands.

Fig. 2 shows the performance comparison of four types of
RACORAM in terms of the CSC’s cost with the increase of the
value of Max-Iteration. It can be found that with the increase
of the value of Max-Iteration, the quality of the final solution
found by RACORAM is better, so the CSC’s cost will decrease
continuously. However, as the solution found by RACORAM
tends to the optimal solution, the CSC’s cost will gradually stabi-
lize. Furthermore, as the greedy value θ increases, the minimum
value of Max-Iteration required to stabilize the cost of the CSC
decreases. This is because the increase of θ will reduce the size of
RCL, so RACORAM only needs a smaller value of Max-Iteration
to find the corresponding suboptimal solution. On the other hand,
as θ decreases, the CSC’s cost becomes smaller when it stabilizes.
This is because reducing θ will increase the size of RCL, so the
higher probability of a better solution of RACORAM is found.

Considering the CSC’s cost and the running time of RACO-
RAM, we set greedy value θ = 0.6 and Max-Iteration = 10 in
the following simulations.

7.4 Performance Comparison

In this part, the performance of RACORAM is compared with
the optimal solution obtained by EOJC and also with the other
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Fig. 4. Comparison of the CSC’s cost under different number of
MDs.

baseline methods in terms of the CSC’s cost. Then, we compare
the performance of RACORAM with ROJC, GOJMRA, ACE, and
WBS in terms of the CSC’s cost under different scenarios, while
the EOJC method is omitted due to the enormous computational
complexity.

7.4.1 Suboptimality
Firstly, we verify the suboptimal nature of our proposed RACO-
RAM. Although EOJC can obtain the optimal solution, its enor-
mous computational complexity makes the simulation only avail-
able in the sparse network. Therefore, we set the number of MDs
as N = 6, the number of SBSs as S = 4, and each SBS has
M = 2 sub-bands.

Fig. 3 shows the performance comparison of RACORAM with
other baseline methods in terms of the CSC’s cost under different
computation task types. Since some tasks may be more sensitive to
delay, or have larger data size, or have larger required CPU cycles,
we use the task type to represent different types of tasks generated
in the system. Through this process, we can evaluate whether
our proposed solution is suitable for general situations. For the
abscissa, Type 1 (or Type 2, Type 3) means that all computation
tasks generated by MDs in the system are Type 1 (or Type 2, Type
3), but Mixed Type means that the computation tasks generated
by each MD will randomly be one of the three types. It can be
found that the performance of RACORAM is very close to the
optimal solution EOJC, and its performance is significantly better
than other baseline methods. In addition, the average running
time of EOJC is more than 100 times that of RACORAM in
such a small network. This is because the greedy randomized
adaptive search procedures used by RACORAM have excellent
convergence stability and global exploration capabilities, and can
obtain a suboptimal solution that is comparable to the exhaustive
method in a short time. We also observe that with the increase
of the maximum tolerable delay required for different types of
computation tasks, the performance superiority of RACORAM
compared to other baseline methods is more obvious. The main
reason is that RACORAM considers the improvement of MDs’
QoS in the optimization problem.

7.4.2 The CSC’s Cost Under Different Number of MDs
This part compares RACORAM with ROJC, GOJMRA, ACE, and
WBS in terms of the CSC’s cost under different number of MDs.
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Fig. 5. Comparison of the CSC’s cost under different number of
SBSs.
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Fig. 6. Comparison of the CSC’s cost under different idle compu-
tation resources of SBSs.

We set the number of SBSs as S = 12, and each SBS has M = 4
sub-bands. Meanwhile, the number of MDs is in the range of
[10, 40].

Fig. 4 shows the performance comparison of RACORAM,
ROJC, GOJMRA, ACE, and WBS in terms of the CSC’s cost un-
der different number of MDs. It can be found that with the increase
of the number of MDs, more computation tasks will be offloaded
by MDs, so the cost of the CSC will increase continuously. The
CSC’s cost in RACORAM increases slowly as the number of MDs
increases, compared with other baselines, which illustrates that
RACORAM performs best. When the number of MDs increases
to a large value, the CSC’s cost of our proposed RACORAM is
close to GOJMRA and WBS. This is because when the SBS serves
too many MDs, the idle computation resources of the SBS cannot
meet or only meet the maximum delay of MDs. For WBS, since
it cannot avoid the local optimum problem in the selection of
the offloading strategy and does not consider the improvement of
MDs’ QoS, it performs worse than our proposed RACORAM. For
GOJMRA, since the CSC selects the SBS with the largest utility
for each MD in turn, without considering allocating additional
computation resources to MDs, the performance of GOJMRA
is slightly worse than WBS. For ROJC, SBSs have sufficient
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idle resources to provide high-quality services to nearby MDs
when the number of MDs is small, so the current performance
of ROJC is close to RACORAM and better than WBS and
GOJMRA. However, the randomly generated offloading strategies
in ROJC cannot meet the resource constraints of SBSs when the
number of MDs is larger, which causes most MDs to offload their
computation tasks to the CSC. In this case, ROJC’s performance
is the worst compared with RACORAM, WBS, and GOJMRA.

7.4.3 The CSC’s Cost Under Different Number of SBSs

This part compares RACORAM with ROJC, GOJMRA, WBS,
and ACE in terms of the CSC’s cost under different number of
SBSs. We set the number of MDs as N = 25, and each SBS
has M = 4 sub-bands. Meanwhile, the number of SBSs is in the
range of [0, 12].

Fig. 5 shows the performance comparison of RACORAM,
ROJC, GOJMRA, WBS, and ACE in terms of the CSC’s cost
under different number of SBSs. With the increase of the number
of SBSs, more SBSs can assist the CSC to offload computa-
tion tasks, so the cost of the CSC will decrease continuously.
Our proposed RACORAM still performs best. This is because
RACORAM uses a GWBSM algorithm to obtain the near-optimal
offloading strategy in each SBS’s coverage area, and considers
the improvement of MDs’ QoS in the optimization problem,
so the CSC has a greater possibility to select more valuable
SBSs to participate in computation offloading. In contrast, WBS
only considers assigning computation tasks to the SBS that can
bring the maximum profit, while ignoring the potential impact of
channel conditions and unassigned computation tasks. Therefore,
WBS can only find the local optimal solution. For GOJMRA, it
assigns computation tasks to the SBS that can bring the maximum
profit in turn, while ignoring the impact of the resource allocation.
Therefore, the performance of GOJMRA is worse than WBS.
Furthermore, it’s obvious that ROJC performs worst. The main
reason is that ROJC randomly assigns the computation tasks of
each MD to nearby SBSs, resulting in a large number of SBSs
unable to provide services under delay constraints.

7.4.4 The CSC’s Cost Under Different Idle Computation
Resources of SBSs

This part compares RACORAM with ROJC, GOJMRA, WBS, and
ACE in terms of the CSC’s cost under different idle computation
resources of SBSs. We set the number of MDs as N = 25, the
number of SBSs as S = 12, and each SBS has M = 4 sub-bands.
Meanwhile, the idle computation resources of each SBS is in the
range of [0, 20] GHz.

Fig. 6 shows the performance comparison of RACORAM,
ROJC, GOJMRA, WBS, and ACE in terms of the CSC’s cost
under different idle computation resources of SBSs. With the
increase of the idle computation resources of SBSs, more MDs
can be served by SBSs, so the CSC’s cost will decrease continu-
ously. Furthermore, the cost of the CSC in RACORAM decreases
significantly as the idle computation resources of SBSs increase,
compared with that of WBS, GOJMRA, and ROJC, which demon-
strates that RACORAM performs best. When the idle computation
resources of SBSs increase to a large value, i.e, 18 GHz, the CSC’s
cost in RACORAM, WBS, and ROJC still slowly decrease while
GOJMRA is almost unchanged. This is because when the idle
computation resources of SBSs are sufficient, each SBS can meet
the computation resource requirements of all MDs in its coverage

Fig. 7. Payment & True Valuation of Winning SBSs.

area under the maximum tolerable delay. We know that the com-
putation resources allocated to MDs in GOJMRA only meet their
maximum tolerable delay requirements, so if the idle computation
resources of SBSs are sufficient to complete the computation task
within the maximum tolerable delay, then GOJMRA will almost
unchange. In contrast, RACORAM and ROJC use the CGDAM
algorithm to allocate additional idle computation resources when
the idle computation resources of SBSs are sufficient, thereby
reducing the expected cost of the CSC. Obviously, ROJC still
performs worst.

7.5 Evaluation of Individual Rationality and Truthful-
ness

In this part, we verify the individual rationality and truthfulness
properties of the proposed payment determination in RACORAM.
Firstly, we verify the individual rationality by comparing the
payment of each winning SBS and its corresponding true valuation
of cost in computation offloading. Then, we verify the truthfulness
by randomly selecting a winning SBS to observe how its utility
(according to Eq. (43)) evolves with the variant of bidding price.

Fig. 7 shows the individual rationality of the proposed payment
determination in RACORAM. It can be found that the payment of
each winning SBS is higher than its true valuation of the cost in
computation offloading, which means that each winning SBS can
get a positive utility when its bidding price is truthful. Therefore,
we verify that the proposed payment determination can guarantee
the individual rationality of the winning SBSs in RACORAM.

Fig. 8 shows the truthfulness of the proposed payment de-
termination in RACORAM. We randomly select a winning SBS
according to RACORAM, and its true valuation of cost in com-
putation offloading is estimated to be 81.27 or 0.12 per unit of
computation resource. Then, it can be found that when the bidding
price of the SBS (per unit of computation resource) is lower than
its true cost, it will not be selected as the winning bidder to ensure
the property of individual rationality. However, when the bidding
price of the SBS is much higher than its true cost, it will not be
selected as the winning bidder either. This SBS can be selected
as the winning bidder only when its bidding price is equal to or
close to its true cost (0.12), i.e., within the range of [0.12, 0.15].
And even if SBS’s bidding price increases, the payment provided
by the CSC is always equal to 107.8 > 81.27, which proves that
the SBS cannot get higher payment from untruthful bidding price.
Therefore, we verify that the proposed payment determination can
guarantee the truthfulness of the winning SBSs in RACORAM.
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Fig. 8. Utility & Bidding Price of Wining SBSs.

TABLE 3. Running Time(ms)

Network Type Sparse Denser Ultra-Denser
N/(S ∗M) 6/(4 ∗ 2) 25/(8 ∗ 4) 40/(12 ∗ 4)

EOJC 2.28× 106 - -

RACORAM 1.73× 104 9.89× 105 6.94× 106

ROJC 2.41× 102 7.19× 102 4.26× 103

GOJMRA 1.92× 102 8.61× 102 9.53× 103

WBS 1.47× 104 7.80× 105 1.06× 106

7.6 Computational Efficiency

This part investigates the computational efficiency of RACORAM,
and records the running time of RACORAM and other baseline
methods in different network scenarios, as shown in Table 3.
For each network scenario, we perform 50 iterations of each
method and take the average of the running time to measure the
computational efficiency.

From the table, N represents the number of MDs, and S
and M represent the number of SBSs and each SBS’s sub-bands
respectively. We observe that the running time of RACORAM
gradually rises as the network scenario grows from sparse to ultra-
denser. It is worth noting that the relationship between the growth
rate of running time and the network size is not exponential. This
is consistent with the claim that RACORAM follows a polynomial
computation time with respect to the scale of the network, which
is shown in Remark 4. On the one hand, RACORAM can find
sub-optimal solutions in a shorter time than EOJC. On the other
hand, compared with GOJMRA, ROJC, and WBS, RACORAM
further reduces the cost of the CSC with an acceptable increase in
the computational overhead. Furthermore, RACORAM can greatly
reduce running time through parallel computing.

To summarize, the greedy value θ and Max-Iteration have
a significant impact on the performance of RACORAM, and
RACORAM is very close to the optimal method EOJC while it
significantly outperforms the other baseline methods under dif-
ferent scenarios. In addition, RACORAM is superior to EOJC in
terms of the computational efficiency. Furthermore, we prove that
the proposed payment determination can guarantee the individual
rationality and truthfulness properties.

8 CONCLUSION

In this paper, we have proposed a novel Reverse Auction-based
Computation Offloading and Resource Allocation Mechanism,
named RACORAM for the mobile Cloud-Edge computing. The
optimization problem is formulated as a Mixed Integer Nonlinear
Programming (MINLP) problem, aiming to minimize the cost of
the CSC. We decomposed the original problem into an equivalent
master problem and subproblem, and proposed low-complexity
algorithms to solve the related optimization problems. Specifically,
a Constrained Gradient Descent Allocation Method (CGDAM)
is first proposed to determine the computation resource alloca-
tion strategy, and then a Greedy Randomized Adaptive Search
Procedure based Winning Bid Scheduling Method (GWBSM)
is proposed to determine the computation offloading strategy.
Meanwhile, a VCG scheme-based payment determination for
the winning SBSs is also presented. Simulation results illustrate
that RACORAM is very close to the optimal method EOJC
with significantly reduced computational complexity, and greatly
outperforms the other baseline methods in terms of the CSC’s cost
under different scenarios.
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