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Abstract—With the prevalence of cloud computing, a growing number of users are delegating clouds to host their sensitive data. To
preserve user privacy, it is suggested that data is encrypted before outsourcing. However, data encryption makes keyword-based
searches over ciphertexts extremely difficult. This is even challenging for fuzzy search that allows uncertainties or misspellings of
keywords in a query. In this paper, we propose a prime inner product encoding (PIPE) scheme, which makes use of the
indecomposable property of prime numbers to provide efficient, highly accurate, and flexible multi-keyword fuzzy search. Our main idea
is to encode either a query keyword or an index keyword into a vector filled with primes or reciprocals of primes, such that the result of
vectors’ inner product is an integer only when two keywords are similar. Specifically, we first construct PIPE0 that is secure in the
known ciphertext model. Unlike existing works that have difficulty supporting AND and OR semantics simultaneously, PIPE0 gives
users the flexibility to specify different search semantics in their queries. Then, we construct PIPES that subtly adds random noises to a
query vector to resist linear analyses. Both theoretical analyses and experiment results demonstrate the effectiveness of our scheme.
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1 INTRODUCTION

Cloud computing, as a new service-oriented computing
paradigm, centralizes massive computing and storage re-
sources while delivering resources as services in a pay-
as-you-use fashion. In other words, everything is a service
(XaaS) in cloud computing, where customers enjoy various
services anytime and anywhere, using any kinds of devices
connecting to the Internet. Although cloud computing pro-
vides overwhelming benefits to consumers, such as elastic-
ity and scalability, the application of cloud computing is
still far from expected. The main reason is that customers
worry that their sensitive data may be deliberately or un-
intentionally leaked by the cloud service provider (CSP).
State-of-the-art CSPs experience noteworthy outages and se-
curity breaches from time to time. For example, recent news
about Apple iCloud leaking out celebrities’ sensitive photos
and Amazon S3 leaking personal medical data. Therefore,
achieving secure cloud services plays an important role in
the development of cloud computing.

To protect user privacy from the CSP, existing research
suggests encrypting data before outsourcing. This makes
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traditional data services like keyword-based searches very
challenging. The simple solution of downloading all the
encrypted data and decrypting them locally is extremely ex-
pensive. Therefore, investigating an efficient search service
over ciphertexts becomes a paramount urgency.

Searchable encryption (SE) [1]–[13] has been proposed
to perform secure searches over encrypted data. In SE, a
user first builds searchable indexes for a collection of files
and then uploads files and indexes in encrypted forms to
a cloud. Later, the user generates an encrypted query (re-
ferred to as a trapdoor) to efficiently retrieve files containing
specific keywords while keeping files and keywords secret.
Although SE schemes allow the user to retrieve data of
interest in a privacy-preserving way, almost all of them
handle exact keyword matching. That is, the misspelling
of a keyword will render an unsatisfactory query failure.
In many cases, the user is unsure of the exact spelling of
a keyword, but still wants to retrieve files as accurately as
possible. Therefore, the feature of supporting approximate
keyword matching (also known as fuzzy search) is especially
important for cloud services when the user has limited
knowledge about the underlying data she is searching for.

To improve the user experience of query services, Li
et al. [14], [15] proposed the fuzzy search schemes that
exploited edit distance to quantify keyword similarity. The
main drawback of their schemes is the requirement of a
predefined dictionary that covers possible keyword mis-
spellings, making searches inefficient. Moreover, it permits
only a single keyword in a query, requiring many rounds
to support multi-keyword search. From the perspective of
privacy protection, indexes and queries are encrypted in
a deterministic way that disables index indistinguishability
and trapdoor unlinkability. That is, given a set of encrypted
indexes (or a set of trapdoors), their scheme is able to link
one encryption to another if they are for the same keywords.
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Since then, a few works [16]–[30] have been conducted to
improve search efficiency and user privacy or to support
multi-keyword fuzzy searches. However, the research in this
field is still in its infancy, and enabling effective fuzzy search
in cloud computing remains a challenging problem.

In this paper, we propose a prime inner product en-
coding (PIPE) scheme, which allows a user to effectively
search multiple unsure keywords over encrypted data. In
our PIPE scheme, a user replaces an uncertain character in
a keyword with a wildcard and the similarity between two
keywords is measured by their edit distance excluding the
number of wildcards. For simplicity, notation “ ∗ ” is used
as a wildcard throughout this paper to denote an unsure
letter. For example, a doctor can enter “arterioscler ∗ ∗ ∗ ∗”
instead of “arteriosclerosis” to retrieve the medical records
containing the keyword “arteriosclerosis” if she is unsure
about the last four letters of this keyword. Differing from
previous wildcard-based fuzzy search schemes [14], [15]
that require a predefined dictionary, our PIPE scheme ex-
ploits the indecomposable property of primes to provide an
efficient fuzzy search. Our main idea is to encode either
a query keyword or an index keyword as a vector, the
elements of which are set to primes or the reciprocals of
primes. Because a prime number has no positive divisors
other than 1 and itself, the result of vectors’ inner product is
an integer only when two keywords are similar. To support
multi-keyword fuzzy search, keyword vectors are organized
into a matrix and matrix multiplication is exploited to
support AND/OR queries.

Moreover, as the work in [21]–[26], vectors are pro-
tected with the secure k-nearest neighbor scheme (KNN for
short) [31]. KNN with splitting and randomization mech-
anisms enables index indistinguishability and trapdoor un-
linkability, but has failed to resist linear analyses [32]. There-
fore, we first provide a basic PIPE construction, denoted
by PIPE0, which is secure in the known ciphertext model.
Then, we provide an advanced construction, denoted by
PIPES, by subtly adding random noises to a query vector, to
achieve enhanced privacy in the known background model.
Compared with existing secure fuzzy search schemes, our
PIPE scheme has the following merits: 1) Efficiency. It
eliminates requirements for a predefined dictionary and
thus, enables efficient searches. 2) High accuracy. It reduces
false negatives and false positives caused by specific data
structures (e.g., Bloom filters [33] and the locality-sensitive
hashing (LSH) [34] utilized in [21]–[23]) and thus, allows a
user to retrieve files as accurately as possible. 3) Flexibility.
Unlike existing works that have difficulty supporting AND
and OR semantics simultaneously, our scheme gives the
user the flexibility to specify different search semantics in
their queries. 4) Enhanced privacy. Our scheme is resistant to
linear analyses but maintains index indistinguishability and
trapdoor unlinkability. The main contributions of this paper
are summarized as follows:

• To the best of our knowledge, this is the first attempt
to devise a secure and effective fuzzy search scheme
that simultaneously supports AND and OR search
semantics.

• Two constructions are provided to achieve enhanced
privacy in different security models.

Fig. 1. System model.

• We evaluate the performance of our PIPE scheme
on a real dataset. Experiment results demonstrate its
efficiency and accuracy.

The rest of the paper is organized as follows. We provide
the preliminaries in Section 2, before the overview of this
work in Section 3. We construct the basic and advanced
schemes in Section 4 and 5, respectively. Then, we evaluate
our scheme in Section 6, before introducing related work in
Section 7. Finally, we conclude this paper in Section 8.

2 PRELIMINARIES

This section first introduces our models and goals, and then
describes the cryptographic preliminaries.

2.1 System Model
Fig. 1 shows our system model, which consists of three types
of entities: the data owner, the data user, and the cloud
service provider (CSP). The data owner and the data user
are collectively referred to as the cloud user. The CSP as the
owner of cloud platforms provides data storage and query
services to cloud users.

Given a collection of files D and the universal keyword
set W extracted from D, the data owner first builds a set
of searchable indexes and then uploads both the encrypted
files and the encrypted indexes, {C, I}, to the cloud. To
retrieve files matching query Q, the data user first requests
secret key SK from the data owner and then sends a
trapdoor, TQ, to the CSP. Upon receiving the search request,
the CSP evaluates TQ on I and returns the search results,
CQ, to the data user who will locally recover file contents.

2.2 Adversary Model
The cloud user is assumed to be fully trusted. Once mu-
tual authentication has finished, the secret keys will be
transmitted through secure channels that are secured under
existing security protocols such as SSL and SSH. The CSP
is the potential adversary and is assumed to be honest but
curious [35]. That means, the CSP will correctly execute a
predefined protocol, but may try to learn some additional
information outside its permission. In terms of the informa-
tion available to the cloud server, we mainly consider the
following models used in existing work [21]–[24].

Known ciphertext model. The cloud server only knows
the encrypted data set, the secure indexes, the submitted
trapdoors, and the returned search results.

Known background model. The cloud server knows
additional background information besides what is known
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in the known ciphertext model. The background refers to
the statistical information about the files and queries (e.g.,
file distribution and keyword frequency), which can be used
to infer certain (plaintext, ciphertext) pairs.

While data privacy can be preserved through standard
symmetric key encryption (SKE), e.g., AES, we are commit-
ted to protect cloud users’ privacy in the following aspects:

• Keyword secrecy. The CSP cannot deduce the con-
tents of keywords from the encrypted indexes and
trapdoors.

• Index indistinguishability and trapdoor unlinka-
bility. Given a set of encrypted indexes (or a set of
trapdoors), the CSP cannot decide whether they are
generated for the same keywords or not.

2.3 Design Goals
Our design goal is to offer a secure and effective search
service in clouds by simultaneously achieving the following:

• Efficiency. The user can perform multi-keyword
fuzzy searches over encrypted data efficiently.

• High accuracy. The user can retrieve files of interest
as accurately as possible.

• Flexibility. The user can specify different semantics
in fuzzy-keyword searches.

• Enhanced privacy. Keyword secrecy, index indis-
tinguishability, and trapdoor unlinkability are pre-
served against the CSP under linear analyses.

2.4 Secure k-Nearest Neighbor Scheme
KNN [31] allows efficient computation of the k-nearest
neighbors over an encrypted data set and will be applied to
encrypt both our indexes and queries. Let κ ∈ N denote the
security parameter, which should be long enough to prevent
brute force attacks (e.g., 128 bits). Given a vector v, its i-th
element is denoted by v[i]. Let notations “⋆” and “·” denote
matrix multiplication and vector inner product, and let M−1

and MT denote the inverse and transposed matrices of M,
respectively. As in the work in [21], a vector is expanded to
d ≥ κ dimensions before encryption. Therefore, the process
of adding artificial dimensions in [31] can be omitted. KNN
tailored for our PIPE scheme is as follows:
• Key(1κ) → sk : It takes a security parameter κ ∈ N

as input and generates the secret key sk = (M1,M2, s),
where M1,M2 ∈ Rd×d are invertible matrices and s is a
d-dimensional binary vector. Note that the number of 0s
should be approximately equal to the number of 1s in the
split vector s to maximize the randomness.
• EncI(p, sk) → p′ : It splits an index vector p ∈ Rd

into two vectors, (pa,pb), as follows: for i = 1 to d, if s[i] =
1, p[i] is randomly split into pa[i],pb[i] such that pa[i] +
pb[i] = p[i]; if s[i] = 0, both pa[i] and pb[i] are set to p[i].
It encrypts (pa,pb) and outputs p′ = (p′

a,p
′
b) where (p′

a =
MT

1 ⋆ pa,p
′
b = MT

2 ⋆ pb).
• EncQ(q, sk)→ q′ : It splits a query vector q ∈ Rd into

two vectors, (qa,qb), as follows: for i = 1 to d, if s[i] = 1,
both qa[i] and qb[i] are set to q[i]; if s[i] = 0, q[i] is randomly
split into qa[i] and qb[i] such that q[i] = qa[i] + qb[i]. It
encrypts (qa,qb) and outputs q′ = (q′

a,q
′
b) where (q′

a =
M−1

1 ⋆ qa,q
′
b = M−1

2 ⋆ qb).

TABLE 1
Summary of Notations

D A set of n files {D1, . . . , Dn}
W A set of m keywords {w1, . . . , wm}
C A set of n ciphertexts {C1, . . . , Cn}
L Max length of universal keywords
Wi A set of mi keywords {wi,1, . . . , wi,mi} in file Di

Ii An encrypted index built for Di

W̃j A set of nj keywords {w̃j,1, . . . , w̃j,nj } in query Qj

TQj
A trapdoor of query Qj

A A dictionary of 26 English characters (“a”,. . . ,“z”)
S A dictionary of L dummy characters disjoint with A
P A sequence of L primes (p1, . . . , pL)

• Search(p′,q′)→ v : It calculates v = p′
a ·q′

a+p′
b ·q′

b

as the search result. Note that:

p′
a · q′

a + p′
b · q′

b

= (MT
1 ⋆ pa) · (M−1

1 ⋆ qa) + (MT
2 ⋆ pb) · (M−1

2 ⋆ qb)
= pT

a ⋆ qa + pT
b ⋆ qb = p · q

Therefore, the sum of inner products of encrypted vectors
is equivalent to the inner product of the original vectors.
Moreover, we also utilize pseudorandom functions (PRF),
which are polynomial-time computable functions indis-
tinguishable from random functions by any probabilistic
polynomial-time (PPT) adversary.

3 SCHEME OVERVIEW

This section will introduce related notations and definitions,
and outline the working process of PIPE.

3.1 Notations and Definitions

In our PIPE scheme, the set of all binary strings of length
η is denoted by {0, 1}η and the set of finite binary strings
by {0, 1}∗. Notations [η] and [η1 ∼ η2] represent the set of
integers in {1, . . . , η} and {η1, . . . , η2}, respectively. Given a
vector v, its i-th element is denoted by v[i]. Given a matrix
M, the element in its i-th row and j-th column is denoted by
M[i][j], all elements in its i-th row are denoted by M[i][∗],
and all elements in its j-th column are denoted by M[∗][j].
If s is a string, then ||s|| refers to its length and s[i] refers
to its i-th character. Given a dictionary of L characters
S = (s1, . . . , sL), its i-th character is denoted by S[i], and
the concatenation of the first l characters is denoted by
⟨s1, . . . , sl⟩. For quick reference, the most relevant notations
are shown in Table 1.

There are two types of keywords: exact keywords and
fuzzy keywords. Each character of an exact keyword is cho-
sen from the English alphabet A. A fuzzy keyword contains
symbol “∗”, which suggests that the character that should be
placed at the relevant position is uncertain. We assume that
Wi associated with file Di includes only exact keywords
where W = W1 ∪ · · · ∪ Wn, and that W̃j associated with
query Qj may contain both kinds of keywords. Let wi,k and
w̃j,k denote the k-th keyword in Wi and W̃j , respectively.
Two keywords are considered similar if their distance is 0.
The distance between keywords wi,k ∈ Wi and w̃j,l ∈ W̃j ,
denoted by dist(wi,k, w̃j,l), is defined as follows:

Definition 1 (Distance). Let e1 be the number of operations
required to transform wi to wj and let e2 be the number of “ ∗ ”s
in keywords. We have dist(wi, wj) = e1 − e2.
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That is, for keywords wi and wj , dist(wi, wj) is de-
termined by the edit distance excluding the number of
symbol “ ∗ ”s. For example, dist(“hello”, “h ∗ llo”) = 0 and
dist(“hello”, “hol ∗ o”) = 1. Therefore, “hello” is similar to
“h ∗ llo” and is dissimilar to “hol ∗ o”.

A cloud user issues multi-keyword AND/OR queries.
Each keyword in an AND query is able to further narrow
down the search results, but the opposite is true in an OR
query. A query Qj matching a file Di, denoted by Qj ▷◁ Di

(mismatching is denoted by Qj ̸▷◁ Di), is defined as follows:

Definition 2 (Matching). For an AND query, Qj ▷◁ Di if, for
each keyword w̃j,l ∈ W̃j there exists a keyword wi,k ∈ Wi such
that dist(w̃j,l, wi,k) = 0. For an OR query, Qj ▷◁ Di if there
exists a keyword w̃j,l ∈ W̃j such that dist(w̃j,l, wi,k) = 0 where
wi,k ∈ Wi. such that dist(w̃j,l, wi,k) = 0 where wi,k ∈ Wi.

In other words, for AND queries, Qj ▷◁ Di if each
keyword in W̃j is similar to a certain keyword inWi. For OR
queries, Qj ▷◁ Di if at least one keyword in W̃j is similar
to a certain keyword in Wi. For example, given keyword
setsW1 = {“hello”, “key”},W2 = {“hello”, “world”}, and
W̃ = {“h ∗ llo”, “k ∗ y”}, we have Q ▷◁ D1 and Q ̸▷◁ D2 for
AND queries, but Q ▷◁ D1 and Q ▷◁ D2 for OR queries.

3.2 The Definition of PIPE

A PIPE scheme is a protocol between the cloud user and the
CSP as follows:
•GenKey(1κ)→ SK : The cloud user takes the security

parameter κ as input and outputs the secret key SK .
• BuildIndex(Wi, SK) → Ii : Given a set of mi key-

words Wi, the cloud user builds an encrypted index Ii for
file Di with the secret key SK . A collection of encrypted
indexes is set to I = {I1, . . . , In}.
• Trapdoor(W̃j , SK) → TQj

: Given a set of nj key-
words query W̃j , the cloud user creates a trapdoor TQj for
query Qj based on the secret key SK .
• Search(Ii, TQj ) → {0, 1} : The CSP evaluates the

trapdoor TQj on the encrypted index Ii and output 1 if
Qj ▷◁ Di, otherwise it outputs 0.

Definition 3 (Correctness of PIPE). Given the secret key SK
generated by algorithm GenKey, an encrypted index Ii gener-
ated by algorithm BuildIndex, and a trapdoor TQj generated by
algorithm Trapdoor, our PIPE scheme is correct if the following
holds: algorithm Search(Ii, TQj ) output 1 if Qj ▷◁ Di, and it
outputs 0 if Qj ̸▷◁ Di.

3.3 Security Definition

We recall the semantic security definitions from [3], and
follow their approach that utilizes history H, view V , and
trace Tr(H) to capture what is being revealed during the
search process. As defined in [3], a history H consists of
a file collection and a set of keywords that the cloud user
wishes to search for. Given a history, we refer to what an
adversary actually gets to “see”, which consists of encrypted
searchable indexes and trapdoors, as view V . The trace of a
history Tr(H) consists of exactly the information we are
willing to leak about the history and nothing else. Different
adversary models cause different search leakages, and the
trace of our PIPE schemes will be listed in detail in Section 4

and Section 5, respectively. Let κ ∈ N be the security
parameter, A be an adversary, and S be a simulator. We
consider the following probabilistic experiments:
• RealA(κ) : The challenger runs GenKey(1κ) to gen-

erate secret key SK . Adversary A outputs D and receives
(I = {I1, . . . , In}, C = {C1, . . . , Cn}) from the challenger
so that for i ∈ [n] Ii ← BuildIndex(Wi, SK) and Ci is the
ciphertext of Di encrypted with SKE.Amakes a polynomial
number of queries Q = (Q1, . . . , Qq) and for each query
Qj ∈ Q,A receives a trapdoor TQj

from the challenger such
that TQj ← Trapdoor(W̃j , SK). Finally, A outputs view
V = (I, C,T), where T = (TQ1 . . . , TQq ).
• SimA,S(κ) : AdversaryA outputs D. Given historyH,

simulator S generates and sends a pair (I, C) toA.Amakes
a polynomial number of queries Q = (Q1, . . . , Qq). Given
trace Tr(H), S returns an appropriate trapdoor TQj

for each
query Qj ∈ Q. Finally, A outputs view V = (I, C,T), where
T = (TQ1 . . . , TQq ).

Definition 4 (Semantic security of PIPE0). Given two Views
with the same trace where one view is generated by a real
experiment and the other is simulated by a simulator. Our PIPE0

scheme is semantically secure under the known-ciphertext model
if, the probability of distinguishing them is negligible for all PPT
adversaries A.

Definition 5 (Semantic security of PIPES). Given a set of
(query keyword, trapdoor) pairs included in the trace and two
Views with the same trace where one view is generated by a real
experiment and the other is simulated by a simulator. Our PIPES
scheme is semantically secure under the known-background model
if, the probability of distinguishing them is negligible for all PPT
adversaries A.

4 BASIC PIPE CONSTRUCTION

This section will present the basic PIPE construction, which
is secure in the known-ciphertext model.

4.1 Main Idea
Our PIPE scheme is built on top of the index vector encoding
algorithm (Alg. 1) and the query vector encoding algorithm
(Alg. 2). The basic idea is to encode either a query keyword
or an index keyword into a vector, the elements of which
are set to primes or the reciprocals of primes, ensuring that
the result of vectors’ inner product is an integer only when
two keywords are similar.

The first step (lines 1-2) of Alg. 1 is to pad each keyword
with dummy characters in S to hide its genuine length.
Let L denote the max length of universal keywords. After
padding, the length of each keyword is equal to L. The
second step (lines 3-4) is to initialize each element of the
index vector with 1. The third step (lines 5-7) is to place the
reciprocals of specified primes in appropriate positions of
the index vector. For the l-th character wi,k[l] of keyword
wi,k, the corresponding prime is pl and the corresponding
position is calculated as posl = Fkf

(wi,k[l]). Therefore,
pi,k[posl] will be multiplied by 1/pl, for l ∈ [L].

In Alg. 2, the padding step (lines 1-2) and the initializa-
tion step (lines 3-4) are the same as those of Alg. 1. The third
step (lines 5-15) will place specified primes in appropriate
positions of the index vector. For the l-th character w̃j,k[l] of
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Algorithm 1 Index Vector Encoding
Input: the k-th keyword wi,k in file Di, pseudorandom

function F ’s secret key kf , a sequence of primes P =
(p1, . . . , pL), and a dictionary of dummy characters
S = (s1, . . . , sL)

OutPut: index vector pi,k ∈ Rd

1: if ||wi,k|| < L then
2: pad wi,k with ⟨s1, . . . , sL−||wi,k||⟩
3: for 1 ≤ l ≤ d do
4: set pi,k[l] = 1
5: for 1 ≤ l ≤ L do
6: set posl = Fkf

(wi,k[l])
7: set pi,k[posl] = pi,k[posl]× 1/pl
8: choose a random number z ∈ [d− L] and set z random

1 elements of pi,k with random integers

keyword w̃j,k, there are two cases: (1) If w̃j,k[l] ̸=“ ∗ ”, lines
6-8 calculate posl = Fkf

(w̃j,k[l]) and multiply qj,k[posl] by
pl; (2) If w̃j,k[l] =“ ∗ ”, it means that an arbitrary character
in A ∪ S could be located at the l−th position of a keyword.
Lines 10-15 calculate posli = Fkf

(A[i]) for 1 ≤ i ≤ 26 and
posli = Fkf

(S[i − 26]) for 26 < i ≤ 26 + L, and multiply
qj,k[poslx ] by pl for x ∈ [26 +L]. To add randomness to the
results of inner products, the last line of both algorithms fills
partial remaining elements with random numbers.

Based on the above encoding algorithms, we construct
matrices from vectors to support multi-keyword queries.
Specifically, Wi that contains mi keywords will be con-
structed as an mi×d matrix Ai. For k ∈ [mi], the elements in
the k-th row of Ai are set to the elements of the k-th index
keyword’s vector, expressed as Ai[k][∗] ← pi,k. Similarly,
W̃j associated with nj keywords will be constructed as
a d × nj matrix Bj . For k ∈ [nj ], the elements in the
k-th column of Bj are set to the elements of the k-th
query keyword’s vector, expressed as Bj [∗][k] ← qj,k. The
matching of Qj and Di is determined by the result of matrix
multiplication. Given an mi×d index matrix Ai and a d×nj

query matrix Bj , the CSP calculates Ai ⋆Bj and obtains an
mi × nj result matrix Ri,j . For AND queries, Qj ▷◁ Di if
each column of Ri,j contains one or more integers; For OR
queries, Qj ▷◁ Di if at least one column of Ri,j contains
one or more integers. Note that the order of keywords will
not impact the result of matching. Hence, the keywords
associated with each file/query can be shuffled before the
construction of matrix.

4.2 Scheme Construction

Let κ ∈ N be a security parameter, let L =
max(||w1||, . . . , ||wm||) be the max length of universal key-
words, and let F : {0, 1}κ × {0, 1}∗ → {0, 1}κ be a
PRF. Given a secure KNN scheme as described in Sec-
tion 2.4, we provide our basic construction, PIPE0 =
(GenKey0, BuildIndex0, T rapdoor0, Search0), as follows:
•GenKey0(1

κ)→ SK : Given the security parameter κ,
the cloud user runs KNN.Key(1κ) to generate sk. Then, he
randomly chooses a sequence of L primes P = (p1, . . . , pL),
a dictionary of L dummy characters S = (s1, . . . , sL) such
that S ∩ A = ∅, and κ-bit string kf . The secret key SK is set
as (sk, kf ,P, S).

Algorithm 2 Query Vector Encoding
Input: the k-th keyword w̃j,k in query Qj , PRF F ’s secret

key kf , a sequence of primes P = (p1, . . . , pL), an
English alphabet A of length 26, and a dictionary of
dummy characters S = (s1, . . . , sL)

OutPut: query vector qj,k ∈ Rd

1: if ||w̃j,k|| < L then
2: pad w̃j,k with ⟨s1, . . . , sL−||w̃j,k||⟩
3: for 1 ≤ l ≤ d do
4: set qj,k[l] = 1
5: for 1 ≤ l ≤ L do
6: if w̃j,k[l] ̸=′ ∗′ then
7: set posl = Fkf

(w̃j,k[l])
8: set qj,k[posl] = qj,k[posl]× pl
9: else

10: for 1 ≤ i ≤ 26 + L do
11: if 1 ≤ i ≤ 26 then
12: set posli = Fkf

(A[i])
13: else
14: set posli = Fkf

(S[i− 26])
15: set qj,k[posli ] = qj,k[posli ]× pl
16: choose a random number z ∈ [d − 26 − L] and set z

random 1 elements of qj,k with random primes outside
P

• BuildIndex0(Wi, SK) → Ii : For file Di with mi

keywordsWi = {wi,1, . . . , wi,mi
}, the cloud user builds an

mi × d matrix Ai as follows:
1) For k ∈ [mi], he runs Alg. 1 to output a d-

dimensional vector pi,k for the k-th keyword wi,k

inWi.
2) For k ∈ [mi], he sets Ai[k][∗]← pi,k.

For k ∈ [mi], he runs KNN.EncI(Ai[k][∗], sk) to encrypt
the k-th row of matrix Ai and outputs a pair of encrypted
vectors (A′

ia
[k][∗],A′

ib
[k][∗]). The encrypted index Ii is set

as a pair of encrypted matrices A′
i = (A′

ia
,A′

ib
).

• Trapdoor0(W̃j , SK) → TQj : For query Qj with nj

keywords W̃j = {w̃j,1, . . . , w̃j,nj
}, the cloud user constructs

a d× nj matrix Bj as follows:
1) For k ∈ [nj ], he runs Alg. 2 to output a d-

dimensional vector qj,k for the k-th keyword w̃j,k

in W̃j .
2) For k ∈ [nj ], he sets Bj [∗][k]← qj,k.

For k ∈ [nj ], he runs KNN.EncQ(Bj [∗][k], sk) to encrypt
the k-th column of matrix Bj and outputs a pair of en-
crypted vectors (B′

ja
[∗][k],B′

jb
[∗][k]). The trapdoor TQj is

set as a pair of encrypted matrices B′
j = (B′

ja
,B′

jb
).

• Search0(Ii, TQj )→ {0, 1} : The CSP computes Ri,j =
A′

ia
⋆ B′

ja
+ A′

ib
⋆ B′

jb
= Ai ⋆ Bj . For an AND query, it

outputs 1 if Ri,j has at least one integer in each column,
and 0 otherwise; for an OR query, it outputs 1 if Ri,j has at
least one integer element, and 0 otherwise.

Remark 1. The division operation may result in a loss
of precision which may impact search accuracy. Thus, the
result of 1/3 × 3 may be 1.00001 instead of 1. To solve this
problem, our method is to round up after the x−th decimal
point, where x can be tuned in experiments.

Example 1. Suppose that the relationship between files
and keywords is as shown in Fig. 2-(a), and that the
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Fig. 2. Working process of PIPE0. pwi,k and qw̃j,k
are used to denote pi,k and qj,k, respectively.

Fig. 3. Sample vectors output by Alg. 1 and Alg. 2.

cloud user issues queries Q1 = {“hel ∗ o”, “k ∗ y”} and
Q2 = {“hel ∗ o”, “w ∗ r ∗ d”} to retrieve appropriate
files. Given the maximal length of keywords L = 5, ran-
dom primes P = (3, 5, 7, 11, 13) and dummy characters
S = (“A”, “B”, “C”, “D”, “E”), index/query vectors are
constructed as shown in Fig. 3. To illustrate the working
process of the vector encoding algorithms, let us take in-
dex keyword “key” and query keyword “k ∗ y” as an
example. In the first step, two keywords will be padded
with characters “A” and “B” to have the maximal length
5. In the second step, two d-dimensional vectors, pkey and
qk∗y , are constructed and initialized with 1. For the index
keyword “key”, the reciprocals of primes are placed as
follows: since “k” is the first character, pkey[Fkf

(k)] will
be multiplied by 1/3; since “e” is the second character,
pkey[Fkf

(e)] will be multiplied by 1/5; since “y” is the third
character, pkey[Fkf

(y)] will be multiplied by 1/7; since “A”
is the fourth character, pkey[Fkf

(A)] will be multiplied by
1/11; since “B” is the fifth character, pkey[Fkf

(B)] will be
multiplied by 1/13. For the query keyword “k ∗ y”, the
primes are placed as follows: since “k” is the first character,
qk∗y[Fkf

(k)] will be multiplied by 3; since “∗” is the second
character, an arbitrary element in A and S could be located
at this position, and qk∗y[Fkf

(a)], . . . ,qk∗y[Fkf
(E)] will be

multiplied by 5; since “y” is the third character, qk∗y[Fkf
(y)]

will be multiplied by 7; since “A” is the fourth character,
qk∗y[Fkf

(A)] will be multiplied by 11; since “B” is the fifth
character, qk∗y[Fkf

(B)] will be multiplied by 13. Due to the
indecomposable property of prime numbers, the result of

pkey · qk∗y is an integer (equal to 21). The results are in
accordance with the fact that two keywords are similar.

Given index/query vectors shown in Fig. 3, correspond-
ing sample matrices are shown in Fig. 2-(b). If Q1 is an AND
query, D1 will be returned, since only R1,1 has an integer
element in each column; if Q1 is an OR query, {D1, D2, D3}
will be returned, since R1,1,R2,1, and R3,1 have at least one
integer element. If Q2 is an AND query, D3 will be returned,
since only R3,2 has an integer element in each column; if Q2

is an OR query, {D1, D3} will be returned, since R1,2 and
R3,2 have at least one integer element.

4.3 Correctness Analysis
Let U = A∪ S denote the union of the English alphabet and
the dummy characters, where U[i] denotes the i-th element
in U. We first consider a single-keyword setting, where a file
Di or a query Qj contains only one keyword, denoted by
wi,1 and w̃j,1, respectively. Our basic PIPE construction is
considered incorrect if the following occurs:

Case 1. The result of pi,1 · qj,1 is not an integer if
keywords wi,1 and w̃j,1 are similar.

Case 2. The result of pi,1 · qj,1 is an integer if keywords
wi,1 and w̃j,1 are dissimilar.

For Case 1, a result where pi,1 · qj,1 is not an integer
means that at least one reciprocal in pi,1 cannot be elim-
inated. Due to the construction of the BuildIndex0 algo-
rithm, pi,1[Fkf

(U[i])] = 1/pl means that U[i] is the l-th char-
acter of wi,1. If 1/pl cannot be eliminated, qj,1[Fkf

(U[i])]
is set to an integer V that is indivisible by pl. Due to the
construction of the Trapdoor0 algorithm, neither U[i] nor



7

symbol “ ∗ ” appears in the l-th position of w̃j,1. There-
fore, two keywords are dissimilar, which contradicts the
assumption, and Case 1 is untrue. For Case 2, a result where
pi,1 · qj,1 is an integer means that all reciprocals in pi,1 are
eliminated. Given pi,1[Fkf

(U[i])] = 1/pl denoting that U[i]
is the l-th character of wi,1, qj,1[Fkf

(U[i])] is set to pl or an
integer V that is divisible by pl. Due to the construction of
the Trapdoor0 algorithm, it means that either U[i] or symbol
“ ∗ ” is in the l-th position of w̃j,1. In any case, we have
two keywords that are similar to contradict the assumption.
Therefore, Case 2 is not true, and PIPE0 is correct in the
single-keyword setting.

While extending to the multi-keyword setting, the cor-
rectness of our PIPE scheme can be derived as follows: The
element in the k-th row and l-th column of the result matrix
Ri,j is the result of pi,k · qj,l, which is an integer if the
k-th keyword in Wi is similar to the l-th keyword in W̃j .
For AND queries, if each column of Ri,j has at least one
integer, i.e., the k-th keyword inWi is similar to at least one
keyword in W̃j for k ∈ [mi], then Qj ▷◁ Di is considered
true; For OR queries, if at least one element in Ri,j is an
integer, i.e., there exists one keyword in Wi matching at
least one keyword in W̃j , then Qj ▷◁ Di is considered true.
This argument agrees with the definition of matching, and
PIPE0 is correct.

4.4 Security Proof
We first consider the the security of our scheme in the single-
keyword setting, where a file Di or a query Qj contains only
one keyword, denoted by wi,1 and w̃j,1, respectively. Before
stating our security theorem, we provide a more formal and
concise description of our scheme’s leakage:
• History H = (D,W,Q) where D is a collection of files

{D1, . . . , Dn},W is a set of keywords {w1, . . . , wm}, and Q
is a sequence of submitted queries (Q1, . . . , Qq).
• View V = (C, I,T) is the encrypted form of history

under the secret key SK . That is, C = {C1, . . . , Cn} is
a set of ciphertexts (where Ci is the ciphertext of file
Di ∈ D encrypted with SKE), I = {I1, . . . , In} is a set
of encrypted indexes (where Ii is built for file Di ∈ D), and
T = (TQ1

, . . . , TQq
) is a sequence of trapdoors (where TQj

is
the trapdoor of query Qj ∈ Q). The CSP can only see views.
• Trace of history captures the information that can be

learned by the CSP. For history H = (D,W,Q), the trace
Tr(H) includes the following information:

• Size pattern: (n, |D1|, · · · , |Dj |), where n is the num-
ber of files in D and |Dj | is the bit length of file Dj .

• Access pattern: The search results (R1, . . . ,Rk),
where Rj = {(i,Ri,j)|Qj ▷◁ Di, i ∈ [n]}, for j ∈ [k].
The result matrix Ri,j contains only one random
integer that equals pi,1 · qj,1.

Theorem 1. Our basic PIPE scheme is semantically secure in the
known ciphertext model if F is a secure PRF and SKE is secure
under chosen-plaintext attacks (CPA-secure).

Proof. We adopt a simulation-based proof similar to the
one used in [3]. Let S denote a simulator that can simulate a
view V̄ . Our scheme is secure if the CSP cannot distinguish
V̄ from V . To achieve this, S performs the following:
• It randomly picks two invertible matrices M̄1, M̄2 ∈

Rd×d and a d-dimensional binary vector s̄, L primes P̄ =

{p̄1, . . . , p̄L}, and t random integers X = {pos1, . . . , post}
where t = 26 + L and 1 ≤ posi ≤ d for i ∈ [t]. S sets
¯SK = (s̄k, P̄,X ) where s̄k = (M̄1, M̄2, s̄).
• S selects a random D̄i ∈ {0, 1}|Di| for Di ∈ D and

outputs C̄ = {C̄1, . . . , C̄n} where C̄i is the ciphertext of D̄i

encrypted with SKE for i ∈ [n].
• To generate Ī , S generates a d-dimensional vector p̄′

i,1

for 1 ≤ i ≤ n as follows:

1) It constructs a d-dimensional vector p̄i,1 where each
element is set to 1.

2) For l ∈ [L], it chooses a random integer pos from X
and sets p̄i,1[pos] = p̄i,1[pos]× 1/p̄l.

3) Other elements of p̄i,1 are filled with random inte-
gers.

4) It runs KNN.EncI(p̄i,1, s̄k) to output p̄′
i,1.

Therefore, Ī = {p̄′
1,1, . . . , p̄

′
n,1}.

• To generate T̄, S constructs a d-dimensional vector q̄′
j,1

for 1 ≤ j ≤ q as follows:

1) It constructs an empty set R and a d-dimensional
vector q̄j,1 where each element is set to 1.

2) For i ∈ [n], if Qj ▷◁ Di, it puts p̄i,1 in set R.
3) For 1 ≤ l ≤ d, it performs as follows:

a) It constructs an empty set Y .
b) For each index vector p̄i,1 ∈ R, if p̄i,1[l] is

not an integer, it puts 1/p̄i,1[l] into Y .
c) If Y is not empty, it sets q̄j,1[l] = y where y

is the least common multiple of elements in
Y .

d) If Y is empty, it sets q̄j,1[l] to a random prime
outside P̄ .

4) It runs KNN.EncQ(q̄j,1, s̄k) to output q̄′
j,1.

Therefore, T̄ = {q̄′
1,1, . . . , q̄

′
q,1}.

• S outputs the view V̄ = (C̄, Ī, T̄).
Since SKE is secure under chosen-plaintext attacks, no

PPT adversary can distinguish between C̄ and C. The indis-
tinguishability of indexes and trapdoors is based on the in-
distinguishability of KNN and the introduced randomness.
KNN is proven to be secure against ciphertext only attacks.
The encrypted indexes Ī and the trapdoors T̄ generate
the same trace as the one that the CSP has. Therefore, we
claim that no PPT adversary can distinguish V̄ from V .
PIPE0 is built based on the single-keyword setting, and it
is semantically secure in the known ciphertext model. ■

5 ADVANCED PIPE CONSTRUCTION

This section will provide a security-enhanced KNN scheme
to resist linear analysis.

5.1 Main Idea

From the construction of KNN [31], we know that the
inner product of an index vector and a query vector can be
calculated from their encrypted forms: p·q = p′

a ·q′
a+p′

b ·q′
b,

where only d variables are unknown to the cloud server, i.e.,
d elements of the index vector p. In the known-background
model, the cloud server can infer certain (plaintext, cipher-
text) pairs based on the available background information.
As proven in Yao et al. [32], an adversary with d query
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Algorithm 3 Query Matrix Encoding

Input: s ∈ [2 ∼ d], query vector qj,k ∈ Rd

OutPut: query matrix Qj,k ∈ Rd×s

1: construct a matrix Qj,k ∈ Rd×s and initialize each
element of Qj,k with 0

2: for l ∈ [d] do
3: set qj,k[l] at a random position of the l-th row of Qj,k

with the constraint of Condition 1
4: fill the remaining elements in the l-th row of Qj,k with

random numbers with the constraint of Condition 2

vectors and their encryptions can recover index vectors by
solving linear equations.

To resist such an attack, we extend query vectors to
random matrices thereby adding noises to the results of in-
ner product. The hardness for initiating such attacks comes
from the negligible probability of constructing d correct
equations. For all index vectors we have:

p · q ̸= p′
a · q′

a + p′
b · q′

b. (1)

Our solution is based on the following key techniques:
Encoding query matrices. A query vector qj,k generated

by Alg. 2 will be encoded as a d × s matrix Qj,k by Alg. 3.
For l ∈ [d], Alg. 3 sets qj,k[l] at a random position of the l-th
row of Qj,k and fills other positions with random numbers
while the following conditions are satisfied:

Condition 1. Each column of matrix Qj,k contains at least
one element of vector qj,k.

Condition 2. The sum of the random numbers at the l-th row,
denoted as δl, is equal to tlqj,k[l] where tl = 0 or (tl + 1) is a
prime outside P .

The way to determine similarity. Given an index vector
pi,k ∈ Rd generated for keyword wi,k ∈ Wi and a query
matrix Qj,l ∈ Rd×s generated for keyword w̃j,l ∈ W̃j , an
intermediate vector rk,l ∈ Rs is obtained by calculating
pT
i,k⋆Qj,l. If the sum of elements in rk,l, αk,l =

∑s
x=1 rk,l[x],

is an integer, keywords wi,k and w̃j,l are considered similar.

5.2 Scheme Construction

The main differences compared with PIPE0 lie in algorithms
TrapdoorS and SearchS as follows:
• TrapdoorS(W̃j , SK)→ TQj : For query Qj containing

nj keywords W̃j , the cloud user chooses a random integer
s ∈ [2 ∼ d]. To generate a d × (snj) matrix B̂j for k ∈ [nj ],
he performs as follows:

1) He runs Alg. 2 to output a d-dimensional vector qj,k

for the k-th keyword w̃j,k ∈ W̃j

2) He runs Alg. 3 to extend qj,k to a d× s matrix Qj,k.
3) For l ∈ [s], he sets B̂j [∗][(k − 1)s + l] ← Qj,k[∗][l].

Matrix B̂j is actually the combination of nj query
keywords’ matrices (see Fig. 4-(a)).

For k ∈ [snj ], he runs KNN.EncQ(B̂j [∗][k], sk) to
encrypt the k-th column of matrix B̂j and obtains a pair of
encrypted vectors (B̂′

ja
[∗][k], B̂′

jb
[∗][k]). The trapdoor TQj is

set as a pair of encrypted matrices (B̂′
ja
, B̂′

jb
).

• SearchS(Ii, TQj
) → {0, 1} : Given index matrices

A′
i = (A′

ia
,A′

ib
) and query matrices B̂′

j = (B̂′
ja
, B̂′

jb
),

the CSP generates an mi × (snj) intermediate matrix R̂i,j

by setting R̂i,j = A′
ia

⋆ B̂′
ja

+ A′
ib

⋆ B̂′
jb

= Ai ⋆ B̂j .
Matrix R̂i,j is consisted of mi × nj intermediate vec-
tors (see Fig. 4-(c)), where the elements of rk,l locate at
R̂i,j [k][(l − 1)s + 1], . . . , R̂i,j [k][ls]. To determine whether
Qj ▷◁ Di or not, he performs as follows:

1) He constructs a result matrix Ri,j ∈ Rmi×nj

2) For k ∈ [mi] and l ∈ [nj ], he sets Ri,j [k][l] =∑y=ls
y=(l−1)s+1 R̂i,j [k][y]. This is equivalent to setting

Ri,j [k][l] =
∑s

y=1 rk,l[y] (see Fig. 4-(b)).
3) For an AND query, it outputs 1 if Ri,j has at least

one integer in each column, and 0 otherwise; for an
OR query, it outputs 1 if Ri,j has at least one integer
element, and 0 otherwise.

Remark 2. The number of columns s in query matrix
mainly impact the performance of algorithms TrapdoorS
and SearchS . As shown in Fig. 5-(b) and Fig. 5-(e), the larger
the value of s, the higher the incurred costs. In terms of
security level, even if s = 2, the adversary cannot obtain any
useful information from a single column of R directly. We
believe that even for this low value of s, there is a sufficient
measure of security provided.

Example 2. Suppose that s = 3, the sample query matrix
B̂1 for query Q1 = {“hel ∗ o”, “k ∗ y”} is shown in Fig. 4-
(a), where Qhel∗o and Qk∗y situate at the first s columns
and the last s columns of B̂1, respectively. Given matrix
A1 as shown in Fig. 2, the result matrix Ri,j and the
intermediate matrix R̂i,j are shown in Fig. 4-(b) and Fig. 4-
(c), respectively.

5.3 Correctness Analysis
The correctness of PIPES is based on the assumption that the
introduced randomness in a query matrix will not impact
the integral/non-integral property of results. Given an index
vector p and a query vector q, the intermediate vector can
be derived as follows:

r = pT ⋆Q = (p ·Q[∗][1], · · · ,p ·Q[∗][s])

=

(∑d

j=1
p[j]xj,1,

∑d

j=1
p[j]xj,2, · · · ,

∑d

j=1
p[j]xj,s

)
where Q is q’s query matrix generated by Alg. 3 and xi,j

denotes the element in the i-th row and j-th column of Q
for i ∈ [d] and j ∈ [s]. We derive the following equation:

α =
∑s

i=1
r[i] =

∑d

j=1
p[j]xj,1 + · · ·+

∑d

j=1
p[j]xj,s

= p[1](x1,1 + · · ·+ x1,s) + · · ·+ p[d](xd,1 + · · ·+ xd,s)
(2)

Based on Condition 1-2, Eq. (2) can be converted to Eq. (3):

α = p[1](q[1] + δ1) + · · ·+ p[d](q[d] + δd)

= p[1](q[1] + t1q[1]) + · · ·+ p[d](q[d] + tdq[d])

= (1 + t1)(p[1]q[1]) + · · ·+ (1 + td)(p[d]q[d])

=
∑d

j=1
p[j]q[j] +

∑d

j=1
tjp[j]q[j]

= p · q+X

(3)

For j ∈ [d], tj = 0 or (tj + 1) is a prime that is outside
P , and the result of (tj + 1)p[j]q[j] is an integer only when
p[i]q[i] is an integer. Due to the indecomposable property
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Fig. 4. Working process of PIPES. pwi,k and Qw̃j,k
are used to denote pi,k and Qj,k, respectively.

of primes, α =
∑s

i=1 r[i] is an integer only when p · q is an
integer meaning that two keywords are similar. Therefore,
PIPES is correct.

5.4 Security Proof
Theorem 2. The KNN scheme is resilient to linear analyses, if
the query vectors are extended into random matrices.

Proof (sketch). The purpose of extending a query vector
to a matrix is to add random noises to the search results so
that Eq. (1) holds for all index vectors. First, we show the
security of α =

∑s
i=1 r[i] as follows: from Eq. (3), we know

that α = p · q+X , where X ∈ R is a random number that
has no linear relationship with the result of p · q. Therefore,
it is impossible for the adversary to decompose p ·q from α.

In PIPES, query matrices are constructed from query
vectors output by Alg. 2, and algorithms GenKeyS and
BuildIndexS are constructed in the same way as the algo-
rithms in the basic construction. Our main security concern
is that the SearchS algorithm leaks an intermediate vector
r, which may be used to infer certain sensitive information
about underlying data sets and submitted queries. We show
the security of r as follows: for k ∈ [s], the k-th element of
r is the result of the inner product of p and Q[∗][k]. In our
construction, each column of a matrix contains (d − s + 1)
query values at most and (s − 1) random numbers at least.
Although the sum of the random numbers at each row
is related to the query value (δk = tkq[k]), the random
numbers in each column are independent from both the
index and query vectors. Therefore, the adversary cannot
infer any useful information from r directly. Now, let us
consider the adversary constructing linear equations from
an arbitrary combination of r[1], . . . , r[s]. If the adversary
adds up r[i], . . . , r[j] where i, j ∈ [s] and |i − j| < s − 1,
the number of unknown variables is larger than the number
of linear equations. If the adversary adds up r[1], . . . , r[s], it
obtains α, whose security we have already proved. There-
fore, the KNN scheme with random extending query matrix
can resist linear analyses. ■
Theorem 3. Our advanced PIPE scheme is semantically secure
in the known background model if F is a secure PRF and SKE is
CPA-secure.

Proof (sketch). In the known background model, the
adversary (i.e., the cloud server) may obtain statistic in-
formation (e.g., keyword frequency and file distribution)

besides what can be acquired in the known ciphertext
model. With such background information, the adversary
can derive a certain number of query keywords and their
corresponding ciphertexts. For history HS = (D,W,Q), the
trace in PIPES, denoted by TrS(H), includes a set of (query
keyword, trapdoor) pairs and the following information:

• Size pattern: (n, |D1|, · · · , |Dj |), where n is the num-
ber of files in D and |Dj | is the bit length of file Dj .

• Access pattern: The search results (R1, . . . ,Rk),
where Rj = {(i, R̂i,j ,Ri,j)|Qj ▷◁ Di, i ∈ [n]}, for
j ∈ [k]. The intermediate matrix R̂i,j equals pi,1 ⋆
Qj,1 thereby contains s random numbers and the
result matrix Ri,j contains only one random integer
that equals pi,1 · qj,1 +X where X ∈ Z is a random
integer that has no linear relationship with the result
of pi,1 · qj,1.

In PIPES, the index is constructed in the same way as that
in PIPE0, and the construction of query matrices is based on
that of PIPE0. Based on Theorem 2, we claim that given
two V iews with the same trace TrS(H), the probability for
any PPT adversary to distinguish a view simulated by a
simulator from a view generated by a real experiment is
negligible. Therefore, PIPES is semantically secure in the
known background model. ■

6 EVALUATION

This section will evaluate the performance of our PIPE
scheme in terms of execution time and result accuracy. To
show the effectiveness of our PIPE scheme, we compare
it with the multi-keyword fuzzy search proposed in [21]
(denoted by MFS), which also utilizes KNN to preserve data
privacy. As main techniques of their work, a Bloom filter
of 8,000 entries and a 2-stable (

√
3, 2, p1, p2)-LSH family

are employed to support 1 edit distance difference between
indexes and queries.

6.1 Parameter Setting
Experiments are conducted on a local machine running the
Microsoft Windows 7 Ultimate operating system with an
Intel Core i5 CPU running at 2.6GHz and 16GB memory. To
validate the feasibility of our scheme in practice, we conduct
a performance evaluation on the Enron Email Data Set 1; this
contains 30,109 emails sent by about 150 different users.

1. https://www.cs.cmu.edu/∼enron/
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Fig. 5. Comparison of the execution time (ms) between PIPE and MFS. (a) The time for the encryption of n indexes. (b) The time for the encryption
of a query of K keywords. (c) The time for searching n files with fixed query keywords K = 5. (d) The time for searching K keywords with fixed file
size n = 10, 000. (e) The search time of PIPES under different s with fixed file size n = 10, 000 and query keywords K = 5.
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Fig. 6. The precision of the basic PIPE construction while rounding up after the x-th decimal point (n is fixed with 10,000 and K ranges from 2 to
10). (a) AND queries of K keywords containing F = 2 wildcards. (b) OR queries of K keywords containing F = 2 wildcards. (c) AND queries of K
keywords containing F = 5 wildcards. (d) OR queries of K keywords containing F = 5 wildcards.
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Fig. 7. The recall of the basic PIPE construction while rounding up after the x-th decimal point (n is fixed with 10,000 and K ranges from 2 to 10).
(a) AND queries of K keywords containing F = 2 wildcards. (b) OR queries of K keywords containing F = 2 wildcards. (c) AND queries of K
keywords containing F = 5 wildcards. (d) OR queries of K keywords containing F = 5 wildcards.
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Fig. 8. The accuracy of our PIPE scheme. (a) Precision for AND queries of K keywords. (b) Recall for AND queries of K keywords. (c) Precision
for OR queries of K keywords. (d) Recall for OR queries of K keywords. (e) Accuracy impacted by parameter s with K = 5 and F = 5.

The number of files n is set to [5, 000 ∼ 30, 000]. For
each file Di, we extract mi = [5 ∼ 25] keywords to build its
index and the maximal length of keyword L is set to 30. The
universal keyword set contains m = [59, 706 ∼ 449, 703]
keywords. Each user will query with K = [5 ∼ 25]
keywords, where each query contains F = [2 ∼ 5] symbol
“∗”s. To generate a fuzzy keyword for a query, we randomly
choose one character from a keyword and replace it with
symbol “ ∗ ”. For security considerations, the size of vectors
is set as d = 256 for both PIPE0 and PIPES. In PIPES, we set
the number of columns of query matrices as s = [2 ∼ d].

6.2 Experiment Results
1) Efficiency. Both algorithms GenKey0 and GenKeyS
generate two d × d invertible matrices as keys, the com-

plexity of which is O(d2). Key generation is a one-time
cost which will be omitted in comparisons. Both algorithms
BuildIndex0 and BuildIndexS generate a pair of mi × d
matrices A′

i = (A′
ia
,A′

ib
) for file Di containing mi key-

words, the complexity of which is O(mid
2). The Trapdoor0

algorithm outputs a pair of d×nj matrices B′
j = (B′

ja
,B′

jb
)

for query Qj containing nj keywords, the complexity of
which is O(njd

2). The TrapdoorS algorithm outputs a pair
of d × (snj) matrices B̂′

j = (B̂′
ja
, B̂′

jb
) for query Qj con-

taining nj keywords, the complexity of which is O(snjd
2).

The Search0 algorithm generates an mi × nj matrix Ri,j

with a complexity O(minjd), and the SearchS algorithm
generates an mi × (snj) matrix R̂i,j with a complexity
O(sminjd).
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Fig. 5 shows the comparison results between our PIPE
scheme and MFS. For generating encrypted indexes and
trapdoors, MFS requires the computation of multiple LSHs
to map elements to a Bloom filter of 8, 000 entries; our
PIPE scheme requires only multiplication, and the size of
vectors is much smaller. This makes it much more efficient
in general. For example, in terms of building n = 25, 000
encrypted indexes, MFS costs about 2,731s, but our scheme
incurs only about 43s; in terms of generating a trapdoor
for K = 10 keywords, MFS costs about 198ms, but PIPE0

and PIPES (when s = 10) incur only about 1ms and 12ms,
respectively.

In terms of search speed, PIPE0 is faster than MFS when
the number of query keywords K is small. For example,
when K = 5, MFS costs about 745ms to search n = 10, 000,
while PIPE0 costs only about 397ms. However, the search
complexity of PIPE0 linearly increases as K increases. For
example, when n = 10, 000 and K ranges from 5 to 25, the
search cost of PIPE0 increases from 397ms to 1,964ms. In
PIPES, the search complexity is impacted by the values of
K and s. For example, when s = 10, the execution time of
searching over n = 10, 000 files grows from 3,800ms to 18s
as K increases from 5 to 25; when K = 5, the execution time
of searching over n = 10, 000 files grows from 775ms to 96s
as s increases from 10 to 250.

2) Accuracy. The accuracy of our scheme is measured
by the definitions of the widely used performance metrics:
precision and recall. Let tp, fp, and fn denote true positive,
false positive, and false negative, respectively. Precision can
be calculated as tp/(tp + fp) and recall can be calculated as
tp/(tp+fn). The loss of accuracy is caused by precision loss
in division operations. To determine if a value is an integer
or not, we round up after the x-th decimal point, where
x ∈ [3 ∼ 10]. This is because a large portion of fractional
numbers, e.g., 3.000459, will be determined as integers if x
is small, and this increases the rate of false positives. When x
is large, many values, e.g., 3.000000007, will be determined
as fractional numbers, and this increases the rate of false
negatives. From Fig. 6 and Fig. 7, we know that x = 6
enables our PIPE scheme to have the highest accuracy, i.e.,
either the precision or the recall is almost 100%.

With the fixed x = 6, we evaluate the accuracy of our
PIPE scheme under different settings of F , K , and s. From
Fig. 8, we know that F and K have a significant impact on
the accuracy of our PIPE scheme, but s has only a minor
impact. In particular, the larger F , the lower accuracy of
AND queries. For example, when K = 5, both precision
and recall of PIPE0 decrease from 100% to 81% and from
100% to 95%, respectively, as F increases from 2 to 5. Since
a larger F implies more prime multiplications in vectors, a
greater loss of precision will occur. Furthermore, an increase
of K in AND queries causes an increase of precision or
a decrease of recall. For example, when F = 2, precision
of PIPE0 increases from 83% to 100% and recall decreases
from 100% to 90% as K increases from 2 to 10. This is
because a larger K implies a larger number of columns
in the result matrix, lowering the probability of turning
non-integers of each column to integers (a lower fp), but
increasing the probability of turning integers in one column
to non-integers (a higher fn). Meanwhile, we compare the

accuracy of OR queries between our scheme and MFS since
MFS can support OR queries by changing a threshold value.
From comparison results, we know that our PIPE scheme is
much more accurate than MFS under different parameter
settings. An increase of K in OR queries causes an increase
of precision. This is because a larger K implies a larger
number of matched files (a higher tp). However, recall of
OR queries is always very high (almost 100%) no matter
how parameters change.

7 RELATED WORK

The first SE scheme where both queries and data were
encrypted under a symmetric key was proposed by Song
et al. [1]. The main drawback of their scheme was that the
search cost grew linearly with the database. To improve
the query efficiency, Goh [2] developed a secure searchable
index scheme based on Bloom filters. As a seminal work
in SE, Curtmola et al. [3] provided a rigorous security
definition and constructed schemes based on an inverted
index. Subsequently, researchers enhanced the variety of
SE schemes from query refinement [4], efficient update [5]
and verifiability [6]. However, the above SE schemes only
support single-keyword search.

7.1 Multi-Keyword Searchable Encryption

OXT [7] is the first SE scheme that supports sub-linear time
for conjunctive keyword searches. Later, Lai et al. [8] pro-
posed an HXT protocol by adopting lightweight symmetric-
key hidden vector encryption and Bloom filters to eliminate
the leakage of Keyword Pair Result Pattern (KPRP) in OXT.
The main limitation of their scheme is multiple rounds of
interaction between the cloud user and the cloud server
during the search phase. Kamara et al. [9] made use of
the inclusion-exclusion principle and proposed efficient dis-
junctive and boolean search schemes with worst-case sub-
linear search complexity. Xia et al. [10] proposed a dynamic
multi-keyword search scheme, where a user could efficiently
update the encrypted outsourced data. Wan et al. [11] con-
structed a verifiable multi-keyword search scheme in which
a user could detect any cheating behavior from malicious
servers. Ranked search schemes allow users to retrieve the
best-matched files to reduce communication costs. Cao et
al. [12] proposed a multi-keyword ranked search scheme
by leveraging the secure KNN technique [31] and TF-IDF
model to rank the relevance between files and the queries.
Chen et al. [13] adopted the backtracking algorithm upon
hierarchical clustering method to improve the rank privacy.
However, the above multi-keyword search schemes only
support exact keyword searches over encrypted data.

7.2 Single-Keyword Fuzzy Searchable Encryption

To improve search experiences, Refs. [14], [15] proposed
wildcard-based fuzzy search schemes, which tolerated key-
word misspellings in the query. The limitation of their
scheme is the requirement of a predefined dictionary, the
size of which increases exponentially with the edit distance.
Liu et al. [16] improved the scheme by reducing the index
size. Wang et al. [17] proposed a symbol-based trie-traverse
mechanism to achieve similarity search with edit distance
as the similarity metric. In [18], LSH functions were used
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TABLE 2
Comparison of Fuzzy Search Schemes

Multi-keyword Search Flexibility Search Time Communication Cost Storage Cost
Li et al. [15] × × O(

∑m
i=1 l

e
wi

) O(lkwq
) O(

∑m
i=1 l

e
wi

)

F2SE [19] × × O(m× d) O(d) O(m× d)
MFS [21] ✓ ✓ O(n× lb) O(lb) O(n× lb)

Fu et al. [22] ✓ ✓ O(n× lb) O(lb) O(n× lb)
EliMFS-E [23] ✓ × O(|D(w1)| × lb) O(lb) O(

∑m
i=1 |D(wi)| × lb)

PIPE0 ✓ ✓ O(n×mi ×K × d) O(K × d) O(n×mi × d)
PIPES ✓ ✓ O(s× n×mi ×K × d) O(s×K × d) O(n×mi × d)

Notations: n = |D| is the number of files, m = |W| is the total number of keywords in W , mi is the number of keywords in
file Di, and |D(wi)| is the number of files matching keyword wi. lwi is the length of keyword wi and lwq is the length of query
keyword wq . e is the edit distance to form the wildcard-based fuzzy set of wi, and k is the edit distance to form the trapdoor set
of wq , (k<e). lb is the length of Bloom filter and d is the dimension of index/query vector in PIPE and F2SE, (d ≪ lb shown in our
experiments). K is the number of keywords in a query, and s ∈ [2, d] is a security parameter determining the amount of random
noises to be added into a query matrix.

to deal with similarity search. Wang et al. [19] adopted
the keyword fingerprint extraction algorithm to transform
a string into a fingerprint vector which would be utilized to
evaluate the similarity between keywords.

7.3 Multi-Keyword Fuzzy Searchable Encryption
Chuah et al. [20] proposed a bedtree-based fuzzy search
scheme to enable efficient updates but the index size is
increasing with the edit distance. Refs. [21], [22] proposed
a multi-keyword fuzzy search scheme which supported the
constant size indexes. However, the combined effect of false
positives (introduced by Bloom filters) and false negatives
(introduced by LSH) seriously impacted the accuracy [23].
To enrich the search patterns, Fu et al. [24] designed a
content-based symmetric SE scheme to enable efficient se-
mantic searches; Wang et al. [25] proposed a scheme for
a generalized pattern-matching string-search. To improve
the security, Ding et al. [26] proposed a random traversal
algorithm, which produced different visiting paths on the
index for the identical queries with different keys. Boldyreva
et al. [27] improved the security of existing fuzzy search
schemes based on closeness graphs. To improve search effi-
ciency, Moataz et al. [28] employed letter orthogonalization
to allow testing of string membership by computing inner
products; Hahn et al. [29] transformed the problem of secure
substring search into range queries for fast execution time.
Our previous work [30] constructed a single-keyword fuzzy
search scheme based on the indecomposable property of
prime numbers, and extended it to conjunctive keyword set-
ting by utilizing collision-free hash functions. However, [30]
requires an order among the keywords in index construction
and trapdoor generation to avoid false negative, and thus it
lacks flexibility and practicability. The comparison between
our work and the state-of-the-art fuzzy search schemes is
shown in Table 2.

8 CONCLUSION

In this paper, we propose a PIPE scheme to achieve se-
cure and effective search services in cloud computing. The
proposed scheme supports wildcard-based multi-keyword
fuzzy searches over the encrypted data by exploiting the
indecomposable property of primes. Experiment results
demonstrate that our scheme is efficient and accurate.
However, our adversary model assumes the mutual trust
between the data owner and the data user. As part of our
future work, we will try to design a secure PIPE scheme
without such an assumption.
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M. Steiner, “Highly-scalable searchable symmetric encryption
with support for boolean queries,” in Proc. of CRYPTO, 2013, pp.
353-373.

[8] S. Lai, S. Patranabis, A. Sakzad, J.K. Liu, D. Mukhopadhyay,
R. Steinfeld, S. Sun, D. Liu and C. Zuo, “Result pattern hiding
searchable encryption for conjunctive queries,” in Proc. of CCS,
2018, pp. 745-762.

[9] S. Kamara and T. Moataz, “Boolean searchable symmetric encryp-
tion with worst-case sub-linear complexity,” in Proc. of EURO-
CRYPT , 2017, pp. 94-124.

[10] Z. Xia, X. Wang, X. Sun, and Q. Wang, “A secure and dynamic
multi-keyword ranked search scheme over encrypted cloud data,”
IEEE Transactions on Parallel and Distributed Systems, vol. 27, no. 2,
pp. 340-352, 1 Feb. 2016.

[11] Z. Wan and R. H. Deng, “VPSearch: achieving verifiability for
privacy-preserving multi-keyword search over encrypted cloud
data,” IEEE Transactions on Dependable and Secure Computing, vol.
15, no. 6, pp. 1083-1095, 1 Nov.-Dec. 2018.

[12] N. Cao, C. Wang, M. Li, K. Ren, and W. Lou, “Privacy-preserving
multi-keyword ranked search over encrypted cloud data,” IEEE
Transactions on Parallel and Distributed Systems, vol. 25, no. 1, pp.
222-233, Jan. 2014.

[13] C. Chen, X. Zhu, P. Shen, J. Hu, S. Guo, Z. Tari, and A.Y. Zomaya,
“An efficient privacy-preserving ranked keyword search method,”
IEEE Transactions on Parallel and Distributed Systems, vol. 27, no. 4,
pp. 951-963, 1 Apr. 2016.

[14] J. Li, Q. Wang, C. Wang, N. Cao, K. Ren, and W. Lou,
“Enabling efficient fuzzy keyword search over encrypted data
in cloud computing,” IACR Cryptology ePrint Archive, 2009,
http://eprint.iacr.org/2009/593.



13

[15] J. Li, Q. Wang, C. Wang, N. Cao, K. Ren, and W. Lou, “Fuzzy
keyword search over encrypted data in cloud computing,” in Proc.
of INFOCOM, 2010, pp. 441-445.

[16] C. Liu, L. Zhu, L. Li, and Y. Tan, “Fuzzy keyword search on
encrypted cloud storage data with small index,” in Proc. of CCIS,
2011, pp. 269-273.

[17] C. Wang, K. Ren, S. Yu, and K. M. R. Urs, “Achieving usable and
privacy-assured similarity search over outsourced cloud data,” in
Proc. of INFOCOM, 2012, pp. 451-459.

[18] M. Kuzu, M. S. Islam, and M. Kantarcioglu, “Efficient similarity
search over encrypted data,” in Proc. of ICDE, 2012, pp. 1156-1167.

[19] D. Wang, S. Fu, and M. Xu, “A privacy-preserving fuzzy keyword
search scheme over encrypted cloud data,” in Proc. of CloudCom,
2013, pp. 663-670.

[20] M. Chuah and W. Hu, “Privacy-aware bedtree based solution
for fuzzy multi-keyword search over encrypted data,” in Proc. of
ICDCS Workshops, 2011, pp. 273-281.

[21] B. Wang, S. Yu, W. Lou, and Y. T. Hou, “Privacy-preserving multi-
keyword fuzzy search over encrypted data in the cloud,” in Proc.
of INFOCOM, 2014, pp. 2112-2120.

[22] Z. Fu, X. Wu, C. Guan, X. Sun, and K. Ren, “Toward efficient
multi-keyword fuzzy search over encrypted outsourced data with
accuracy improvement,” IEEE Transactions on Information Forensics
and Security, vol. 11, no. 12, pp. 2706-2716, Dec. 2016.

[23] J. Chen, K. He, L. Deng, Q. Yuan, R. Du, Y. Xiang, and J. Wu,
“EliMFS: achieving efficient, leakage-resilient, and multi-keyword
fuzzy search on encrypted cloud data,” IEEE Transactions on Ser-
vices Computing, 2017, doi: 10.1109/TSC.2017.2765323.

[24] Z. Fu, L. Xia, X. Sun, A. X. Liu, and G. Xie, “Semantic-aware
searching over encrypted data for cloud computing,” IEEE Trans-
actions on Information Forensics and Security, vol. 13, no. 9, pp. 2359-
2371, Sept. 2018.

[25] D. Wang, X. Jia, C. Wang, K. Yang, S. Fu, and M. Xu, “General-
ized pattern matching string search on encrypted data in cloud
systems,” in Proc. of INFOCOM, 2015, pp. 2101-2109.

[26] X. Ding, P. Liu, and H. Jin, “Privacy-preserving multi-keyword
top-k similarity search over encrypted data,” IEEE Transactions
on Dependable and Secure Computing, vol. 16, no. 2, pp. 344-357,
1 March-April 2019.

[27] A. Boldyreva and N. Chenette, “Efficient fuzzy search on en-
crypted data,” in Proc. of FSE, 2014, pp. 613-633.

[28] T. Moataz, I. Ray, I. Ray, A. Shikfa, F. Cuppens and N. Cuppens,
“Substring search over encrypted data,” Journal of Computer Secu-
rity, vol. 26, no. 1, pp. 1-30, 1 Jan. 2018.

[29] F. Hahn, N. Loza, and F. Kerschbaum, “Practical and secure
substring search,” in Proc. of SIGMOD, 2018, pp. 163-176.

[30] Q. Liu, S. Pei, K. Xie, J. Wu, T. Peng, and G. Wang, “Achieving
secure and effective search services in cloud computing,” in Proc.
of TrustCom, 2018, pp. 1386-1391.

[31] W. K. Wong, D. W.-l. Cheung, B. Kao, and N. Mamoulis, “Secure
knn computation on encrypted databases,” in Proc. of SIGMOD,
2009, pp. 139-152.

[32] B. Yao, F. Li, and X. Xiao, “Secure nearest neighbor revisited,” in
Proc. of ICDE, 2013, pp. 733-744.

[33] D. Guo, J. Wu, H. Chen, Y. Yuan, and X. Luo, “The dynamic bloom
filters,” IEEE Transactions on Knowledge and Data Engineering, vol.
22, no. 1, pp. 120-133, Jan. 2010.

[34] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni, “Locality-
sensitive hashing scheme based on p-stable distributions,” in Proc.
of SoCG, 2004, pp. 253-262.

[35] Q. Wang, M. He, M. Du, S. S. M. Chow, R. W. F. Lai, and Q. Zhou,
“Searchable encryption over feature-rich data,” IEEE Transactions
on Dependable and Secure Computing, vol. 15, no. 3, pp. 496-510, 1
May-June 2018.

Qin Liu received her B.Sc. in Computer Sci-
ence in 2004 from Hunan Normal University,
China, received her M.Sc. in Computer Science
in 2007, and received her Ph.D. in Computer
Science in 2012 from Central South University,
China. She has been a Visiting Student at Tem-
ple University, USA. Her research interests in-
clude security and privacy issues in cloud com-
puting. Now, she is an Associate Professor in
the College of Computer Science and Electronic
Engineering at Hunan University, China.

Yu Peng received his B.Sc. in Software Engi-
neering in 2018 from China West Normal Uni-
versity, China. Currently, he is pursuing the Ph.D.
degree in the College of Computer Science
and Electronic Engineering at Hunan University,
China. His research interests include security
and privacy issues in cloud computing. He is a
Student Member of IEEE and China Computer
Federation (CCF).

Shuyu Pei received her B.Sc. in Information Se-
curity in 2015, and received her M.Sc. in Com-
puter Science in 2018 from Hunan University,
China. Now, she is a Ph.D. candidate at the Col-
lege of Computer Science and Electronic Engi-
neering, Hunan University, China. Her research
interests include security and privacy issues in
cloud computing. She is a Student Member of
IEEE.

Jie Wu is the Chair and a Laura H. Carnell Pro-
fessor in the Department of Computer and Infor-
mation Sciences at Temple University, Philadel-
phia, PA, USA. Prior to joining Temple Univer-
sity, he was a Program Director at the National
Science Foundation and a Distinguished Pro-
fessor at Florida Atlantic University. His current
research interests include mobile computing and
wireless networks, routing protocols, cloud and
green computing, network trust and security, and
social network applications. Dr. Wu has regularly

published in scholarly journals, conference proceedings, and books. He
serves on several editorial boards, including IEEE TRANSACTIONS
ON SERVICE COMPUTING, and Journal of Parallel and Distributed
Computing. Dr. Wu was general co-chair/chair for IEEE MASS 2006,
IEEE IPDPS 2008, IEEE ICDCS 2013, and ACM MobiHoc 2014, as
well as program co-chair for IEEE INFOCOM 2011 and CCF CNCC
2013. He was an IEEE Computer Society Distinguished Visitor, ACM
Distinguished Speaker, and chair for the IEEE Technical Committee on
Distributed Processing (TCDP). Dr. Wu is a CCF Distinguished Speaker
and a Fellow of the IEEE. He is the recipient of the 2011 China Computer
Federation (CCF) Overseas Outstanding Achievement Award.

Tao Peng received the B.Sc. in Computer Sci-
ence from Xiangtan University, China, in 2004,
the M.Sc. in Circuits and Systems from Hunan
Normal University, China, in 2007, and the Ph.D.
in Computer Science from Central South Uni-
versity, China, in 2017. Now, she is an Asso-
ciate Professor of School of Computer Science
and Cyber Engineering, Guangzhou University,
China. Her research interests include network
and information security issues.

Guojun Wang received B.Sc. degree in Geo-
physics, M.Sc. degree in Computer Science, and
Ph.D. degree in Computer Science, at Central
South University, China, in 1992, 1996, 2002,
respectively. He is a Pearl River Scholarship
Distinguished Professor of Higher Education
in Guangdong Province, a Doctoral Supervisor
and Vice Dean of School of Computer Science
and Cyber Engineering, Guangzhou University,
China, and the Director of Institute of Computer
Networks at Guangzhou University. He has been

listed in Chinese Most Cited Researchers (Computer Science) by Else-
vier in the past six consecutive years (2014-2019). His research inter-
ests include artificial intelligence, big data, cloud computing, Internet
of Things (IoT), blockchain, trustworthy/dependable computing, network
security, privacy preserving, recommendation systems, and smart cities.
He is a Distinguished Member of CCF, a Member of IEEE, ACM and
IEICE.


