
A Combined Functional and Object-Oriented Approach

to Software Design

Eduardo B. Fernandez, Jie Wu, Haifeng Qian

Department of Computer Science and Engineering

Florida Atlantic University

Boca Raton, FL 33431

fed, jieg@cse.fau.edu

Abstract

Large and complex software systems contain a variety of entities (objects) and a complex

control system (transformation function). The pure object-oriented design and structured design

approaches concentrate on either objects or the transformation function separately. As such

they may not be adequate in isolation, to deal with the design of complex systems. Therefore,

it makes sense to study their combination. In this paper we propose a Combined Functional

and Object-Oriented Design approach (CFOOD) based on the extended object-oriented design

method proposed by P. Jalote. The CFOOD approach makes full use of the object-oriented

design and structured design techniques combining the object view and the functional view to

provide a more complete view of a system. We demonstrate the use of our approach by a design

example of a hospital patient monitoring system.

Keywords: Complex systems, functional modules, object-oriented analysis and design,

stepwise re�nement, structured analysis and design.

1

A Combined Functional and Object-Oriented Approach to Software Design

1 Introduction

In the development of a software system the analysis and design phases are the bridge connecting

the problem space and the solution space. They determine the major characteristics of the system

and have great impact on the later phases, particularly testing and maintenance, which account for

the majority of the cost of a software system over its entire life cycle. Many analysis and design

techniques have been proposed, among which, structured analysis and design (SA/SD) [Your79],

[Ste74] and object-oriented analysis and design (OOA/OOD) [Booch94], [Rumb91] are the most

widely used.

The SA/SD method views every system as a function that transforms the given inputs into

desired outputs, the main task being designing this transformation function by functional abstrac-

tion and functional decomposition. In the object-oriented approach a system is decomposed into

objects and associations between these objects. An object is an instance of an abstract data type,

which encapsulates the object data, and provides a set of prede�ned operations to manipulate and

access this data.

In the SA/SD paradigm, the basic units of a system are functions, data are secondary. In

the OOA/OOD paradigm, data are primary and functions are secondary. However, systems in

real life consist of complex entities with operations on them through which they interact with

other entities, and of a complex transformation function that controls and operates on the entities.

This transformation function implements the dynamic model of the system and requires its own

method of development [Rumb93]. The entities and the transformation function are usually of

equal importance. Thus a convenient way to model a real life system is to incorporate both OOD

and SD techniques 1. Entities can be represented as objects with their operations using the OOD

technique, and the transformation function can be designed by the SD approach (Figure 1).

The work of exploring integration of methods has deep signi�cance [Loy90], [Hend90], [Hend91],

1From now on, when we talk of OOA/OOD and SA/SD, we'll just say OOD and SD for convenience

2

Transformation

Function

q q q q

q q q q
� - � - � -

J
J
J
J
JJ]

��
��

��
��

��
�*

HH
HH

HH
HH

HHY

data data data

Object Object Object

Operations Operations Operations

OOD SD

Figure 1: The model of a system (adapted from [Jal89])

[Ward89]. It is useful to explore these areas of compatibility for pragmatic reasons: contractual

and/or documentation requirements may make it necessary, and also it promotes the development

of software systems to a higher theoretical level, as well as facilitating the evolution of more co-

herent and usable approaches. This integration may also be useful as a transition phase from one

methodology to another. While SD is theoretically weaker than OOD, it is still used in many places

and there are many programmers familiar with its use. This makes the combination of these meth-

ods of practical value. In particular, when we are designing a large and complex system, a speci�c

methodology may not be appropriate for all the development phases or for all the subsystems of

this system.

Several studies on the integration of the OOD and SD approaches have appeared in the last

few years. Ward [Ward89] showed that there is no fundamental opposition between the two ap-

proaches, and that \real-time structured analysis/structured design can, with modest extensions

to the notation and to the model-building heuristics, adequately express an object-oriented de-

sign". Jalote [Jal89], [Jal91] proposed an extended object-oriented design (EOOD) methodology,

which incorporates a top-down, stepwise re�nement approach in the OOD approach. Bailin [Bai89]

described a method for combining structured analysis with the object-oriented approach for re-

3

quirement speci�cations. Similarly, Lee and Carver [Lee91] and Vasquez [Vasq93] used data ow

diagrams in the analysis part of the problem as a way to identify objects; Vasquez also uses SD

for the design of the operations of speci�c objects. In [Cons89a], Constantine emphasized that

we must get beyond the \madness of methods" and get \back to basics" by agreeing on a set of

fundamental principles independent of any methodology. With sound principles being recognized

as more important than speci�c methods, the groundwork could be laid for a coherent integration

of the methods. Wasserman et al. [Was90] created an object-oriented structured design notation

that can be used to describe not only object-oriented designs but also structured designs and even

concurrent designs. Loy [Loy90] made a comparison of the object-oriented and structured develop-

ment methods and concluded that there is little evidence of the statement that the OOD is better

than SD, although he might have obtained a di�erent result if he had done his study at a later time.

In [Hend90] and [Hend91] Henderson-Sellers and Constantine pointed out that the object-oriented

and structured techniques can be seen as complementary, and could be used at di�erent stages of

the life cycle, so that the existing investments in traditional tools are preserved. There are some

OOD methods based on hierarchical decomposition of objects, e.g. HOOD [Cool90], but these

methods use only objects. The OMT model [Rumb91] includes a functional model to describe the

implementation of the operations of an object; however this model is used after all these operations

have been de�ned. In summary, all these methods are used to produce only an object-oriented

design or they discuss general aspects, none of them presents a speci�c development methodology

combining partial results of the methods in the �nal design. However, they point out to the value

of combining methodologies at least for some type of applications.

We present here a Combined Functional and Object-Oriented Design (CFOOD) approach based

on the extended object-oriented design approach. The CFOOD approach makes full use of the SD

and OOD techniques, provides stronger ability to deal with those systems whose transformation

function and operations on objects are both fairly complex, and also provides adaptability to

di�erent types of problems. Of the methods discussed above, our approach is closest to EOOD.

However, when applied to systems that have transformation functions and/or operations that are

much more complex than the corresponding objects, our way to develop the functional re�nement

is more systematic than EOOD.

4

The rest of the paper is organized as follows. In Section 2, we briey describe the SD, OOD

and EOOD methods. In Section 3, we present the combined functional and object-oriented design

methodology. Section 4 contains a design example of a hospital patient monitoring system using

the CFOOD approach. The paper ends in Section 5 with some conclusions.

2 Preliminaries

In this section we give some de�nitions that are frequently used in SD and OOD and describe

briey the SD, OOD and EOOD methodologies.

A functional model of a system shows how output values in a computation are derived from

input values, without regard for the order in which the values are computed. The functional model

consists of multiple data ow diagrams (DFD) which show the ow of values from the external

inputs, through operations and internal data stores, to external outputs. Data ow diagrams do

not show the logic for implementing them. In the OOD method, the design is represented by

an object model which captures the static structure of a system by showing the objects in the

system, relationships between objects, and attributes and operations that characterize each class of

objects. In the SD method, the design is represented by a structure chart which is produced from

the functional model by transform and transaction analysis. The structure of a system is composed

of the functional modules of that system together with the interconnections between these modules.

The structured design (SD) methodology consists of four steps [Jal91]:

1. Restate the problem as a data ow diagram.

2. Identify the input and output data elements.

3. First-level factoring, transfer the DFD to a structure chart.

4. Factoring of input, output and transform modules.

The object-oriented design (OOD) methodology consists of �ve basic steps [Rumb91]. From the

word statement of the problem:

5

1. Identify the objects and their attributes.

2. Identify the operations on the objects.

3. Establish associations between objects, including generalization, aggregation and relation-

ships.

4. Develop a dynamic model of the system.

5. Implement the operations.

This purist OOD approach is acceptable for smaller systems, but may not be suitable for complex

problems [Jal89], [Jal91]. The extended object-oriented design (EOOD) method proposed by Jalote

[Jal89] has three phases:

1. Produce the initial design.

2. Do a functional re�nement.

3. Perform object re�nement.

The �rst phase utilizes the OOD approach. From an informal strategy, identify the objects, their

attributes and operations on them. Then identify the operations that do not seem to belong to

any identi�ed object, and mark them for functional re�nement in phase 2. These would typically

be the operations that employ many objects or do not seem to use any objects.

In the second phase, for each of the operations marked for functional re�nement, write an

informal strategy, identify the objects, operations on them and operations to be further re�ned

in the next re�nement. This process is repeated until no operations for further re�nement are

identi�ed. As the functional re�nement �nds new objects and operations on them, new operations

on old objects may be uncovered. When this phase terminates, all the objects in the problem space

are identi�ed, they form the Problem Space Object Set (PSOS).

The third phase is to re�ne objects in PSOS. For each object in PSOS, write an informal

strategy for all the operations on the object, and identify any new objects (and their corresponding

operations) that are required to implement these operations. New operations on old objects may

6

also be identi�ed. The new objects should naturally be regarded as nested within the object whose

re�nement uncovered their existence. The process continues on the nested objects until the objects

can be implemented directly.

In the EOOD method, emphasis is placed on objects. The SD technique is not brought into full

play and the design of the transformation function is processed in a less systematic and coherent

way than that of objects. The reason is that the initial design uses only the OOD approach and the

implementation of informal strategies always consider objects and their operations �rst. It is �ne

when the method is applied to the design of an object-oriented system in which objects are primary.

However, when it is used to design a function-oriented system, i.e. the transformation function is

dominant over and more complex than objects, the SD technique used in the EOOD approach

appears to be inadequate, full use of the SD technique is not only helpful but also required. The

same thing happens to the implementation of operations on objects when the operations are very

complex. In the next section, we introduce the Combined Functional and Object-Oriented Design

approach which deals with the two drawbacks of the EOOD method.

3 A Combined Functional and Object-Oriented Design Method-

ology

In the proposed methodology we start from two models: object model and structure chart, each

resulting from the OOD and SD methods respectively. Like EOOD we employ a top-down, recur-

sive re�nement approach both for the transformation function and for the objects in the system.

However, unlike the EOOD, the approach is unbiased to either objects or the transformation func-

tion, the OOD as well as the SD technique are applied as needed. The transformation function

and operations are designed using mostly the SD technique. In addition, CFOOD provides a more

complete view of the system by interrelating the components of the object model and structure

chart. We describe below the �ve phases in this approach, in the next section we present a complete

example. These phases are:

1. Produce an initial design by creating a combination of object model and structure chart.

7

2. Relate functional modules to objects.

3. Functional re�nement.

4. Object re�nement.

5. Produce the �nal design.

We analyze below each one of these steps in detail.

1. Produce an initial design

We create an initial object-oriented design from the speci�cations. A reasonable way to start

is to select some nouns as potential objects. We also de�ne some basic associations. Finally,

we de�ne intuitively some appropriate operations on the de�ned objects (we might use a state

diagram or event-trance diagram to de�ne operations if necessary). Then we restate the strategy

as a functional model (DFD) using the SD technique, identify the most abstract input and output

data items, and create an structured chart from the functional model by transform and transaction

analysis [Jal91]. The outputs of this phase are an object model composed of objects and associations

and the structure chart composed of functional modules.

2. Relate functional modules to objects

The object model and the structure chart are two di�erent views of the same system. The

modules in the structure chart may be interpreted as functions operating on objects in the object

model. For each module in the structure chart, we identify the relationship between this module and

the objects on which it has actions by adding links connecting the module and the objects. If the

function of the module is simply an operation already de�ned on the object to which it is connected,

then this module needs not to be further re�ned. Otherwise, mark it for functional re�nement in

the next phase. The output of this phase is a combination of two models with a many-to-many

mapping between them and marks on some functional modules that are to be further decomposed.

3. Functional re�nement

This is an iterative process to re�ne the functional modules in the structure chart. Each module

marked for functional re�nement in the last phase, is re�ned by applying step 1 to it. New objects

8

and operations on them may be uncovered during the re�nement; if this happens, we add them

to the object model, and identify their attributes and interfaces with other objects. Also, new

operations on the objects that already exist will be identi�ed, we attach them to their objects.

When the modules in the current level are re�ned, apply step 2 to mark modules in the next level

that still require further re�nement. To keep things clear, remove the link between a module and

an object if the relationship is also indicated by that between its submodule and the same object.

This re�nement process ends when no module is marked for further re�nement, i.e. the function of

each leaf module in the structure chart is either an operation on some object or can be implemented

directly.

The objects and operations that are discovered during re�nement at a given level are used for

de�ning the functions that were marked for re�nement at the previous level, but have no other

e�ect on the transformation function.

At the end of this phase, we have a re�ned structure chart and an object model consisting of

problem space objects, with relationships between the modules and objects that are clearer: a leaf

module is related to an object if the function of the module is an operation de�ned on the object.

4. Object re�nement

In this phase we identify the objects and operations that are required to implement the opera-

tions on the objects in the PSOS. To re�ne an object, for all the operations de�ned so far on the

object, apply steps 1, 2 and 3 to them, i.e. use both OOD and SD techniques to create object and

functional models and a structure chart, then relate the components in the two models, and re�ne

modules level by level. Identify any new objects and their operations required to implement these

operations. The new objects and operations should be regarded as nested within the object un-

dergoing re�nement. Also identify any new operations on old objects (other objects in the PSOS).

This may require the re�nement of those objects reconsidered. This is repeated for each object in

the PSOS. After all operations on the parent objects are identi�ed, the re�nement of nested objects

starts. This phase terminates when the objects can be implemented directly. The output of this

phase are two related hierarchical models where the last level can be implemented directly.

5. Produce the �nal design

9

A design should contain modules and their speci�cations, a set of classes with their attributes

and operations, and design decisions. The problem speci�cation can be obtained from the data

ow diagram which is generated in phase 1, with the speci�cation of data ows that occur in the

DFD. Modules and their speci�cations are acquired from the structure chart. The speci�cation of

a module includes its interfaces, its abstract behavior, and its submodules. The design decisions

should explain the choices that were available and reasons for making a particular choice.

4 A Design Example

In this section we demonstrate the use of the combined functional and object-oriented design

methodology through an example (this is a variation of a classical problem [Roten86]).

A hospital needs a patient monitoring system. Each patient is monitored by a sensor which

measures pulse, temperature, blood pressure, etc. The program reads these vital values (speci�ed

for each patient) periodically and stores these values in a database. For each patient, safe ranges

for vital values are speci�ed. If a reading is outside the safe range, the alarms in the o�ces of

the doctor and nurses who are responsible for the patient will sound. Each patient's values are

constantly displayed by his bed and in the o�ces of the persons responsible for him. A patient has

several nurses and one doctor assigned to him. Doctors and nurses have several patients assigned

to them. Each doctor has his own o�ce while several nurses share an o�ce.

Now let's use the CFOOD approach to design this system phase by phase. For conciseness, we

will only show some major details. Readers are referred to [Rumb91] and [Jal91] for the complete

model notation but a summary of this model notation is listed in Figure 7 in the Appendix and

described below.

In an object model, the notation for a relationship is a line between classes. A solid ball at the

end of a line is the symbol for \many". In a DFD, a process is represented by a rounded box, a

data �le by two parallel lines, and a source or a sink agent by a rectangle. In a structured chart, a

box denotes a functional module. An arrow from a module A to another module B represents that

module A invokes the module B. Iteration can be represented by a looping arrow, for example, the

arrow around the arrows connecting C and D to A, as shown in Figure 7 (d). In Figure 7 (e), the

10

small diamond in the box for A is a decision representation, meaning that the invocation of either

C or D depends on the outcome of some decision.

Phase 1: Produce the initial design

Our strategy for this phase of the problem is based on [Booch86] and [Rumb91]. We assume

that nouns correspond to potential objects. The words that are boxed represent the selected

objects, and the possible operations on the objects are italicized. The phrases in boldface denote

the functions of modules.

Get vital values of a patient and check the patient's safety. If not safe, set alarms for

the related doctor and nurses . Display the values on corresponding screens and store

the values in a database.

For simplicity, we assume that the frequency at which the sensor reads values from the patient

is set manually. From this informal strategy, three objects: Patient, Doctor and Nurses, with their

relevant attributes and operations are identi�ed (there could be other attributes and operations

that are not of interest for this application). The Doctor and Nurse classes could be generalized

to a superclass such as Employee. Because this aspect is not peculiar to our methods, we leave it

out but of course in a real design one should take advantage of convenient generalizations. From

the statement: "A patient has several nurses and one doctor assigned to him. Doctors and nurses

have several patients assigned to them", we get two relationships between these classes. We use the

OOD and SD methods to get the object model and functional model, then we convert the functional

model into a structure chart. The loop in the structure chart root corresponds to looping through

all the patients. Figure 2 shows all three initial models. The data ow details are omitted in the

functional model and the structure chart.

Phase 2: Relate modules to objects

Examining the four modules in the structure chart, we �nd that the module Check safety is

related to the Patient object since it needs the patient's safe ranges. The modules Set related

alarms and Display & store values are related to the objects Doctor and Nurse, since only in

the o�ces of those responsible medical personnel, will the alarms sound and the patient's values

11

O�ce display

Check

safety

Set related

alarms

Display &

store values

...........

..
..
..
..
..
.

...........

..
..
..
..
..
.

'
&
$
%

#
"

!

s ss #
"

!

'
&

$
%

�
���

- -

�
�
�
��

aaaaaaaaaaa

A
A
A
AA

���������

�� JJ]

@
@
@R

?

- -

� �

�
�
���

J
J
J
J
J
J
J
J
JĴ

alarms

Check

safety

Safe ranges

(a) (b)

(c)

SSN SSN

Doctor Nurse

Patient

SSN

Patient Monitoring

System

Get

vital values

med. specialty med. specialty

Set related

name name

rank rank

values

Display &

store values
Sensor

Freq. of reading data

Bed display

Database

Get vital

name, sex, age

safe ranges

freq. of sensor

list patients list patients

medical condition

set safe ranges

list doctor

list nurses

o�ce #, phone # o�ce #, phone #

assign to patient assign to patient

Figure 2: (a) Object model (b) Functional model (c) Structure chart

12

Check

safety

Set related

alarms

Display &

store values

..
...
...
..

..
..
.
..
.
..

...........

..
..
..
..
..
.

s ss

�
�
�
��

HHHHHHHHH

L
L
L
LL

""""""""

6

6

6

6

�

6

�� ..
..
..
..
..
..
..
..
..
..
..
..
..

I

Patient Monitoring

System

Get

vital values

SSN SSN

Doctor Nurse

Patient

SSN

med. specialty med. specialty

name name

rank rank

name, sex, age

freq. of sensor

list patients list patients

safe ranges
medical condition

set safe ranges

list doctor

list nurses

o�ce #, phone # o�ce #, phone #

assign to patient assign to patient

Figure 3: The combined object model and structure chart

be displayed. The module Get vital values does not belong to any existing object at this point.

Clearly, all modules need to be further re�ned. Figure 3 shows explicitly the relationships between

the modules in the structure chart and their corresponding objects.

Phase 3: Functional re�nement

We perform now a second-level factoring of the modules in the structure chart. The informal

strategy for the module Get vital values is: Read analog values from a sensor for a speci�c

patient, then Convert them to digital values. The Vital-values are collected from the patient

by the sensor. The module is simple so we can do as in the EOOD method instead of recursively

13

applying phase 1 to create two models. Here another object Vital-values is identi�ed, with two

operations Read analog values and Convert A/D on it. We add this Vital-values object to the object

model, identify its attributes and one-to-one relationship with the Patient object. Two submodules

are created for implementing this module (Figure 4).

The informal strategy for Set related alarms is: Get the responsible person for the

patient, Set on the alarm in that person's o�ce. Repeat this for the other people responsible for

the patient. The decomposition of this module is indicated in Figure 4.

The decomposition of the other two modules Check safety and Display & store values can

be done similarly (Figure 4).

Next we relate these modules to objects. The modules Read analog values and Convert

A/D are two operations that refer to Vital-values (because these values are obtained from sen-

sors), thus they are related to object Vital-values, and do not need further re�nement. Other

relationships can be adjusted similarly. Modules set o�ce alarm, display on o�ce screen and

store values are marked for further re�nement. Other modules are either operations on objects

or can be implemented directly. For example, \get the responsible person" for the patient can

be performed through the assignment relationship between the patient and his doctor and nurses.

After the second-level factoring is done, we get the related two models of Figure 4.

In the third-level factoring, the strategy for Set on o�ce alarm is: Get o�ce number,

set on the alarm in the o�ce. Here a new object O�ce and the operation set on the alarm on

it are identi�ed. We add it to the object model, identify its attributes, and its one-to-one rela-

tionship with the object Doctor and one-to-many relationship with the object Nurse according to

the problem speci�cation. The function Get o�ce number is realized through a new operation

on objects Doctor and Nurse: �nd o�ce. Set on alarm is an operation of object O�ce. The

module display on o�ce screen is done similarly. In the above functional re�nements, we did

not recursively applying phase 1 since the functions are simple. The implementation of the module

store values to database depends on the speci�c structure of the database, we leave it open

here. After applying phase 2, no module is marked for further re�nement (except module store

values), the output of phase 3 is shown in Figure 5. At this time, the objects: Patient, Doctor,

Nurse, Sensor and O�ce form the problem space object set.

14

Check

safety

Set related

alarms

Display &

store values

..
...
...
..

..
..
.
..
.
..

...........

..
..
..
..
..
.

Get

vital values

s

s

s

�
�
�
��

HHHHHHHHH

L
L
L
LL

""""""""

!!! HHY

"""""""

��������

�
�

��

�
�

��

@
@
@@

HHHHHHHH

6

? ?

6 6

?

!!!!!!!!!!

.......................
........
... ..

.

..
..
..
..
...
...
..
..
...
..
..
..
...
.Y......

............................ ..
.
..
..
..
..
...
...
..
..
...
..
..
..
...
.Y

?

6

�����������

Patient Monitoring

System

PatientSensor

SSN SSN

Doctor

SSN

Nurse

log values

Get safe

ranges

Get resp.

person

Set o�ce

alarm

Disp. on

o�. scrn.

Bed

display

Store

values
Compare

med. specialtymed. specialty

manufacturer

model #

serial #
I/O specs.

name name

rank rank

read ana. values

convert A/D

Read ana-

name, sex, age

freq. of sensor

list patients list patients

safe ranges
medical condition

Convert

A/D

set safe ranges

list doctor

list nurses

assign to patient assign to patient

Figure 4: The combined models after 2nd-level modules factored

15

Check

safety

Set related

alarms

Display &

store values

..
...
...
..

..
..
.
..
.
..

...........

..
..
..
..
..
.

Get

vital values

s

ss

s

s s

�
�
�
��

HHHHHHHHH

L
L
L
LL

""""""""

!!! HHY

"""""""

��������

�
�

��

�
�

��

@
@
@@

HHHHHHHH

!!!!!!!!!!

�
�
�
�

T
T
T
T

@
@
@
@@

?

6

?

6

?

6

... ..
..
...
..
..
..
...
..
..
....
..
..
..
...
..
..
...
..Y

.................................. ..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
...
..
..
..
..
..
.

I

?

6

?

6

?

6

6

?

������������

Patient Monitoring

System

Patient

SSN

O�ce

o�ce #

set alarm on/o�

alarm #
screen #

log values

Get safe

ranges
Compare

Get resp.

person

Set o�ce

alarm

Disp. on Bed

o�. scrn. display

Store

values

Get o�ce

number

Set on

alarm

Get o�ce

number

Disp. on

screen

SSN

Doctor

SSN

Nurse

med. specialty med. specialty

building #

Sensor

manufacturer

model #

serial #
I/O specs.

name name

rank rank

read ana. values

convert A/D

Read ana-

name, sex, age

freq. of sensor

list patients list patients
�nd o�ce �nd o�ce

safe ranges
medical condition

Convert

A/D

set safe ranges

list doctor

list nurses

assign to patient assign to patient

Figure 5: The output of functional re�nement

16

Phase 4: Object re�nement

We will not show all the re�nement of objects here, we use the object Patient as an example to

show the object re�nement procedure. Consider the operation set safe ranges on the patient object.

Assume the safe ranges of a patient are determined by his sex, age, medical history and current

diseases contracted, medicines taken, etc. These data are processed by a function, the result of

which is reviewed by the doctor, and �nally the safe ranges are given by the doctor. The medical

history and medicines taken are two new attributes. The medical history is composed of medical

records, each of which may contain period, description of disease, treatment, responsible doctor,

etc. It is referenced by the doctor and nurses and should be kept up to date by inserting new

medical records. The medicines taken should have attributes such as name of medicine, the length

of period the medicine was taken, dosage, side e�ects, etc. These two attributes are complex and

have their own operations, they should be implemented as new objects nested within the object

Patient.

The informal strategy for the operation of set safe ranges is: read patient's data, process

data, doctor review result & set the safe ranges. Then apply steps 1, 2 and 3 to create

the object model, functional model and structure chart, and re�ne modules level by level, as in

functional re�nement.

Repeat the process for other objects in PSOS. When this phase �nishes, we get the two re-

lated models with every component in either model being implemented by `atomic actions' and/or

`atomic objects' (Figure 6).

Phase 5: Produce the �nal design

The design speci�cation can be generated as described earlier, we omit the details here.

In this example, the transformation function is not complex, thus we did not recursively apply

step 1 to create the object model and structure chart while re�ning functional modules, the EOOD

method is enough. However, some operations on objects such as set safe ranges are very complex, we

may have to recursively apply the CFOOD method in order to implement those operations. Some

17

Check

safety

Set related

alarms

Display &

store values

...
...
...
.

.

..
.
..
.
..
.

...........

..
..
..
..
..
.

Get

vital values

s
ss
s

ss

�
�
�
�

A
A
A
A

��������

��� PPi

�������

,
,

,,

,
,

,,

l
l
ll

����������

J
J
JJ

l
l
l
ll

?

6

?

6

?

6

6 6

-�

.. .
..
.
.
..
.
.
..
.
.
..
.
.
..
.
...
...
..
..
..
...
..
..
...Y

QQ .
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..

K

HHHHHHHH

aaaaaaaa

�������

PPPPP
�����

?

6

?

6

?

?

6

6

?

�������������

Patient Monitoring

System

Patient

SSN

O�ce

o�ce #

set alarm on/o�

alarm #
screen #

log values

Get safe

ranges

Get resp.

person

Set o�ce

alarm

Bed

display values

StoreDisp. on

o�. scn.

Get o�ce

number

Set on

alarm

Get o�ce

number

Disp. on

screen

Medical history Medicines taken
Set safe

ranges

Read pat-

ient data

Process

data

Set by

doctor

SSN

Doctor

SSN

Nurse

med. specialty med. specialty

building #

Compare

Sensor

manufacturer
model #
serial #
I/O specs.

namename

rank rank

read ana. values
convert A/D

doctor review

name, sex, age

freq. of sensor

list patients
�nd o�ce

list patients
�nd o�ce

Read ana-

period
disease
treatment ...

medicine
dosage
...

insert/delete/update records

insert/delete/update records

nested objects & trans. function

medical condition
safe ranges

Convert

A/D

set safe ranges
list doctor

list nurses

assign to patientassign to patient

Figure 6: The output of object re�nement

18

attributes of objects may seem not important for this system, they are included for reusability

reasons.

5 Discussion

The pure SD and OOD methods which view a system as composed of either functions or objects

may not be suitable for designing large and complex systems. The motivation of the search for an

integration of the methods originates from both practical and theoretical reasons. The extended

object-oriented design (EOOD) method uses the OOD approach with the aid of SD technique, but

the emphasis is still placed on objects. The design process follows an initial design resulting from

the OOD approach. Its use of the SD technique may not be adequate to deal with very complex

functions or operations.

The combined functional and object-oriented design approach introduced here makes full appli-

cation of the OOD and SD techniques. The re�nement of functional modules and objects applies

the OOD and SD techniques recursively. This seems complicated, but it could be necessary for

a very complex module. In fact, CFOOD provides adaptability for using the OOD and SD tech-

niques for di�erent modules or operations. For a module or an operation that is simple, we can

go through an informal strategy as in EOOD instead of phase 1. For a module that is function

dominant we may apply only the SD method. In extreme cases, CFOOD can become SD, OOD or

EOOD, respectively. In addition, by incorporating the object model and structure chart, and re-

lating the two models, the CFOOD method is more systematic and complete in designing a system

than the EOOD method. A more general advantage is the possibility that the two parts of a large

software system, objects and the transformation function, can be designed independently by OOD

and SD experts respectively. The two submodels obtained in the initial design in CFOOD are two

descriptions of the same system, are consistent with each other, and are naturally related.

One can visualize the development of object-oriented systems as made up of two orthogonal

aspects: subsystems and applications. A subsystem is a collection of related classes, e.g. inventory,

purchasing, patients, etc. An application is the use of classes of one or more subsystems to perform

some useful work, e.g. handle purchase orders, patient monitoring, etc. A subsystem is static, while

19

Patient Monitoring

View Class

Financial Services

Hospital Personnel

Figure 7: Subsystems and applications

applications are dynamic (they de�ne sequences of data transformations).

In the implementation of object-oriented systems, we need to realize both aspects, static and

dynamic (Figure 7). The static part is de�ned by the collection of classes and their associations.

The dynamic aspects are usually implemented by controllers, associated with user views [Rumb94].

The controllers are associated with user views when the application is interactive, and the sequence

of actions depends on the user requests. However, a good number of applications are not interactive

but they require a speci�c sequence of actions, e.g. the patient monitoring system discussed earlier.

Most control-type applications fall in this group. Even in control applications, parameters are set

through interactive user views.

We see the value of our approach in building the controllers of control-type applications, which

are usually ignored in most object-oriented books and articles.

We should mention that both in our method and in Jalote's the object re�nement is equivalent

20

to �nd internal object aggregations. These internal objects are not visible at the higher levels but

are important to construct the complete system [Cive93]

A �nal justi�cation for our approach is that the O-O paradigm is not the best approach for every

aspect of an application. For example, some real-time procedures can be more predictable when

designed procedurally than as operations on objects. In these cases, our method gives a designer

the exibility to choose the most convenient approach for di�erent portions of the application.

6 Conclusions

We have proposed a combined functional and object-oriented design approach (CFOOD), that

starts from an initial design that combines an object model and a structure chart that result from

the use of the OOD and SD approaches respectively. Then the two models are related together

to combine the two di�erent views of the system. These two steps are recursively applied to the

complex modules and operations in the following phases of functional and object re�nement. The

approach provides the exibility to use the OOD, SD, and EOOD techniques, depending on the

complexity of the modules or operations undergoing re�nement, and also makes it possible to design

the object and the transformation function parts of a software system independently. The possible

advantage of our approach can be summarized as:

� Convenient transition to object-oriented technology.

� Appropriate for applications where a pure object-oriented approach may not be possible.

� Generates application controllers directly as part of the design.

The method should be validated through its use in real applications. We have used it in two

other applications: a backup system for �le services and a streaming/synchronization system (part

of a multimedia user interface). While clearly more experience is needed, we are convinced it has

practical value.

21

References

[Bai89] S. Bailin, \An object-oriented requirements speci�cation method ," Comm. of ACM, Vol.

32, No. 5, May 1989, pp. 608-623.

[Booch86] G. Booch, \Object-oriented development," IEEE Trans. on Software Eng., Vol. SE-12,

No. 1, Feb. 1986, pp. 211-221.

[Booch94] G. Booch, Object-Oriented Analysis and Design (2nd Edition), The Benjamin/Cummings

Publ. Co., 1994.

[Cive93] F. Civello, \Rules for composite objects in object-oriented analysis and design," Proc.

OOPSLA'93, pp. 376-393.

[Cons89a] L. L. Constantine, \Beyond the madness of methods: system structure modeling and

convergent design," Software Development '89: Proceedings, Miller-Freeman Publishing Co.,

1989.

[Cons89b] L. L. Constantine, \Object-oriented and structured methods toward integration," Amer-

ican Programmer, Vol. 2, No. 7/8, Aug. 1989, pp. 34-40.

[Cool90] J. E. Cooling, Software Design for Real-time Systems, Chapman & Hall, London 1990.

[Hend90] B. Henderson-Sellers, \Three methodological frameworks for object-oriented systems

development," Proceedings of TOOLS3, Sydney, Australia, Nov. 1990, pp. 118-131.

[Hend91] B. Henderson-Sellers and L. L. Constantine, \Object-oriented development and func-

tional decomposition," JOOP, Jan. 1991, pp. 11-17.

[Jal89] P. Jalote, \Functional re�nement and nested objects for object-oriented design," IEEE

Trans. on Software Eng., Vol. 15, No. 3, March 1989, pp. 264-270.

[Jal91] P. Jalote, An Integrated Approach to Software Engineering, Springer Verlag, New York,

1991.

[Ker91] N. L. Kerth, \A structured approach to object-oriented design", Addendum to the Pro-

ceedings of OOPSLA'91, pp. 21-43.

22

[Lee91] S. Lee and D. L. Carver, \Object-oriented analysis and speci�cation: a knowledge base

approach", JOOP, Jan. 1991, pp. 35-43.

[Loy90] P. H. Loy, \A comparison of object-oriented and structured development methods," Tuto-

rial on System and Software Requirements Engineering , IEEE Computer Society Press, CA,

1990, pp. 290-303. to software design", Proc. of ICECCS'95, 1995. pp.

[Roten86] S. Rotenstreich and W. E. Howden, \Two-dimensional program design," IEEE Trans.

on Software Eng., March 1986, pp. 377-384.

[Rumb91] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen, Object-Oriented

Modeling and Design, Prentice-Hall, Englewood Cli�s, NJ, 1991.

[Rumb93] J. Rumbaugh, \Controlling code|how to implement dynamic models," JOOP, Vol. 6,

No. 2, May 1993, pp. 25-30.

[Rumb94] J. Rumbaugh, \Modeling models and viewing views: A look at the model-view-controller

framework," JOOP, May 1994, pp. 15-20 and 29.

[Ste74] W. P. Stevens, G. J. Myers and L. L. Constantine, \Structured design," IBM Syst. J.,

Vol. 13, No. 2, 1974.

[Vasq93] F. Vasquez, \Using object oriented structured development to implement a hybrid sys-

tem", ACM SIGSOFT Softw. Eng. Notes, Vol. 18, No. 4, October 1993, pp. 44-55.

[Ward89] P. Ward, \How to integrate object orientation with structured analysis and design,"

IEEE Software, March 1989, pp. 74-82.

[Was90] A. I. Wasserman, P. A. Pircher, and R. J. Muller, \The object-oriented structured design

notation for software design representation," Computer, Vol. 23, No. 3, March 1990, pp.

50-63.

[Your79] E. Yourdon and L. L. Constantine, Structured Design, Prentice-Hall, Englewood Cli�s,

NJ, 1979.

23

