

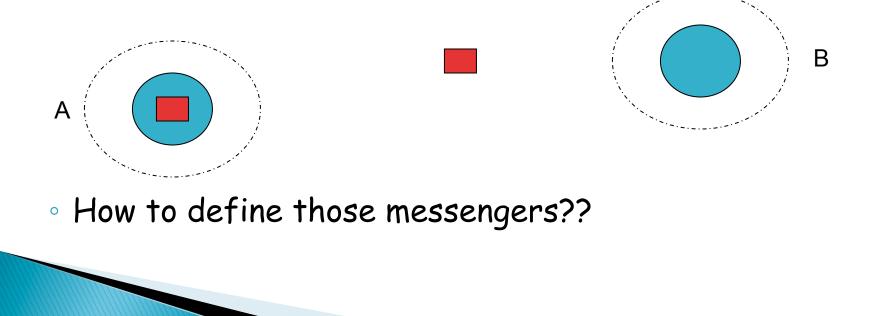
Multi-copy Routing with Trajectory Prediction in Social Delay-Tolerant Networks

Quan Yuan¹, Ionut Cardei², Jing Chen³, and Jie Wu⁴

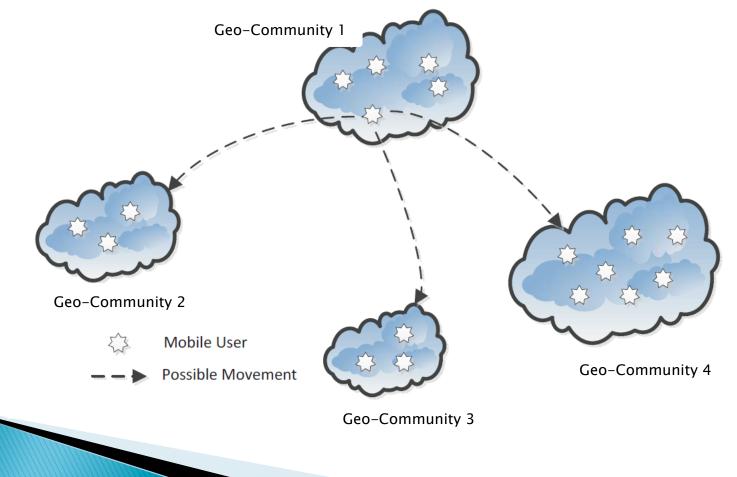
Presenter: Wei Chang⁴

University of Texas-Permian Basin^{1,} Florida Atlantic University² Wuhan University^{3,}Temple University⁴

Outline

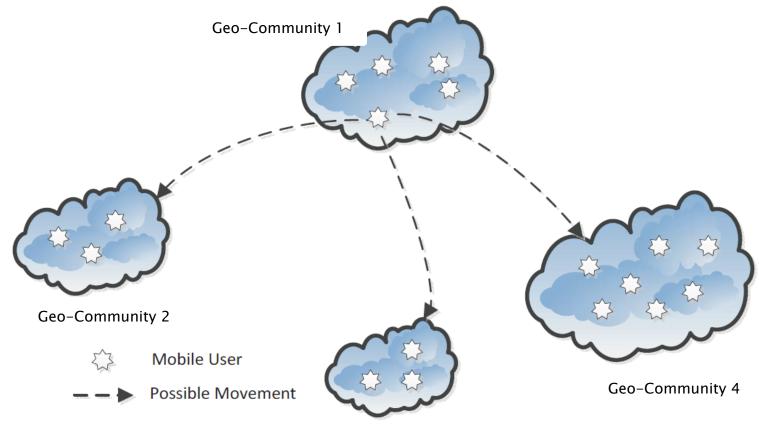

- Background
- Motivation
- Prediction-based Multi-copy Routing
- Simulation
- Conclusion

- Traditional Wireless Networks
 - Base station support
 - End-to-end Round Trip Time is not terribly large
 - Some path exists between endpoints
 - Always finds single "best" existing route
 - Low loss rates (under 2% or so)
- Disruption-Tolerant Networks (DTNs)
 - Limited base station support
 - Dynamic network topology
 - Unstable link connectivity, disruption
 - High delay and packet loss
 - Example: Underwater Sensor Networks, Animal Tracking Networks, Military Ad-hoc Networks
 - Routing in DTNs becomes a big challenge!


To improve routing performance in DTNs

- Only "proper" nodes can get a copy: 1) Destination node, 2) Messengers - nodes who will encounter the destination in the near future.
- Store-Carry-and-Forward delivery

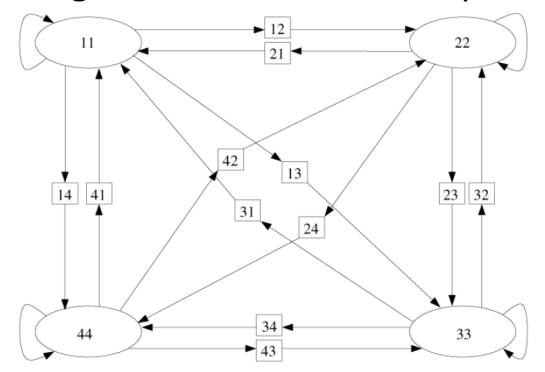
- Prediction-based Routing
 - Inter-node contacts and mobility behaviors are predicted first.
 - Messengers (next hops) are determined based on such predictions to maximize QoS (e.g. delay or delivery ratio).
 - Two types:
 - single-copy routing: minimum traffic overhead but relatively large delay.
 - multi-copy routing: more copies to improve delay and delivery ratio.


Meanwhile, most DTNs have a social network nature

Motivation

- Goal: employing the social network nature to improve routing performance in social DNTs.
 - Social network nature is helpful to further improve mobility prediction accuracy by evaluating future contacts and their occurring time.
 - Then, pick a group to proper messengers to deliver packets to the destination.
 - Employ the multi-copy strategy to further reduce the delivery delay and enlarge delivery ratio.
- McRTP: a Multi-copy Routing protocol with Trajectory Prediction for social DTNs.

System Model & Assumptions


Geo-Community 3

Protocol Overview

- Basic idea
 - A node can forward one or more copies of the same message to different nodes, during successive contacts.
 - The number of copies for a message is initialized at the source.
 - A node only distribute message copies to the nodes who are most likely to see the destination.
- Three core components
 - Candidate paths selection
 - Copy count assignment
 - Message forwarding policy

Contact Prediction (1)

Time-Homogeneous Semi-Markov process

 Define Sij(k), as the probability that a node will move from state i to j within k time units

Define pij = P(Xn+1 = j|Xn = i) as the state transition probability from Markov state T is $j \in I_2$

Contact Prediction (2)

- Time-Homogeneous Semi-Markov process
 - The homogeneous Semi-Markov kernel Q of this process is

$$Q_{ij}(k) = P(X_{n+1} = j, T_{n+1} - T_n \le k | X_0, ..., X_n;$$

$$T_0, ..., T_n)$$

$$= p_{ij} S_{ij}(k).$$

• Further, we have the node trajectory prediction

$$\phi_{ij}(k) = P(Z_k = j | Z_0 = i)$$

= $(1 - S_i(k))\delta_{ij} + \sum_{r=1}^{l^2} \sum_{\tau=0}^k \dot{Q}_{ir}(\tau)\phi_{rj}(k - \tau)$

 Contact profile C_{ab}(k) that gives the contact probability of two nodes a, b at time k ≥ max{t_a, t_b}

$$C_{ab}(k) = \sum_{x=1}^{l} \phi^{a}_{i_{a}(L_{x}L_{x})}(k-t_{a})\phi^{b}_{i_{b}(L_{x}L_{x})}(k-t_{b})$$

Path Selection (1)

Path evaluations

 Define the delay distribution d() as the probability of a message that at time T is at node a, to be delivered at node b at time T+t,

$$d(T, t, ab) = \begin{cases} 1 \\ (a \text{ and } b \text{ are in contact at time } T) \\ C_{ab}(T+t) \prod_{k=0}^{t-1} (1 - C_{ab}(T+k)) \\ (a \text{ and } b \text{ not in contact at time } T \text{ and } t > 0) \\ 0 \\ (if a \text{ and } b \text{ not in contact at time } T \text{ and } t = 0) \end{cases}$$

• The delay distribution d(T, t, R1R2) is then extended for a path made of the concatenation of two adjacent sub-paths R1 and R2

$$l(T, t, R_1 R_2) = \sum_{k=0}^{t} d(T, k, R_1) d(T+k, t-k, R_2)$$

Path Selection (2)

Path evaluations

 $\circ\,$ Further, the probability that a message transmitted at time T on a path R arrives with maximum delay $t\,$

$$D(T,t,R) = \sum_{k=0}^{t} d(T,k,R)$$

D is called the *maximum delay distribution* for messages on path R before time t, and it is used by McRTP as a prediction metric to select the most promising paths.

- Based on TTL, algorithm computes the maximum delay distribution D at the source for all possible paths of lengths 2, ..., λ (λ is limited to 3 to diminish overhead)
- Then sort the paths according to their D value in a decreasing order, and form the candidate paths set Q.

Path Selection (3)

Generating candidate paths set Q algorithm

Algorithm 1 Candidate Paths Selection

- 13: **Require:** V, set of nodes; s, source node; T, current time; 14: m_{path} , set of nodes already visited by message m. **Ensure:** set Q with candidate paths on which to forward the 15: message
 - 1: set $\mathcal{R} = \emptyset$ {set with paths from *s* to destination *d*}
- 2: {for adding paths of length 2}
- 3: for all $i \in V \setminus m_{path} \setminus \{s, d\}$ do
- if D(T, ttl(m), si) > 0 then 4:
- R = [s, i, d]5:
- $D_R = D(T, ttl(m), R)$ 6:
- if $D_R > 0$ then 7:
- $\mathcal{R} = \mathcal{R} \cup \{R\}$ 8:

{for adding paths of length 3}

- 9: if $m_c > 2$ then
- for all $i \in V \setminus m_{path} \setminus \{s, d\}$ do 10:
- if D(T, ttl(m), si) > 0 then 11:

for all $j \in V \setminus m_{path} \setminus \{s, d, i\}$ do R = [s, i, j, d] {path from s to d of length 3} $D_R = D(T, ttl(m), R)$ if $D_R > 0$ then $\mathcal{R} = \mathcal{R} \cup \{R\}$ 16:

- 17: sort paths R from \mathcal{R} based on decreasing value D_R
- 18: create β vector with *n* elements
- 19: set $Q = \emptyset$ {set with selected paths from s to d}
- 20: k = 1 {index in sorted set \mathcal{R} }
- 21: while $k \leq |\mathcal{R}|$ do

12:

- 22: R_k = the k^{th} path from \mathcal{R} sorted in decreasing order of D_R
- if CountCopies $(m_c, Q \cup \{R_k\}, \beta) \le m_c 1$ then 23:

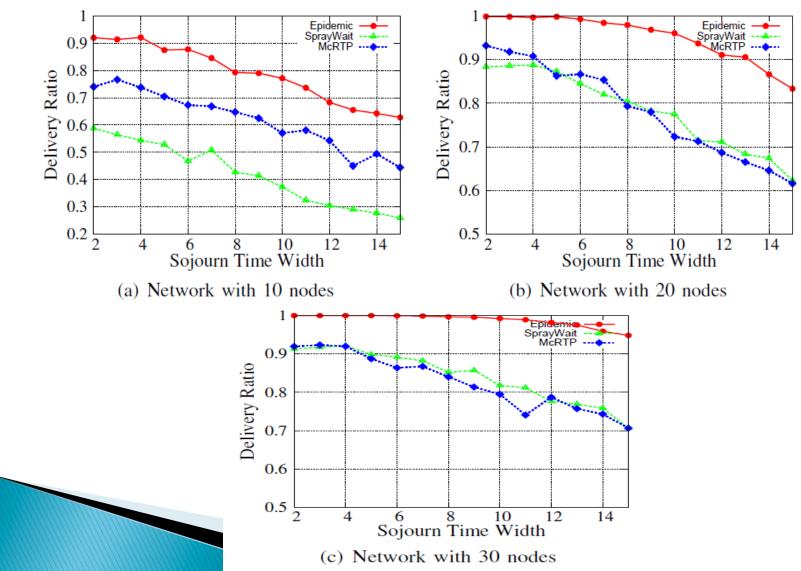
$$24: \qquad Q = Q \cup \{R_k\}$$

$$25: \quad k = k+1$$

Copy Account Assignment

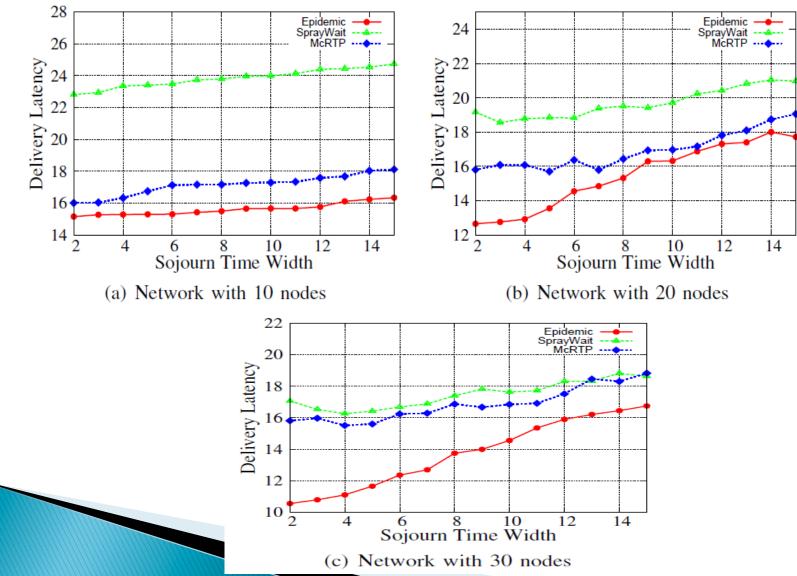
- function CountCopies (c, Q, β)
 - computes the total number of message copies needed to send a message from a node s to destination d on all paths in the candidate paths set Q from the previous phase.
 - Parameter β is a vector of *n* elements, whose element is the total number of message copies needed for all paths in Q that begin with a index node.
 - Parameter c is the current count. If the computed count reaches c, the function returns c.
 - Example: For example, if $Q = \{sad, sbd, sacd\}$, then *CountCopies*(10, Q, β) computes $\beta_{sabcd} = [4, 2, 1, 1, 0]$ and the function returns 4, which is the value of β_s .

Message Forwarding


- Each message maintains a message copy property, which is called copy account.
- Once the β values are computed at source, source node *s* sends β_j copies to node *j* when they are in contact, as evaluated in the copy account assignment phase, if $\beta_j > 0$.
- If $\beta_j = 0$, then node s does not forward the message to node j.

Simulation

- Algorithm in comparison
 - Epidemic routing
 - Spray-and-wait
 - On a custom packet-based simulator
- Settings
 - 10 geo-communities with *n* nodes uniformly distributed
 - Travelling time between two geo-communities is uniformly distributed in [2, 3].
 - The sojourn time is uniformly selected in [w,w+2], where w from 2 to 15 time units.
 - Mobility preference P is 10%
 - TTL is 35 time units
- Metrics
 - Delivery ratio
 - Delivery latency


Simulation

Results - Delivery ratio comparison

Simulation

Results - Deliverv ratio comparison

Conclusion

- McRTP predicts where and when the contact occurs using the social network nature.
- McRTP offers solutions for multi-copy prediction-based routing in social DTNs.
- McRTP outperforms traditional SprayWait, especially in sparse networks.

