
Time Management in a Chess Game through
Machine Learning

Guga Burduli and Jie Wu
Department of Computer and Information Sciences

Temple University, Philadelphia, PA, USA

Abstract—Chess includes two significant factors: playing good
moves and managing your time optimally. Time, especially in blitz
games, is just as essential to the game as making good moves.
Nowadays, several incredible engines are already developed, more
than enough to defeat all the best human chess players. For
studying how to make good moves, these engines are crucially
useful. Professional chess players are using them in addition to
coaches to prepare for the matches or to examine the mistakes
in their played games. However, managing time still is a huge
challenge. There are no basic rules for managing time. A lot of
factors influence the decision about how much time should be
spent in a particular position. For computers, it is easier because
they calculate much faster and they have all the theoretical
knowledge. However, even grandmaster chess human players
are struggling with time trouble. In this article, we describe
how the data was collected from an online chess platform and
show methods of how time can be managed based on different
features. In this regard, we will use two different models: using
a customized neural network and using a proposed segmented
least square approximation method. In both of the models, we
will use our collected data.

Index Terms—time management, neural network, segmented
least square approximation, chess, collecting the data

I. INTRODUCTION

Time management in chess is one of the most critical
problems, especially in the case of sudden death time control.
Sudden death time control is the simplest form of time control;
each player has a fixed amount of time for the whole game.
If the remaining time equals zero, the player loses the game
immediately. The challenging part is determining how much
time should be spent in a particular position. Spending more
time gives us more accurate results; however, we have limited
time until the end of the game, and we do not know how much
more moves will be till the end of the game. Even grandmaster
(GM) players struggle to manage time effectively and often
reach the time-trouble.

A lot of factors influence the decision about how much
time should be spent on a particular move, such as remaining
time, the complexity of the position, the expected number of
moves until the end of the game, the opponent’s remaining
time, player and their opponent’s strength, even remaining
physical power of the player [1] [2]. In addition, sometimes
the assessment of the position is crucial as well; if a player
is winning, in most cases, it is easier to make the decision
faster than when the player is losing. There are no general
rules for time management; however, if a player has only one
candidate move in the position, thinking is wasting time, so

Fig. 1: Chess board with the clock

they are making a move immediately. In general, the process
is the following: players choose several candidate moves from
all legal moves in the position and calculate chosen ones in
depth. The depth depends on the allocated time at this move,
and the move’s accuracy depends on the depth.

We already have a lot of knowledge of how to use the
help of the computer to play good moves. Direct engine
with some theoretical knowledge such as “Stockfish” [3], or
based on self-learning knowledge with reinforcement learning
such as “Alphazero” [4]. Both engines are already strong
enough to defeat any human. However, can we have the
same success in the case of time management?! There are
different strategies for time allocation, and a lot of research
is made in this regard. The paper [5] describes statistical
methods for time management. They collected the data, and
according to statistical results, they made the linear model of
time allocation, which depended on the expected amount of
moves till the end of the game. There are time management
systems for tree-search based systems such as Monte Carlo
Tree Search algorithms [6] [7] [8]. In addition, there are some
stochastic optimal time management strategies mentioned in
the paper [9]. In the paper, [7] time allocation is divided into
two parts: for each search before it is started and each move
search while it is running. These methods are optimized for
computer use. However, humans still struggle to manage time
during the game; blunders made in time trouble are the most
common during the human match.

The importance of time management clearly showed during
the match between “Stockfish” and “Alphazero” [10]. On



December 6, 2017, another crucial milestone was reached,
when the best engine was defeated by the AI-based engine
[11]. “Alphazero” won 28 and tied 72 - from 100 played games
versus “Stockfish 8”. The second match between them was
conducted after one year, in 2018. The results of the match
showed that with the same amount of time, “Alphazero” had a
huge advantage. Even with the 1/10 time “Alphazero” still was
dominant. “Stockfish 8” begun outscore “Alphazero” when the
odds reached 30-to-1 [12].

In this paper, we address four challenges: (1) Collect the
data on the human chess games by spending time from
the online website ’chess.com’. (2) Segmented Least Square
Approximation for data points with a fixed amount of lines.
(3) Neural Networks with different features and architecture
for predicting the thinking time for each move. (4) Simulations
with different time management strategies and different types
of engines. The following summarizes our contributions:

1) We collected matches from the online chess platform
“chess.com”, parsed each match, and got important
features from each position.

2) We changed the Segmented Least Square Approximation
algorithm, and instead of cost value for each line, we
optimized an algorithm for the fixed number of the lines
using dynamic programming.

3) We propose how to predict the thinking time with a
Neural Network, what should be the features of the
position, and what architecture of the Neural Network
gives better results.

4) We make the simulations of the games with different
time management systems for the segmented least square
approximation model and the neural network’s model.
Simulations were made with different engines for dif-
ferent data, and results were compared with each other.

This paper is organized as follows. Section II describes the
background and important information about chess and time
controls. Section III introduces how the data was collected
and preprocessed. Sections IV and V introduces two different
algorithms for time management, with the neural network and
with segmented least square approximation appropriately. Sec-
tion VI then combines the results for all methods mentioned
above. In section VII, we are shortly describing relevant works.
Section VIII describes the future work of the paper and what
can be improved more. In the last Section IX we are summing
up the paper.

II. BACKGROUND

This section will discuss chess history: how computer chess
was improving and what features are most important for chess.

A. Chess History with Computers

Chess is a game that requires a lot of creativity and so-
phisticated decisions. It was frequently compared to activities
like poetry, writing, and painting as examples of tasks that
can only be done by humans [13]. While writing poetry has
remained very difficult for computers to this day, we have a
lot of improvement in building chess-playing computers [3]

Fig. 2: Kasparov vs. Deep Blue 1996.

[4]. The first-time computer beat a chess master was in 1978,
Chess 4.7, won one game out of 6 versus International Master
David Levy [14], and ever since, it has been improving a
lot. In 1997, IBM’s Deep Blue defeated the reigning World
Chess Champion, Garry Kasparov, under standard tournament
rules, for the first time in chess history [15] [16] [17].
Nowadays, computer hardware (”Stockfish”) and AI research
advanced state-of-art chess-playing computers (”Alphazero”)
to the point where even the best humans today have no realistic
chance of defeating modern chess engines.

B. Important Features for Chess

Before going into details about time management in chess,
we should determine some of the chess specifications. As
we mentioned in the introduction, a lot of factors determine
the thinking period in the position. For humans, the most
important factor is the remaining time of the game: If you
have seconds on your clock, the position does not matter
anymore; everyone depends on their intuition and plays as fast
as possible. However, if a position is already winning (e.g., if
you have an extra queen in the endgame), even seconds are
enough to finish the game with a checkmate. In this regard,
the second most important feature is the complexity of the
position: is it winning or losing already, or how much material
is remaining, how many possible moves exist, and how many
moves are expected till the end of the game. This part is the
most challenging one to determine because sometimes even
the same material means absolutely different complexity of the
position. The third specification that is worth considering is the
players’ strength; different levels of the players manage time
differently. The best players spent a little time in the openings
and some theoretical endgames because they already knew
the positions clearly. Most of the time by the international
masters and grandmasters is spent during the middlegame
when positions are complex and mostly new for them. So, they
need to make a game plan and consider a lot of different moves
in depth. Amateur players do not have so much knowledge in
opening or theoretical endgames, so they manage time most
likely the same from the beginning of the game.



Another considerable factor in managing time is color. The
white pieces have one extra tempo; they are starting the game,
so they have a little advantage at the start of the game. Players
with black pieces are trying to equalize the position first and
then try to win the game.

C. Computer Way of Playing Chess

Humans consider all those factors mentioned above to
determine the time spent on a particular move. However, it is
interesting to note that the way computers play chess is very
different from how humans play. In the case of Deep Blue
(1997), it relied on the brute force to explore as many moves
as possible, even some of them would be automatically thrown
away by any skilled human [18]. In a sense, the way humans
play chess is much more computationally efficient - using
Garry Kasparov vs. Deep Blue as an example, Kasparov could
not have been searching more than 3-5 positions per second,
while Deep Blue, a supercomputer with 480 custom’ chess
processors’, searched about 200 million positions per second
to play at approximately equal strength (Deep Blue won the
6-game match with two wins, three draws, and one loss) [13].
The main power during playing chess is the effective and
precise assessment of the position. After AI became strong,
computers even increased the efficiency of calculation. Using
multiple deep artificial neural networks trained in a temporal-
difference reinforcement learning framework, there are already
statically evaluating positions - estimating how good a position
is without looking further [13] :

• Deciding which branches are most ”interesting” in any
given position and should be searched further, as well as
which branches to discard.

• Ordering moves - determining which moves to search
before others, which significantly affects the efficiency
of searches.

Artificial neural networks are used as a substitute for
”intuition”; however, they are more precise and reliable [13].
Humans with more experience have better intuition and hence
have a better sense of assessment of the position. Assessment
of the position is the key to fast calculation. If you know
which positions are better or worse, you filter the possible
moves faster and get more effective results. So, when the
computer has artificial intelligence for the ”intuition”, which
is trained on a self-played game, it gives the power of the best
assessment and optimal search.

III. DATA COLLECTION AND PREPARATION

The section describes how data was collected and prepro-
cessed for the models. We will see how different kind of
features were extracted and saved from the game.

A. Source

There is a huge database where a lot of chess games are
saved, known as “Chessbase” [19]. Unfortunately, they are
holding only moves, not the time spent on every move. On
the other hand, there are a massive amount of online games
where times are saved as well. There are a lot of online

Algorithm 1 Data Collection

Require: Receives username of the player
1: Get All Games for the given username with API
2: Create empty list of lists: L
3: for each game do
4: Play Game as Python-Chess game
5: Create list for one move data: K
6: for each move do
7: Calculate: total material, material difference, ex-

pected moves till the end of the game, legal move
amount

8: Save: spent time, remaining time
9: Save static features: Rating of the players, Result of

the game, Reason of the result, Color, Move.
10: Append everything in K
11: add K into L
12: Create dataframe with L
13: return dataframe

platforms where you can play chess, such as “lichess.org”,
“chess24.com” or “chess.com” [20] [21] [22]. The most pop-
ular online platform to play chess is “chess.com”. Figure 3
shows the visualization of the website. About 427,580 people
use chess.com to play chess online, including grandmasters
such as Fabiano Caruana, Wesley So, Magnus Carlsen, or
Hikaru Nakamura. Everyone can be registered on the website
and play different types of chess games. Most popular time
controls are one-minute games, so called “bullets” and three or
five minutes games known as “blitz”. Data used in this article
comes from that platform. “Chess.com 1.7.6” is a python
wrapper for Chess.com API, which provides public data from
the chess.com website [23]. The data comes in JSON format,
and we have a string of the different specifications of the game,
including player’s ratings, game score, moves with spent time,
etc. Using that API, we can get all the games for the given
username of the player. However, until these data are useful,
it needs preprocessing.

B. Dynamic Features

During the preprocessing phase for every player’s username,
we get all the games played by that particular user. The parsing
algorithm can fetch all-time control games. However, in our
case, we choose sudden death time control for one, three, or
five minutes for each player during the whole match. Then,
each game given in string format was replayed as a python-
chess type game [24]. And for each played move in the game,
we calculated features of the position:

• Was it white’s move or black’s
• Which move it was
• What was the remaining time after the move
• How many legal moves existed in the position
• What was the total material
• What was the difference of material
• What was expected moves till the end of the game
• How much time was spent on that move



TABLE I: Dataframe for the first 3 moves of the game

WR BR TC NM Col Move TR NLM Mat MD EM R LR ST Sum
1347 1142 180 1 1 e4 180.0 20 78 0 67.5 1 checkmate 0.0 0.0
1347 1142 180 1 0 e6 180.0 20 78 0 67.5 1 checkmate 0.0 0.0
1347 1142 180 2 1 d4 178.5 30 78 0 67.5 1 checkmate 1.5 1.5
1347 1142 180 2 0 c6 179.3 30 78 0 67.5 1 checkmate 0.7 0.7
1347 1142 180 3 1 c4 176.5 38 78 0 67.5 1 checkmate 2.0 3.5
1347 1142 180 3 0 Qb6 178.0 31 78 0 67.5 1 checkmate 1.3 2.0

Pseudocode 1 shows the whole process. Let’s define what the
features mentioned above are. Legal moves mean how many
different actions the player has at the current configuration.
In some positions, there is only one legal move; in that case,
players are not thinking at all. Sometimes there are several
legal moves, but it is obvious that only one is better than the
others, and we do not need a lot of time to make that move as
well. However, there are key positions where players have two
or more good candidate moves; in that case, the calculation
is time demanding. Hence, this feature should be important
because, in general, chess players calculate faster when there
are few choices of legal moves.

One of the critical things in chess is material, which means
how many pieces you have. The “cheapest” piece in chess is
Pawn, which is 1 point. However, each player has 8 Pawns in
the beginning. After this, there are Knights and Bishops, which
are equal to 3 points each; every player has two Knights and
two Bishops before the start of the game. Next once are Rooks
with 5 points each, and there are two Rooks for each player.
Last but not least is Queen, the most powerful piece on the
chess board. Queen is equal to 9 Points and is one for each
player. And there is the King, which is priceless. Losing King
(which is checkmate) is the end of the game, no matter how
much other material you have remained. To sum up, every
player has 39 points without King at the beginning of the
match. We have two types of material features; one shows
the difference between the white and black pieces materials,
second shows the total remaining material. For example, on the
Figure 3 white have one rook, one queen and six pawns, which
means that total material is Mat = 1 ∗ 5+ 1 ∗ 9+ 6 ∗ 1 = 20.
Black have two rooks instead of one, but two pawns instead
of six, so total material is Mat = 2 ∗ 5 + 1 ∗ 9 + 2 ∗ 1 = 21.
Hence, material difference is MD = 20−21 = −1. In general,
getting a material advantage gives a higher chance of winning
the most cases during playing chess. However, it is important
to mention that sometimes people are sacrificing material for
some compensation or attack.

Another interesting feature is expected moves till the end
of the game, which is calculated based on the material with
a linear function, and we are using the formula mentioned in
the article [5]. Managing time can be more effective when you
know approximately how much more moves should be played
in a match.

C. Fixed Features

In addition to the position’s dynamic features, there are
fixed (same for every move, but different with the game)

Fig. 3: Visualisation of online platform “chess.com”

specifications of the match:
• Rating of the first player
• Rating of the second player
• Time Control
• Result (Win, Lose, Draw)
• Reason for the result (Can be agreement, resigning, or

losing by time)
Ratings of the players show their strength; Amateur level

rating is typically before 1500 rating, then comes beginner
level from 1500-2000, from 2000-2400 it is FIDE master
level, then comes international masters between 2400-2700,
2700+ ratings are already grandmasters. Different levels of the
players manage time differently. For instance, grandmasters do
not lose time in openings or theoretical endgames, while the
beginners and even most likely FIDE master chess players are
burning a lot of time in openings. The time control means how
much time have each player until the end of the game. We have
another fixed feature which is the reason for the result, why
the game was a draw, or why someone lost the game. The
reasons for the draw result can be:

• Agreement of the players.
• 50 move without taking a piece or pawn move.
• 3 times repetition of the position.
• A player is out of time, however opponent does not have

enough material for checkmate.
The reasons for the loosing can be:

• Checkmate.
• Losing by time (case when the opponent has enough

pieces for checkmate).
• Resignation, the player can stop the clock anytime and

resign.



After all, features are calculated, we create the dataframe
with all the data I. The only column not mentioned above
is the “Sum”, which appropriately describes the cumulative
sum of the spending times for black and white pieces. This
feature is used in Section V, about Segmented Least Square
Approximation. The data is saved move by move for every
game. We create different dataframes for the different levels
of the players.

D. Other Usage of the Data

Chess games data is used in many different fields as well. In
the article, [25] the collected data was used to get statistical
analyses on a range of topics about humans, including skill
development over the lifetime, birth cohort effects, effects of
activity and inactivity on the skill, and gender differences.
Hence, our created dataframes can be used in different varia-
tions of problems related to chess.

IV. NEURAL NETWORK

For time management, we developed two different methods.
The first one is the time prediction with a neural network. In
the previous chapter, we described how data was collected.
Based on the method, we collected data for different players
playing one, three, or five minutes games without increment
(sudden death time control). For training the Neural Network,
various features were used from the dataframe shown in I. This
chapter will describe the architecture of the neural network,
the basic model training, and the feature selection process.

A. Architecture

Since the prediction should be time spent per move and
it is a continuous function, we used Neural Network for the
regression problem [26]. Figure 4 describes the basic model
of Sequential Neural Network, with one input layer, one
output layer, and five dense hidden layers. The batch size for
input data is 1024; hence “None” value changes according
to input data and batch size. For the basic model, we had
eight features; because of this, the second dimension of the
input layer is eight. The first two hidden layers have 512
neurons. Then we have two layers with 256 neurons each, one
with 128 neurons and the output layer with one neuron. Each
layer except the output has “ReLU” as an activation function.
One major benefit of the “ReLU” activation function is the
reduced likelihood of the gradient vanishing. The gradient of
“sigmoids” becomes increasingly small as the absolute value
of x increases. The constant gradient of “ReLUs” results in
faster learning. Since our prediction is a continuous variable,
the last layer has a linear activation function [27].

For testing purposes, we changed the amount of the layer as
well as the amount of the neurons in each layer. Regarding the
number of neurons in each layer, we changed the first hidden
layer size, and hence, all the following hidden layer sizes were
changed. If the first two hidden layers’ size was n, we get the
third and fourth layers’ size as n/2 and the fifth n/4.

The results for a different amount of neurons in each layer
are shown in Table II. “WNeuron” is the number of neurons

Fig. 4: The proposed neural network architecture

TABLE II: Result for different amount of Neurons
WNeuron BNeuron Total White Draw Black
512 512 10 2 8 0
256 512 10 3 6 1
128 512 10 3 6 1
64 512 10 1 7 2

in the first layer for the white pieces model, and “BNeuron” is
the same for black. We changed the number of neurons only
for the white to compare the results with each other. For each
case, ten games were played using the engine “Stockfish” [3].
“White”, “Draw”, and “Black” shows the number of games
for the white win, draws, and black wins appropriate. We can
see that the results are the best in the case of n = 512. White
did not lose a game. In the case of the n = 256 and n = 128,
the results were similar, white won one game more than for
n = 512 but lost one game as well; Finally, the result for the
n = 64 was the worst, black won four games in that case.
Since n = 512 case still needs the same time for prediction as
it is in the case of n = 256 in our final model, we decide to
maintain 512 neurons in the first two layers. Similar tests were
made for the number of hidden layers. We tested the model
for three, four, and five hidden layers. The model with five
layers had better results, and because there was no significant



difference in prediction times, we maintained a neural network
with five hidden layers. It is important to mention that model
should not be too complicated to maintain a low prediction
time.

B. The Basic Model

Players with white pieces have extra tempo because they
are starting. Hence, players with black pieces are trying first
to equalize position and then play for a win. Because of that
small difference, white has a little advantage at the start of the
game. Players choose different strategies to play with different
colors, so time management is also different. In this regard, we
trained models according to colors, one model for the white
pieces and the other for the black pieces. The dataframe shown
in I was split into two parts according to the color of the
pieces. In addition, for white, we use the data of the games
where white won the game. Since white pieces have a little
advantage, mostly draws are favorable for black pieces. So,
for the black side’s model, we used games that were drawn or
won by black pieces.

After filtering the dataframe I, we get eight features: White’s
and Black’s rating, number of the move, time remaining until
the end of the game, amount of the legal moves in the position,
total remaining material, the difference of white’s and black’s
materials, and the expected move until the end of the game.
The first model was trained based on all the features mentioned
above. Both sides were using the newest version of “Stockfish”
as a chess engine [3]. Regarding the time, one side was
managed by a neural network and the other side with linear
time control mentioned in [5]. In addition, we tested the earlier
versions of the “Stockfish”, which are comparably weaker
versions. The difference between the results for the neural
network and linear time controls was more notable in the case
of weaker engines played itself than in the case of stronger
engines. Strong engines are already so optimized that the time
optimization problem is less important. The weaker versions
of the engines are more like humans. So, the neural network
trained on human data was working a little bit better. We will
see detailed results in Section VI.

C. Feature Selection

We trained additional models without each feature men-
tioned above to calculate the importance of the features. The
results of the models were compared versus the original one,
which was trained for all the features. From the results, we
can tell that amount of the legal moves, and the number of the
move were the most important features. These two features
are essential once for humans as well. The amount of legal
moves determines how many candidate moves you have to
consider and calculate. More candidate moves means more
work to do, hence more time to spend. The move number
shows approximately how much more moves will be until the
end of the game and how much time you will need for the
future moves.

Improvement of the model was only when we removed
the remaining time from the features. Because the data used

Algorithm 2 Segmented-Least-Square-Approximation

Require: Received Times T, Moves M and the amount of
lines k.

1: for all pairs i < j do
2: Calculate the least square error ei,j for the segment

pi...pj
3: Create array OPT for errors k × n, for each amount of

line and for each segment.
4: Fill first row of the error array with appropriate least

square errors calculated above.
5: Fill other rows with ∞
6: for i between 1 to k do
7: for j between 0 to n do
7: min

0≤t<j
(OPTi,j , OPTi−1,t + errt,j)

8: return OPT

to train the model was based on human games, the results
are not surprising. In general remaining time is one of the
most important features for humans. However, humans are
too concerned with time trouble and making impulsive moves
when they have little time. Also, when remaining time is not
very low, humans are still considering not spending a lot of
time on one particular move to avoid future time trouble.
Computers can be more precise over time-trouble. We had two
close features, which were total material and the difference
between white and black pieces material. The detailed results
for other features as well will be mentioned in Section VI.

In addition to the features mentioned above, really inter-
esting features for the model can be an assessment of the
position, have a queen on the board or not, how many pawns
are remaining in the position, etc. Positions without the queens
are mostly less complicated than with queens, or positions with
eight pawns each are definitely harder to play than positions
with two pawns each. Hence, a lot of different models can
be trained with different combinations of features. Also, it
is important to mention that the data used for training was
human data with different levels of chess knowledge. Another
interesting model would be if we would collect the same type
of data for computers and train our model with this data.

V. SEGMENTED LEAST SQUARE APPROXIMATION

The section describes the dynamic programming algorithm
for segmented least square approximation. We will discuss the
general idea and then the algorithm.

A. General Idea

For humans understanding the neural network’s prediction
process is hard because it could not be described with func-
tions. Humans can not use computers and neural networks
during the game, so we decide to make an easier prediction
version, such as linear functions. As it was already mentioned
in the article [5], we can have a linear function for time
prediction based on the expected number of the moves till the
end of the game. According to the same paper, the expected
number of the moves itself depends on the total material.



(a) Figure for k = 1

(b) Figure for k = 2

Fig. 5: Simple example of approximations

However, the expected number of the moves is not really
precise. We used our collected human data to see how different
people spent time during their games and created the model
according to this. It would be very logical in chess if we
split the game into three parts: Opening, Middlegame, and
Endgame. However, it is hard to determine how many moves
are included in each part of the game. Openings mostly are
from 15-20 moves, then comes middlegame, and when the
material is reduced, the time comes for the endgame. The
most crucial part is the middlegame, where players spend
most of their time. The reason is that they already have some
knowledge of the openings and the theoretical endgames and
middlegame are mostly new for them.

B. Algorithm

Our idea was to approximate the main function, total
spending time versus the number of a move, with several
linear functions. In this regard, we invented a new dynamic
programming algorithm. There is already known dynamic
programming algorithm for segmented least square approx-
imation, where we have line cost. In combination with the
cost and the least square error, the number of lines is chosen
by the model to approximate the main function [28]. In our
case, the main function is the moves (M) dependence on
the total time spent for thinking (T). Each data point is the
average total time spent after the ith move from a player
during the several games. Our modified dynamic programming
algorithm receives an argument amount of linear functions
as k, and the algorithm gives the k linear functions, which
approximates the main function most closely. The algorithm

TABLE III: Number of points vs. Number of lines
L-P 1 2 3 4 5 6
1 173.3 173.3 173.3 173.3 173.3 173.3
2 80 17.5 4.3 9.8 105.3 173.3

works as follows: firstly, we calculate all least square errors
between every consecutive subset of the points. For the n
points we have n×(n−1)

2 subset. We consider which points
should be on that new line to minimize the total least square
error for each new line. That can be done using the dynamic
programming algorithm described in pseudocode 2. We are
using k × n size array to save minimum least square errors
given [n1, ..., nt] subset and [1, ..., k] line.

One other interesting part is the results between the different
approximations. Results showed that the difference between
three, four, and five-line approximations are almost unnoticed.
In contrast, the difference between them and one line approxi-
mation is comparably high. We will see the detailed results in
Section VI. The method’s main advantage is that humans can
easily remember three or four linear functions and use them
to determine their time management strategy during the game.

C. Approximation Example

Let us consider one toy example to understand how the
algorithm works. For a simple example, Figure 5(a) shows
linear time approximation only with one line for six points. In
that case, with one line minimum least square error is 173.3.
Figure 5(b) shows the best approximation with two lines. In
the algorithm mentioned above, we are starting with one line
error, and filling the first row of the Table III with the error. It
means that we can not split the data points with only one line,
and the minimum error will be the same. When the number of
lines increases by one, now we can split the data into two parts
at each point. We consider every possible split and choose the
one with the best total least square error. If we split the data
with the third point, it means that from two lines, the first line
will be for the first three points and the second line will be for
the other three points, and the total least square error will be
the some of the two errors with first-line and with the second
line. In that case, the total error was 4.3, which, as we see in
Table III is the minimum. Dynamic programming helps us fill
that kind of table efficiently, without a brute force algorithm.

VI. EXPERIMENTAL RESULTS

The section describes the experimental results for a different
kind of neural network. In addition, we will discuss the
segmented least square approximation model for a different
amount of linear functions and compare their results with each
other.

A. Neural Network Variations

Regarding the neural network, we changed a lot of parame-
ters such as the number of neurons, amount of hidden layers,
features, and data. The results for changing the amount of
the neurons are already given in Section IV. In the case of
different amounts of hidden layers, we trained neural networks



TABLE IV: Result for different amount of Layers
WLayer BLayer Total White Draw Black
5 5 10 3 7 0
4 5 10 3 6 1
3 5 10 2 8 0

TABLE V: Result for different Feature Selection
WModel BModel Total White Draw Black
Original Original 10 3 6 1
WRating Original 10 2 8 0
BRating Original 10 1 9 0
NofMove Original 10 1 7 2
Time Original 10 5 5 0
LegMoves Original 10 1 7 2
Material Original 10 1 9 0
MatDiff Original 10 0 10 0
ExpMoves Original 10 1 8 1

for three, four, and five hidden layers. Table IV shows the
results, where we can see that neural networks with five
hidden layers have a little bit better results. In the experiment,
both sides were played with the engine “Stockfish” [3]. Both
sides were managing time with neural networks, however,
with different numbers of hidden layers. In each case, ten
games were played. “White”, “Draw”, and “Black” shows the
amount of the white winning, draw, and black winning games
accordingly.

The most interesting part was the results for different feature
selections. As we already mentioned in Section IV, we trained
neural networks for different feature configurations. The main
model was with all the eight features we described in Section
IV; however other models have seven features, all except
the one feature we chose. Table V shows the results for
different models played with each other. The latest version of
“Stockfish” was used in this experiment from both sides. With
white pieces, time management was controlled by the models
with seven features, while with black pieces, time management
was controlled with the model with all the eight features. The
experiment was conducted to determine the importance of each
feature for the model. In Table V, “WModel” describes the
feature which was removed from all the features. In the first
case, the original model trained for white pieces and trained
for black pieces independently were played with each other.
Then we removed each feature one by one and checked the
models without each feature. We can see that only removing
the remaining time feature had better results. As we mentioned
in Section IV, it is because the data which was used for
training a neural network is human data. The most important
features were the number of the move and the amount of the
legal moves. Without those features, models had much worse
results than the original ones.

Finally, our original model was checked versus linear time
management. As we already see above, white always have
some advantage. In this regard, we first checked the results
for linear time management with white versus the same time
management with black. The 20 games were played, 11 games
were drawn, white won 6 games, while black won 3 games.
Table VI shows the result for neural network and linear time

TABLE VI: Result for different Time Management
WModel BModel Total White Draw Black
Linear Linear 20 6 11 3
NN Linear 20 5 13 2
Linear NN 20 3 15 2

TABLE VII: Result for different Time Management with
weaker engine

WModel BModel Total White Draw Black
Linear Linear 20 7 8 5
NN Linear 20 7 10 3
Linear NN 20 5 11 4

Fig. 6: Result for beginner, k = 3

management. As we can see the results are very close in all
three configurations. Firstly, it means that neural network has
promising results. On the other hand, it is because in these
experiments the latest version of the “Stockfish” were used,
which is already highly optimized and time management gives
a little difference. In this regard, we made the experiments
with the first version of the “Stockfish”, which is more close
to human strength. Table VII shows the result with weaker
version of the “Stockfish”. We can see that in that case neural
network trained on human data has better results.

B. Segmented Least Square Approximation

This section will show the additional results for our least
square approximation algorithm. We collected data for three
different levels of human players: beginner, FIDE master, and
international master. In addition, we will show the results for
different linear approximations played with each other.

1) Different Level Player: Figures 6 and 7 describes seg-
mented least square approximations for different level chess
players. As we mentioned in Section V, data points are the
average total spent time for a particular move. The figures
6 and 7 are for the one minute games. We can see that the
first linear function in the beginner’s case is from the first
till about the fifteenth move, and totally they are spending
about 20 seconds for the first 15 moves. A similar situation
is regarding the number of moves in the case of the FIDE
master player. Figure 7 shows that the first function is from
the first till about the seventeenth move. However, totally they
spent about 10 seconds for the first seventeenth move, while in
beginners’ case, it was approximately 20 seconds. The reason



Fig. 7: Result for FIDE master, k = 3

TABLE VIII: Result for different Time Management
WLine BLine Total White Draw Black
5 4 10 3 6 1
5 3 10 3 6 1
5 1 10 4 6 0
1 5 10 2 6 2
3 5 10 1 8 1
4 5 10 2 7 1

is that FIDE masters have better theoretical knowledge of the
openings than beginners. If we carefully see the slopes for each
linear function, we can discover that the last linear function
has the smallest slope because most of the time is already
spent before, and players have to make moves faster. In the
case of the FIDE master player, on average, 80 moves were
played, while in the case of beginners, it is 60 moves. The
reason is that stronger players are playing faster and have the
opportunity to make more moves at the same time. In addition,
first function slopes are different too; the reason is the same
as we already mentioned above better players know the theory
of the openings.

2) Different Amount of Linear Functions: Figures 10 and
9 describe the linear approximations with four lines for the
beginner and FIDE master chess players. We can see that
approximately in both cases, the line from 1 to 17 moves
was split into two parts: 1 to 9 and 10 to 17. However,
we can see that using three lines for the beginner player
had approximately the same error as it was with four lines.
While in the case of the FIDE master player, it has a little bit
more improvement. We made experiments to see how different
amounts of lines were connected to the final results. In this
experiment newest version of the “Stockfish” was used from
both sides. However, the time control was according to the dif-
ferent amount of linear functions. Table VIII shows the results
for a different amount of lines during linear approximations
played with each other. Results between 3, 4, or 5 lines were
almost identical, while in the case of 5 vs. 1, 5 lines linear
approximation has a notable advantage.

3) Poor Comparison: Figure 8 shows the different level
players data points on the same plot. We can clearly see that
the stronger player saves time in the beginning and plays faster.

Fig. 8: Different Level Comparison

Hence, the stronger player plays more moves. It is important to
mention as well, that the data was collected from “Chess.com”
platform. The algorithm of the platform is such that players
are playing versus the same level of the player. So, if someone
is a beginner most likely their opponents are beginners too, or
if someone is a FIDE master, their opponents strength will be
mostly FIDE masters’ level.

C. Simulation Summary

For testing our models described in Sections IV and V, we
used real-time simulations. We wrote code in python, where
different versions of the engine “Stockfish” can play with
each other. “Stockfish” engine function has the opportunity
to receive time for every move. We used this functionality
and tested the same versions of “Stockfish” played with each
other, with different time management strategies. The time for
each player was the same as it was used during the neural
network training. For instance, if we trained the neural network
on three minutes of human games, the engine also had three
minutes to play the match. The results mentioned in this article
are real-time data collected by playing with different time
management and different kind of engine levels with itself.
It is important to mention that this kind of simulation takes a
lot of time; however, it is the best for measuring the accuracy
of the models.

VII. RELATED WORK

The section shows related works for time management
strategies, usage of neural networks in chess, and approxi-
mation algorithms.

A. Time Allocation for Computer Chess

Several strategies can be used for time management in
chess. The easiest one is to calculate the average amount
of moves in one game and divide the total time by that
number [5]. However, this strategy depends on the static
number and is not the best; if the game continues less than
the average amount of moves, part of our time will remain
unused; or if the game continues more than the average



Fig. 9: Result for FIDE master, k = 4

Fig. 10: Result for beginner, k = 4

time, we will lose the game by time [29]. So, a simple
improved strategy is to have a dynamic amount of the moves
till the end of the game. The paper [5] describes statistical
methods to get the linear dependence between the amounts
of moves till the end and the total material. Since we have
the dynamic amount of moves calculated from the material,
we can update our time management according to the new
formula t = T/(N(m) − n), where t is the allocated time,
T - total remaining time, n - number of already played
moves, N(m) - the dynamic amount of the moves till the
end of the game calculated from total material [5]. Another
interesting formula for time management was given by Robert
Hyatt [1] [2], which was inspired by the several grandmaster
chess players’ tournament games. The calculation is following:
(1) nMoves = min(numberOfMovesOutOfBook, 10),
(2) factor = 2 − nMoves

10 , (3) target = timeLeft
N , (4)

t = factor× target, where N is number of moves until next
time control, and t is the final allocated time for the move.
All the grandmaster players know some opening theory. In that
case, at the beginning of the game number of moves out of
the book is equal to zero; hence factor is in most cases equal
to 1. However, after the opening, the factor will decrease, so
players will have less time to think. It is important to mention
that chess openings in 1985 were not as improved as they are

today. Nowadays, players are not spending a lot of time in
openings in most cases.

B. Machine Learning

There are different methods of machine learning used for
the problem of allocation of time. Most of the computer
games, including chess, rely on full-width game tree search
[6]. It started with a brute-force algorithm in the case of Deep
Blue vs. Kasparov match [15] [16] and ended with Monte
Carlo Tree-Search used by Alphazero [30]. Hence, the time
management systems are mostly for tree-search-based systems.
In the paper, [6] genetic algorithm was compared to the TD
learning. The experiments were conducted for the game of
LOA, and the TD learning had superior results. The approach
shows that the opponent’s strength was an important factor
during TD learning. In the early years of the neural network
development, there were a lot of different works about time
allocation [31] [32]. During that period, machine learning
algorithms and computer calculation strength were not strong.
On the other hand, modern machine learning algorithms are
mostly used for searching for the best move, and in most cases,
engines are using simple heuristic time management systems
[30].

C. Segmented Least Square Approximation

There are a lot of cases when we can not approximate
the given data with one linear function; however, we need
to maintain the simplicity of the approximation functions. The
algorithm described in chapter [28] is known as the segmented
linear approximation algorithm. Using dynamic programming
data is approximated with several linear functions. The amount
of the linear functions depends on the cost of one line. The
amount of used lines depends on the cost of each line. In
that case, we do not know how many lines we need to get
the minimum error at the start of the problem. The amount
of lines is totally dependent on the cost of the one line.
If the cost of the line is high, the number of lines is less,
and vice versa. There are different versions of the segmented
least square approximation, which is mentioned in paper [33].
Segmentation criteria depend on different types of coefficients
in that case. Our paper introduces a method to minimize the
error with a fixed number of lines, and we do not have any
line cost in the algorithm.

VIII. FUTURE WORK

Many different adaptations, tests, and experiments have
been left for the future due to lack of time (i.e., the experiments
with real data are usually very time-consuming). Future work
concerns a deeper analysis of particular mechanisms and new
proposals to try different structures of neural networks. There
are some ideas that we would have liked to try during the
description and the development of the models described in
Sections IV and V. The following ideas could be tested:

(1) Collect the data for computer games with each other and
train neural networks on that data; This part is really interest-
ing and important because we saw that for the model trained



on human data remaining time was not an essential feature.
Without remaining time, we had a better model; however, this
feature should be important in general. The reason was that
data was collected by human matches, and the remaining time
for humans is mostly the reason of nervousness, and they are
making some inaccuracy moves in the position.

(2) Add or remove more features such as: Queens on the
board, the number of pawns, and the position assessment;
As we mentioned in the previous paragraph, removing the
remaining time feature gave us a better model. However,
what would be if we added some more features?! There are
different kinds of feature combinations that can be tested. It
is important to mention that we need the features which are
easily calculated from the position and do not take time.

(3) Our models were trained based on different levels of the
human players. It is also interesting what the results would be
if we combined the different level players’ games together as
training data. We already saw that model trained on the low-
level players’ data was worse in comparison to the models
trained on the high-level players’ games.

(4) In this article, we considered the sudden death time
control; however, there are a lot of different time controls in
chess. Interesting once are time controls with additional time,
such as “5+2”, which means that each player has five minutes
till the end of the game, and for every move played, they are
receiving two more seconds. In that case, you always have two
more seconds to make moves, so the percentage of the games
losing over time decreases. In addition, the interesting part is
“Rapid” games, in which players have more than ten minutes
for the games.

IX. CONCLUSION

To sum up, we introduce two models for time management.
The segmented least square approximation can be very useful
for human chess players. They can determine the thinking time
by several linear functions, which can be easily remembered
before and be useful during the game. The usefulness of
neural networks in playing chess is already well known. Our
results showed that using the neural network model for time
management is also promising. In general, time management
in chess is a huge problem, which depends on many dynamic
variables. Hence, even choosing the features for the neural
network is challenging. Neural Networks are hard to use for
humans; however, it is very useful for computer playing chess.
Our simulations showed that it has promising results and can
be improved more in different aspects. In conclusion, we can
say that time management is a highly complicated problem
with a lot of variables, and it is very hard to say which strategy
is the most optimal.

ACKNOWLEDGEMENT

This research was supported in part by NSF grants CPS
2128378, CNS 2107014, CNS 2150152, CNS 1824440, CNS
1828363, and CNS 1757533.

REFERENCES

[1] R. M. Hyatt, A. E. Gower, and H. L. Nelson, “Using time wisely,
revisited,” in Proceedings of the 1985 ACM annual conference on The
range of computing: mid-80’s perspective: mid-80’s perspective, 1985,
p. 271.

[2] R. M. Hyatt, “Using time wisely,” ICGA Journal, vol. 7, no. 1, pp. 4–9,
1984.

[3] [Online]. Available: https://stockfishchess.org/
[4] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez,

M. Lanctot, L. Sifre, D. Kumaran, T. Graepel et al., “Mastering chess
and shogi by self-play with a general reinforcement learning algorithm,”
arXiv preprint arXiv:1712.01815, 2017.

[5] V. Vučković and R. Šolak, “Time management procedure in computer
chess,” Facta Universitatis Series: Automatic Control and Robotics,
vol. 8, no. 1, pp. 75–87, 2009.

[6] L. Kocsis, J. Uiterwijk, and J. v. d. Herik, “Learning time allocation
using neural networks,” in International Conference on Computers and
Games. Springer, 2000, pp. 170–185.

[7] H. Baier and M. H. Winands, “Time management for monte carlo tree
search,” IEEE transactions on computational intelligence and AI in
games, vol. 8, no. 3, pp. 301–314, 2015.

[8] B. Bošanskỳ, V. Lisỳ, M. Lanctot, J. Čermák, and M. H. Winands,
“Algorithms for computing strategies in two-player simultaneous move
games,” Artificial Intelligence, vol. 237, pp. 1–40, 2016.

[9] M. Kulldorff, “Optimal control of favorable games with a time limit,”
SIAM Journal on Control and Optimization, vol. 31, no. 1, pp. 52–69,
1993.

[10] M. Sadler and N. Regan, “Game changer,” AlphaZero’s Groundbreaking
Chess Strategies and the Promise of AI. Alkmaar. The Netherlands. New
in Chess, 2019.

[11] Y. N. Harari, “Why technology favors tyranny,” The Atlantic, vol. 322,
no. 3, pp. 64–73, 2018.

[12] [Online]. Available: https://www.chess.com/news/view/updated-
alphazero-crushes-stockfish-in-new-1-000-game-match

[13] M. Lai, “Giraffe: Using deep reinforcement learning to play chess,”
arXiv preprint arXiv:1509.01549, 2015.

[14] M. Newborn, “Chess 4.7 gives levy a run for his money,” The Mathe-
matical Intelligencer, vol. 1, no. 4, pp. 215–217, 1979.

[15] J. Schaeffer and A. Plaat, “Kasparov versus deep blue: The rematch,”
ICGA Journal, vol. 20, no. 2, pp. 95–101, 1997.

[16] Y. Seirawan, “The kasparov–deep blue games,” ICGA Journal, vol. 20,
no. 2, pp. 102–125, 1997.

[17] D. B. versus Kasparov, “Computer chess.”
[18] D. Sieberg, “Kasparov:“intuition versus the brute force of calculation.”,”

CNN/ACCESS, 2003.
[19] [Online]. Available: https://database.chessbase.com/
[20] [Online]. Available: https://lichess.org/
[21] [Online]. Available: https://chess24.com/en
[22] [Online]. Available: https://www.chess.com/home/
[23] [Online]. Available: https://pypi.org/project/chess.com/
[24] [Online]. Available: https://python-chess.readthedocs.io/en/latest/
[25] N. Vaci and M. Bilalić, “Chess databases as a research vehicle in

psychology: Modeling large data,” Behavior research methods, vol. 49,
no. 4, pp. 1227–1240, 2017.

[26] N. K. Manaswi, “Regression to mlp in keras,” in Deep Learning with
Applications Using Python. Springer, 2018, pp. 69–89.

[27] C. Zhang and P. C. Woodland, “Parameterised sigmoid and relu hidden
activation functions for dnn acoustic modelling,” in Sixteenth Annual
Conference of the International Speech Communication Association,
2015.

[28] J. Kleinberg and E. Tardos, “6.3 segmented least squares: Multi-way
choices,” in Algorithm design. Pearson Education India, 2006, pp.
261–266.

[29] S. Markovitch and Y. Sella, “Learning of resource allocation strategies
for game playing,” Computational Intelligence, vol. 12, no. 1, pp. 88–
105, 1996.

[30] M. C. Fu, “Simulation-based algorithms for markov decision processes:
Monte carlo tree search from alphago to alphazero,” Asia-Pacific Journal
of Operational Research, vol. 36, no. 06, p. 1940009, 2019.

[31] M. Gagliolo and J. Schmidhuber, “A neural network model for inter-
problem adaptive online time allocation,” in International Conference
on Artificial Neural Networks. Springer, 2005, pp. 7–12.



[32] M. Gagliolo, V. Zhumatiy, and J. Schmidhuber, “Adaptive online time
allocation to search algorithms,” in European conference on machine
learning. Springer, 2004, pp. 134–143.

[33] E. Fuchs, T. Gruber, J. Nitschke, and B. Sick, “Online segmentation of
time series based on polynomial least-squares approximations,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 32,
no. 12, pp. 2232–2245, 2010.


