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Abstract—The speedy advancement in computer hardware
has caused data encryption to no longer be a 100% safe
solution for secure communications. To battle with adversaries,
a countermeasure is to avoid message routing through certain
insecure areas, e.g., malicious countries and nodes. To this end,
avoidance routing has been proposed over the past few years.
However, the existing avoidance protocols are single-path-based,
which means that there must be a safe path such that no
adversary is in the proximity of the whole path. This condition
is difficult to satisfy. As a result, routing opportunities based on
the existing avoidance schemes are limited. To tackle this issue,
we propose an avoidance routing framework, namely Multi-Path
Avoidance Routing (MPAR). In our approach, a source node first
encodes a message into k different pieces, and each piece is sent
via k different paths. The destination can assemble the original
message easily, while an adversary cannot recover the original
message unless she obtains all the pieces. We prove that the coding
scheme achieves perfect secrecy against eavesdropping under the
condition that an adversary has incomplete information regarding
the message. The simulation results validate that the proposed
MPAR protocol achieves its design goals.

I. INTRODUCTION

Cryptography is commonly used to protect data privacy in
computer networks. However, advances in computer hardware
have made computing power more and more accessible and
inexpensive [1]; data encryption is no longer a perfect solution
for network security because computing server-encrypted data
can still be recovered in a reasonable amount of time with
the key being unknown [2]. The compromised encrypted data
can result in destructive and devastating consequences. For
example, the successful cryptanalysis of the Enigma machines
by the British Intelligence became a determining factor in the
Axis’s defeat in World War II [3]. Moreover, the software im-
plementation of cryptographic protocols, if not done carefully,
may be seriously flawed [4]. Should such an implementation
flaw exist, even a strong encryption algorithm, e.g., AES
with 256-bit key and RSA, can be compromised. In fact,
approximately 30% out of 8,307 public key certificates of
SSL servers randomly chosen from the internet are vulnerable
to prime number factorization due to the implementation
failure in generating prime numbers [5]. Consequently, data
eavesdropped during the routing process allow adversaries
to be capable of traffic analyses [6] and violating personal
privacy. These threats are of significant concern in modern

society.

To address these issues, avoidance routing protocols [7]–
[9] have been recently proposed. The key idea of this paradigm
is to prevent adversaries from accessing or obtaining even the
encrypted data. In avoidance routing, particular areas or nodes,
e.g., routers in malicious nations and compromised routers,
are deprioritized, such that a routing path never contains
insecure areas. The existing solutions [7]–[9] are primarily
designed for the Border Gateway Protocol (BGP) on the
Internet or distance-vector networks, which avoid malicious
and illegitimate nodes on which adversaries can eavesdrop.
However, these approaches work under the assumption that
there exists a safe path, i.e., a routing path with no node on
which an adversary can eavesdrop, between the source and
destination. Unfortunately, the opportunity for such a condition
to be satisfied by routing is very low.

In this paper, we propose an avoidance routing framework
for wireless ad hoc networks. The key idea of the proposed
scheme is a combination of multi-path routing and the XOR
coding. Consider that a source node, which wishes to send
message m, computes m1, m2, ..., mk where m = m1 ⊕ m2

⊕ ... ⊕ mk. Here, ⊕ is the XOR operation. Based on multi-
path routing, the source node selects a set of paths, say p1,
p2, ..., and pk, and sends messages m1, m2, ..., mk, via each
path. The destination node assembles pieces into the original
message m. On the contrary, an adversary, which is assumed
not to collude with others [10], cannot obtain m unless she
eavesdrops on the traffic of all of the k paths.

At first glance, our approach incurs traffic overhead k
times. However, we claim that our solution incurs more over-
head only in the networks where the distance-vector avoidance
protocols [8], [9] do not work. Instead, the delivery rate of
our approach is significantly improved by taking advantage
of the multi-path routing protocol. In the networks where the
existing protocols securely deliver a message, the proposed
protocol yields the same overhead as the existing approaches.
Specifically, the contributions of this paper are as follows:

• We first derive the network condition that an ideal
routing protocol with a perfect encryption scheme
requires. Then, we analyze the exact network con-
dition that the distance-vector-based approaches [8],
[9] require in order to demonstrate the gap of the



performance upper bound between the ideal protocol
and the existing solutions.

• We propose a framework for avoidance routing,
namely Multi-Path Avoidance Routing (MPAR), that
incorporates multi-path routing and the XOR coding.
The proposed framework requires a much weaker
condition to securely deliver a message compared with
existing solutions.

• We develop a k-path route discovery protocol by using
our MPAR framework, which discovers k paths with
no common adversary.

• We provide security analyses of the MPAR framework.
To be specific, we prove that the encoding scheme
used in the framework achieves perfect secrecy, as
long as an adversary has incomplete information re-
garding a message.

• We conduct extensive simulations to evaluate the
proposed scheme. The results show that our protocol
significantly improves performance in terms of mes-
sage delivery rate.

The remainder of the paper is organized as follows: Sec-
tion II reviews related works. In Section III, the avoidance
routing is formulated and network conditions required by an
ideal routing protocol and existing solutions are analyzed. We
propose the MPAR framework for securing data communi-
cations in Section IV and develop a k-path route discovery
protocol by using the framework in Section V. The security of
the MPAR framework is analyzed in Section VI, and the per-
formance is quantitatively evaluated by computer simulations
in Section VII. Section VIII concludes this paper.

II. RELATED WORK

A. Ad Hoc Routing Protocols

Dynamic source routing (DSR) [11] and ad hoc on-demand
routing (AODV) [12] are the most well-known ad hoc routing
protocols, which compute the shortest path from a source
to a destination. While the shortest path routing generally
brings high performance, it lacks important considerations in
resource-limited ad hoc networks. To this end, non-shortest
path-based routing protocols, such as load-balancing [13],
energy-aware [14], reliability [15], and congestion avoidance,
have been proposed in the past. These protocols will avoid
bottleneck area/nodes based on the different design goals.
On the contrary, our avoidance concept differs greatly; this
is because the avoidance routing, which we refer to in this
research, is a countermeasure to security attacks.

B. Multi-Path Routing Protocols

Multi-path routing protocols, such as [16]–[18], send data
via a set of node/link disjoint paths [19] from a source to
a destination. Finding multiple paths with fewer number of
route discovery packets are studied in [20], [21]. There are
two advantages to multi-path routing. One is that it improves
throughput and/or message delivery rate by parallelizing mes-
sage transmissions over multiple paths [16]; the other is fault
tolerance [17], [18]. Even if one of the paths goes down due
to congestion, failure of link/node, or out-of-battery of mobile
hosts, the other paths, which can be considered as backups, are

available for message delivery. While the avoidance routing
that we consider in this research is multi-path-based, its
purpose and design principles differ from those of existing
protocols. That is, we employ the multi-path approach to
protect data from security attacks.

C. Secure Multi-Path Routing Protocols

Secure multi-path routing protocols have been explored to
protect data from eavesdroppers. The idea of securing data is
based on (t, k)-threshold [22], in which a party can obtain
the plaintext from ciphertext if she has t out of k secrets.
SPREAD [23] applies the (t, k)-threshold scheme to secure
multi-path routing by spreading k secrets into k different paths.
However, the route discovery process in SPREAD relies on a
modified Dijkstra algorithm [24], and thus is not appropriate
due to the lack of its distributed nature. Another approach is
to use secure network coding [25], [26]. However, these works
are primarily designed for broadcast, and how to find safe paths
is not discussed.

The theoretical aspects of secure communications in large
scale wireless networks have been studied in terms of the per-
node secure throughput. To be specific, the secrecy capacity in
a static network with eavesdroppers of known and unknown
locations are presented in [27] and [28], respectively. The
work [29] further explores the secure throughput in the case
with the multi-path mode and proposes a routing algorithm
with corporative jamming. However, jamming requires an
additional operational cost for transmission scheduling and
incurs energy consumption; therefore, such an approach is out
of our scope.

D. Avoidance Routing Protocols

The work most relevant to this study is that regarding
area/nodes avoidance routing [7]–[9]. The work in [7] pro-
poses an avoidance request algorithm in which a source
node specifies the security properties, such as geographical
locations, router types, and ISPs. This can be incorporated into
BGP routers used on the Internet. The other works [8], [9]
are designed for distance-vector networks. Virtual Positioning
Source Routing (VPSR) [8] utilizes the beacon-vector-based
routing paradigm, in which a subset of nodes in a network are
used as reference points, and each node maintains the distance
to reference nodes as its virtual coordinate. The research in [9]
extends the beacon-based protocol so that not only reference
nodes, but also non-reference nodes, can be the intermediate
nodes on a routing path, and then the path selection algorithms,
called the greedy and restricted area avoidance (Greedy-AA
and Restricted-AA) protocols, are applied. The problems of
this approach are that there must be a safe path between two
nodes, and the network is assumed to be dense with high
connectivity.

III. PROBLEM FORMULATION

A. Notations and Definitions

A set of paths between two nodes, say ns and nd, is
denoted by P (ns, nd) = {p1, p2, ..., pk}. If ns and nd are not
connected, then P (ns, nd) is empty. Node ni is nj’s neighbor
if and only if ni is within the transmission range of nj . The
open neighbor set of node ni is denoted by Nbr(ni), which



TABLE I: Definition of notations.

Symbols Definition

ni Node i

P (ns, nd) A set of paths from ns to nd

pi ∈ P (ns, nd) A path i between ns and nd

Nbr(ni) The neighbor set of ni

Nbr(p) The union of neighbor sets of the nodes

on path p,
⋃

∀ni∈p
Nbr(ni)

Âi Adversary i

AS(p) A set of adversaries along path p

m Message m

Genu(.) A random generator with the uniform

distribution

SGc A set of graphs that satisfies the condition c

⊕ The XOR operator

contains all neighbors of ni excluding ni itself. In addition,
we define a collection of neighbors of the nodes on path p by

Nbr(p) =
⋃

∀ni∈p Nbr(ni). An adversary is denoted as Â,

and a set of adversaries on a path, say p, is denoted as AS(p),
which contains the adversaries in the neighbor lists of all the
nodes on path p. The notation used in this paper is listed in
Table I.

B. Assumptions

In this paper, an undirected graph is used to represent
an ad hoc network. For simplicity, each node has the same
transmission range, and thus the link is bi-directional. The link
cost is assumed to be uniform, since the primary objective
of avoidance routing is how to discover safe paths, while
excluding paths with high throughput. The global view of a
network graph is assumed to be unavailable, but each node has
its neighbor list within the transmission range by periodic local
information exchanges (i.e., beacons) defined by the IEEE 802
standards [30].

We assume that each node knows about the existence of
an adversary, if she is in its neighbor list. Finding adversaries
in a local area is possible by anomaly detection [31]. On the
contrary, a source node, which wishes to send a message, does
not know where adversaries are located when it initiates a
route discovery process. Therefore, a routing path that avoids
an insecure area must be discovered in a distributed fashion.

In this paper, the collusion attack is considered, where a
set of connected adversaries can collude to eavesdrop data.
As far as we know, no research on how to determine to which
group or community an adversary belongs has been conducted.
Without the information about a group of adversaries collud-
ing together, there is no deterministic way to find a set of
paths without common adversaries. When each adversary is
independent from the others, however, we can design a k-path
route discovery protocol that guarantees that k paths have no
common adversary; this is elaborated on in Section V.

C. Adversary Model

In our model, adversaries are assumed to have unbounded
computational power. While an encryption scheme protects

Fig. 1: A cut vertex. Fig. 2: A safe path.

data against adversaries with bounded computational re-
sources, e.g., power, time, and memory storage, it is not neces-
sarily always the case. For instance, a nation may spend a large
amount of resources to break encrypted data, one example
being British Intelligence during World War II. In addition,
not only data privacy and integrity, but traffic analysis is
also of concern. Thus, eavesdropping adversaries can become
potential threats to end users and network administrators.

In this paper, we claim that avoiding insecure areas (or
nodes) is the primary countermeasure against potential adver-
saries. The first step for adversaries to break security is to
eavesdrop/block traffic. Specifically, the following attacks are
considered.

Attack 1 (Eavesdropping) If adversary Â is node ni’s neigh-

bor, i.e., Â ∈ Nbr(ni), then Â can eavesdrop on ni’s data
transmission. Once the adversary obtains the transmitted data,
she is assumed to be capable of breaking data privacy within
a reasonable amount of time, unless the encryption scheme is
of perfect secrecy.

Attack 2 (Denying Service) If a path from source ns to
destination nd contains an adversary as an intermediate node,
she can not only obtain the content of the message but can also
deny forwarding the message.

Attack 2 tells us that a routing path should never contain
an adversary as an intermediate node. In addition, Attack 1
implies that a routing path should avoid insecure areas, or
equivalently, nodes that have an adversary in their neighbor-
hood.

D. Perfect and Polynomial Secrecy

An encryption scheme is of perfect secrecy if and only
if no adversary with unbounded computational power can
compromise encrypted data with a probability better than
random guessing. By this definition, a perfect encryption
scheme shall defend encrypted data from eavesdropping, i.e.,
Attack 1. However, even with an ideal encryption, a routing
protocol may not accommodate Attack 2, since it is impossible
to deliver a message to the destination if an adversary on a path
drops the message.

On the contrary, an encryption scheme is of polynomial
secrecy if and only if no adversary with a polynomial amount
of computational power can break encrypted data with a
probability non-negligibly greater than random guessing. In
the worst case, an adversary which obtains encrypted data may
spend a huge amount of computational and human resources
to compromise it. Therefore, in this research, the polynomial
encryption scheme is assumed to be insecure against both
Attacks 1 and 2.



E. The Bounded Condition

Different routing schemes require different network con-
ditions. Consider an ideal routing protocol with perfect en-
cryption, i.e., an encryption scheme achieves perfect secrecy
where an unbounded adversary cannot break encrypted data
with a probability no better than random guessing. Although
the encryption scheme is perfect, the ideal routing protocol
may fail. For example, should an adversary be on the path, she
simply denies forwarding the message, resulting in a delivery
failure.

Intuitively, any routing protocol requires that there must be
a path between the source and destination such that the path
contains no adversary as an intermediate node. We derive the
bounded condition that even an ideal routing protocol, and thus
any routing protocol, requires the secure delivery of a message
to the destination against Attacks 1 and 2, as follows:

Condition 1 (The bounded condition) Given source ns and
destination nd, an adversary (or a set of adversaries) con-
sists of a cut vertex (or cut vertices), whose removal would
disconnect ns and nd.

We will prove that all routing protocols require Condition 1
by Theorem 1.

Theorem 1 Any routing protocol requires Condition 1 to
securely deliver a message from a source to a destination
against Attacks 1 and 2.

Proof: The proof is trivial, and thus is omitted.

Figure 1 depicts a network of 7 nodes which include

adversary Â1, and Â1 is also a cut vertex. The removal of

Â1 divides the network into two disjoint components. One
contains ns, n1, and n2; the other contains nd, n3, and n4.
Since any routing path from ns to nd must traverse Â1, no
routing protocol can securely deliver a message between ns

and nd.

F. Avoiding Eavesdroppers

In reality, an ideal routing protocol with a perfect encryp-

tion scheme does not exist. Adversary Â can intercept data

transmitted via p when Â ∈ Nbr(p). Even if data is encrypted,
an adversary may spend a large amount of computational
resources to compromise encrypted data once she intercepts
data by eavesdropping. Hence, the primary countermeasure is
to avoid insecure areas. A safe path against eavesdropping is
defined as follows:

Definition 1 (A Safe Path Against Eavesdropping) Given
source ns and destination nd, a path, denoted by p, is said to

be safe against eavesdropping, if Â /∈ Nbr(p) holds.

Figure 2 depicts a snapshot of a network, where a red
circle represents an adversary and gray circles represent the
neighbors of the adversary. As observed from the figure, the
shortest path between ns and nd is ns → n2 → n4 → nd.

However, this path is not safe because Â1 can eavesdrop on
the transmission of n2 and n4. On the contrary, the path ns →
n1 → n3 → n5 → nd is safe, since Â1 is not in the proximity
of any node on the path.

Fig. 3: The idea of MPAR. Fig. 4: A common adversary.

The existing avoidance protocols [8], [9] for distance-
vector networks assume that there exists a safe path, and
therefore, to securely deliver a message, these protocols require
Condition 2.

Condition 2 Given source ns and destination nd, there is at
least one safe path (Definition 1) between ns and nd.

It is clear that Condition 2 is much more strict than the
bounded condition provided by Condition 1. Unfortunately,
all of the single-path routing protocols with a polynomial
encryption scheme, including [8], [9], require this strong
condition, which is proven by Theorem 2.

Theorem 2 Any single-path routing protocol with a poly-
nomial encryption scheme requires Condition 2 to securely
deliver a message from a source to a destination against
Attacks 1 and 2.

Proof: The proof is trivial, and thus is omitted.

The availability of safe paths depends on the network
condition. Hence, a protocol that requires a weaker condition
has more routing opportunities than does one that requires
a strong condition. How to relax Condition 2 is critical in
designing a practical avoidance routing protocol.

IV. MULTI-PATH AVOIDANCE ROUTING

In this section, we propose a framework for avoidance
routing, namely Multi-Path Avoidance Routing (MPAR).

A. The Basic Idea

The proposed MPAR framework incorporates the idea of
multi-path routing and the XOR coding. Figure 3 shows a
network of 8 nodes which includes 2 adversaries. There are
two paths, i.e., p1 and p2, from ns to nd. Clearly, both of the

paths are not safe, since Â1 ∈ Nbr(p1) and Â2 ∈ Nbr(p2).

The idea of the proposed protocol works as follows: to
deliver a message, say m, source node ns first generates
a random bit string m1 (|m| = |m1|), and then computes
m2 such that m = m1 ⊕ m2. Note that m2 seems random
to other nodes since m1 is randomly generated. Thus, this
coding scheme is as secure as the Vernam’s one-time pad [32].
After the XOR coding, node ns sends m1 via p1 and m2

via p2, respectively. During the delivery process, adversary

Â1 intercepts m1 by eavesdropping on n2’s transmission,

and Â2 intercepts m2 by eavesdropping on n4’s transmission.

However, neither Â1 nor Â2 is able to successfully decode
m with a probability better than random guessing without
obtaining both m1 and m2. On the contrary, destination nd



will receive both m1 and m2, and therefore is able to assemble
m by computing m1 ⊕m2.

However, this two-path routing does not work in the

network shown in Figure 4, where Â1 ∈ Nbr(n2)∩Nbr(n4).
In this case, the adversary can intercept both m1 and m2, and
assembles them to obtain the original message, m.

To tackle this problem, we can generalize the aforemen-
tioned idea into k-path routing. Assume there are k paths, p1,
p2, ..., pk, between a source and a destination. The source
node computes m = m1 ⊕ m2 ⊕ ... ⊕ mk, and then sends
mi via path pi (1 ≤ i ≤ k). The destination node obtains
m by computing XOR from the received k messages. On the
contrary, an adversary cannot obtain m unless she intercepts
all of the k messages.

B. The MPAR Framework

The skeleton of the MPAR framework is presented in
Algorithm 1. First, a route discovery process discovers multiple
paths. Since MPAR is a framework, any routing discovery
algorithm can be incorporated. As a demonstration, we will
present an adversary disjoint j-path route discovery protocol
in Section V.

Lines 6 to 16 in the skeleton describe how to select and
send a message to its destination. If there is a safe path p
in P (ns, nd), that satisfies the safe path condition against
eavesdropping (Definition 1), then message m is sent via p.

If no safe path can be found, the protocol enters the multi-
path mode with the XOR coding. Given k paths (where k ≥ 2),
source node ns randomly generates bit strings, m1, m2, ..., and
mk−1, by a random generator with the uniform distribution,
denoted by Genu(|m|). Here, the input, i.e., |m|, is the length
of a bit string that the generator returns, and therefore, |mi| =
|m| for 1 ≤ i ≤ k − 1. Then, ns computes mk by taking
m⊕m1 ⊕m2 ⊕ ...⊕mk−1. Finally, each message mi is sent
to the destination via each path pi, where 1 ≤ i ≤ k.

When the destination node receives all the pieces, it assem-
bles m from mi (1 ≤ i ≤ k) by taking the XOR operation.
Note that mk seems to be a random string to a third party since
the messages, m1, m2, ..., mk−1, are randomly generated.
Therefore, an adversary cannot recover m unless she obtains
all of m1, m2, ..., and mk.

C. The Condition of The MPAR Framework

In this subsection, we will show that the MPAR framework
requires a much weaker condition than the existing avoidance
protocols. First, we introduce the concept of adversary disjoint
paths by Definition 2.

Definition 2 (Adversary Disjoint Paths) Given source ns

and destination nd, a set of paths P (ns, nd) = { p1, p2,
..., pk} are said to be adversary disjoint paths if and only

if there is no common adversary Â for all of the k paths, i.e.,

Â /∈
⋂k

i=1
Nbr(pi).

When there is no safe path between ns and nd, the protocol
enters the k-path routing mode as shown from lines 9 to 13 in
Algorithm 1. The condition in which the k-path mode securely
delivers a message from a source to a destination is given as
follows:

Algorithm 1 MPAR(ns, nd, m)

1: /* Node ns executes the following: */
2: /* The route discovery phase */
3: P (ns, nd)← RouteDiscovery(nd).
4:

5: /* The message forwarding phase */
6: if there is a safe path p in P (ns, nd) then
7: /* The single-path mode */
8: ns sends m via p.
9: else if there are adversary disjoint paths in P (ns, nd) then

10: /* The multi-path routing mode */
11: k ← |P (ns, nd)|
12: ns randomly generates mi for 1 ≤ i ≤ k − 1 by

Genu(|m|).
13: ns computes mk = m⊕m1 ⊕m2 ⊕ ...⊕mk−1.
14: ns sends mi via pi for each i (1 ≤ i ≤ k).
15: else
16: /* There is neither a safe path nor adversary disjoint

paths */
17: ns discards m.

Condition 3 Given source ns and destination nd, there is at
least one set of adversary disjoint paths (Definition 2) between
ns and nd.

The if-then statement at line 6 is exactly the same as that
in Condition 2, and line 9 is the case of Condition 3. Now,
we can derive the network condition that the proposed MPAR
must hold for successful message delivery.

Theorem 3 Given source ns and destination nd, the MPAR
framework can securely deliver a message from ns to nd if
and only if either Condition 2 or Condition 3 is met.

Proof: The proof is trivial, and thus is omitted.
We claim that the condition required by our MPAR frame-

work is much weaker than that required by any single-path-
based approach with a polynomial encryption scheme (hence,
we hereby simply say single-path protocol). To prove our
claim, we provide the following theorem.

Theorem 4 The MPAR framework requires a weaker condi-
tion than any single-path protocol with a polynomial encryp-
tion scheme.

Proof: First, the MPAR framework requires either Condition 2
or 3, while a single-path-based approach requires Condition 2.
Let SGc2 be the set of all the network graphs that satisfy
Condition 2, and let SGc3 be the set of all the network graphs
that satisfy Condition 3. The MPAR framework succeeds in
SGc2 ∪ SGc3, while a single-path-based approach succeeds
only in SGc2.

The proof is by contradiction. Assume the MPAR frame-
work requires a stronger condition than any single-path proto-
col. Then, SGc2 ∪SGc3 ⊂ SGc2 must hold. However, the set
of graphs SGc3\SGc2 is not empty, since a counter example
is shown in Figure 3. In Figure 3, there are two paths between
ns and nd. Neither of the paths is safe, but they are adversary
disjoint paths. Thus, SGc2 ∪ SGc3 ⊂ SGc2 never holds. This
is a contradiction. Therefore, the above claim is true. This
completes the proof.



D. Performance of The MPAR Framework

At first glance, our MPAR framework increases traffic
overhead by k times, since k messages are sent via k different
paths. However, the MPAR framework does not sacrifice the
performance in the networks where a single-path protocol
works. This is because, if there exists a safe path, MPAR
simply sends the message via the safe path as shown in lines 6
and 7 in Algorithm 1. If no safe path is found, the single-path
protocol does not work, but our MPAR still has a chance to
securely deliver a message by the multi-path mode. Therefore,
the MPAR framework introduces additional overhead only
when the single-path protocol does not work.

V. k-PATH ROUTE DISCOVERY

In this section, we develop a k-path route discovery proto-
col by using the MPAR framework. To be specific, this is an
implementation of RouteDiscovery(.) in Algorithm 1.

A. Protocol Overview

The pseudo code of the k-path route discovery protocol is
presented in Algorithm 2. Similar to the route request phase of
DSR [11] and AODV [12], a source node, say ns, floods the
network with route requests. Then a destination, say nd, replies
with the list of adversaries. By reversing from nd, intermediate
nodes set up a routing entry. Note that intermediate nodes may
have adversaries in their neighbors, but no adversary is used
as a predecessor or a successor on the path during the route
reply phase. After ns receives the first reply from nd, it again
floods the network with the second request packets containing
the set of adversaries obtained in the first request phase. This
repeats until k adversary disjoint paths are discovered, or
the amount of flooding exceeds kmax. By doing this, two
adversary disjoint paths are discovered, if they exist.

B. Route Discovery Phase

A source node, say ns, employs Algorithm 2 to discover
routing paths. This function will return either single path p1, a
set of k paths p1, p2, ..., pk, or an empty set. During the
route discovery phase, a request is first broadcast over the
network in search of a safe path. In the case that a safe path
is not found, a second request will then flood the network
looking for an adversary disjoint path. This process continues
until k adversary disjoint paths are found. Otherwise, the
route discovery terminates and returns an empty set, i.e., no k
adversary disjoint paths can be found, where k ≤ kmax.

In the first request phase, node ns broadcasts a request
packet, denoted by RREQ1, which contains the source and
destination IDs, i.e., ns and nd. Consider the case that an
intermediate node, ni, receives the request packet from node
nj . On receiving RREQ1, ni creates a routing entry in its
table for this flow. A routing entry has a path ID, source ID,
destination ID, predecessor ID, and descendant ID. Each entry
is uniquely identified by a tuple (a path ID, a source ID, and
a destination ID), where the path ID ranges from 1 to kmax

(the ID assigned by RREQk). At this time, ni sets the path
ID to be 1, the source ID to be ns, the destination ID to
be nd, and the predecessor ID to be nj , respectively. The
descendant ID, which is set during the reply phase, is kept
null at this moment. If there exists the corresponding entry,

Algorithm 2 kPathRouteDiscovery(ns, nd, kmax)

1: /* Node ns executes the following: */
2: ns broadcasts RREQ1 := (ns, nd).
3: On receiving RREP1 via p1.
4: if AS(p1) is empty then
5: /* p1 is a safe path. */
6: return p1.
7: else
8: for k = 2 to kmax do
9: /* ns tries to find an adversary disjoint path */

10: ns broadcasts RREQk := (ns, nd,
∑k−1

r=1
AS(pr)).

11: On receiving RREPk via pk.

12: if
⋂k−1

r=1
AS(pr) is empty then

13: /* p1, p2, ..., pk are adversary disjoint paths. */
14: return (p1, p2, ..., pk).
15: /* No path is found */
16: return an empty set.
17:

18: /* Intermediate node ni executes the following: */
19: /* Note that a routing entry is defined as (path ID, source

ID, destination ID, predecessor ID, descendant ID) */
20: On receiving RREQ1 from nj for p1.

21: if nj 6= Â and ni has no routing entry for (1, ni, nd)
then

22: ni creates an entry (1, ni, nd, nj , null).
23: ni broadcasts RREQ1.
24: else
25: ni drops RREQ1.
26: On receiving RREP1 from nj for p1.
27: ni sets the descendant ID to be nj in the corresponding

entry.

28: ni adds ∀Â ∈ Nbr(ni) to RREP1.AS(p1).
29: ni sends RREP1 to the predecessor.
30: On receiving RREQk from nj for pk.

31: if nj 6= Â, ni has no routing entry for (k, ni, nd), and

Nbr(ni) ∩
∑k−1

r=1
RREQk.AS(pr) is empty. then

32: ni creates an entry (k, ni, nd, nj , null).
33: ni broadcasts RREQk.
34: else
35: ni drops RREQk.
36: On receiving RREPk from nj for pk.
37: ni sets the descendant ID to be nj in the corresponding

entry.
38: ni sends RREPk to the predecessor.
39:

40: /* Node nd executes the following: */
41: On receiving RREQk from nj .
42: if this is the first time to receive RREQk and there is no

adversary in Nbr(nd) then
43: nd sends RREPk to nj .

ni just discards RREQ1. In addition, if ni receives a request
packet from an adversary, it simply drops the request. Note
that we assume a node knows the existence of an adversary
only when it is a neighbor of the adversary.

When the destination node, nd, receives RREQ1 the first
time, it replies with a reply packet, denoted by RREP1. The
reply packet contains the source ID, the destination ID, and
a set of adversary IDs. The reply packet is routed along the



predecessor ID at each intermediate node. Consider the case
that an intermediate node ni receives the reply packet from
nj . On receiving RREP1, ni stores nj as the descendant ID.
If ni has adversaries in its neighbors, the adversary IDs are
added to the set of adversary IDs, which is denoted by AS(p1)
in RREP1. Then, ni sends RREP1 to the predecessor node.

If there exists a path that satisfies Condition 1, ns will
receive RREP1. Let p1 be the path found in the first re-
quest phase. Now, ns has a list of adversaries on p1. If
AS(p1) is empty, p1 is a safe path. Thus, by Condition 2,
kPathRouteDiscovery(ns, nd) returns a single path p1, and
ns simply sends m via p1. When ns does not receive a
reply from nd, any path from ns to nd contains at least
one adversary, i.e., Condition 1 does not hold. In this case,
even an ideal routing protocol with a perfect encryption
scheme cannot route a packet to the destination, and therefore,
kPathRouteDiscovery(ns, nd) returns an empty set.

Otherwise, p1 contains at least one adversary, and hence
ns will try to find another path. The k-th request phase can
be generalized as follows. A k-th request packet, denoted by
RREQk, includes the source ID, the destination ID, and a list

of adversaries, i.e., (ns, nd,
⋂k−1

r=1
SA(pr)). Similar to the first

request packet, ns broadcasts RREQk. When an intermediate
node, say ni, receives RREQk from nj , ni first computes
Nbr(ni) ∩ Nbr(pi). If the intersection is not empty, ni has
at least one common adversary with some neighbors on p1,
p2, ..., or pk−1, and therefore, ni drops RREQk. Otherwise,
ni can be an intermediate node of pk, and it creates a new
routing entry with the same format as the first request packet.
If there exists an adversary disjoint path from p1, p2, ..., and
pk−1, RREQk will reach nd. Otherwise, the k-th request
packets will be discarded in the middle of this process. The
routing table is created for the k-th path during the second
reply process in the same fashion as the first reply process.

As described from Line 8 to 14 in Algorithm 2, source
node ns will receive the route reply RREPk from nd. If
the set of paths obtained by the discovery process have no
common adversary, these k paths are adversary disjoint. Thus,
kPathRouteDiscovery(ns, nd) will return a set of paths, p1,
p2, ..., and pk. Otherwise, there are no adversary disjoint paths,
and an empty set will be returned since the route discovery
fails.

Remark Note that the proposed k-path route discovery pro-
tocol does not guarantee to obtain the minimum number
of adversary disjoint paths. For instance, assume the k-path

route discovery finds that p1 has adversary Â1, and p2 has

adversaries Â1 and Â2, it will continue its path discovery.

Again assume it finds that the third path p3 has adversary Â2.
As a result the set of paths {p1, p2, p3} will be considered
adversary disjoint paths, which will all be used to transmit the
message. However, it is clear that the subset of paths {p1, p3}
already achieve the adversary disjoint property. However, such
cases rarely occur, since MPAR is most likely to deliver
packets via two paths or fail to find a set of safe paths, which
will be shown by the simulations in Section VII.

C. Message Forwarding Phase

Based on the result of the route discovery, i.e., p = {p1, p2,
..., pk}), or an empty set, source node ns sends m by either the

single-path mode or the k-path mode, or refrains from message
transmission. When a safe path is found, ns simply sends m
via p as described from lines 6 to 8 in Algorithm 1.

When p1, p2, ..., and pk, which are adversary disjoint, are
returned, ns enters to the multi-path mode presented from lines
9 to 13 in Algorithm 1. A set of bit strings, say m1, m2, ...,
and mk−1, are randomly generated by Genu(|m|), and then
mk is computed by taking m ⊕m1 ⊕m2 ⊕... ⊕mk−1. Note
that mk seems to be random, because m1, m2, ..., and mk are
random strings. Then, ns sends mk via pk. Since p1, p2, ...,
and pk, are adversary disjoint paths, no adversary can obtain
all the m1, m2, ..., and mk, and hence cannot recover m even
if she has the access to one of them. On the contrary, nd can
assemble m by taking m1 ⊕m2 ⊕ ... ⊕mk.

If there is no available path, the route discovery returns an
empty set, and ns discards m as shown from lines 14 to 16
in Algorithm 1.

VI. SECURITY ANALYSES

A. Security of The MPAR Framework

It is known that the Vernam’s one-time pad [32] achieves
the perfect secrecy under two conditions: 1) the key length is
the same as the message size; 2) the key is used only once.
Our encoding scheme behaves just like the one-time pad, and
thus achieves perfect secrecy as long as an adversary does not
obtain all of the messages.

Recall that for a given message, m, a source node generates
a random bit string, mj (1 ≤ j ≤ k − 1), by a generator,
Genu(.), where |m1| = |m|. Then, mk = m ⊕m1 ⊕m2, ...,
⊕mk−1 is computed. Let M , K, and C be the domain of a
message, a key, and a cipher, respectively. If an adversary does
not have mi for some 1 ≤ i ≤ k, mi works as a key and m⊕
m1⊕m2⊕ ...mi−1⊕mi+1⊕ ...⊕mk works as a cipher. Since
mj = {0, 1}|m| for any 1 ≤ j ≤ k and |m| = |mj |, |M | =
|K| = |C| holds. The first condition of the perfect secrecy
of the Vernam’s one-time pad is met. The second condition is
also the case, as different mi for (1 ≤ i ≤ k− 1) is generated
and is used for different messages m.

To prove the security of the proposed scheme, we rely on
Shannon’s theorem [33] as follows:

Theorem 5 (Shannon’s Theorem) An encryption scheme
over the message space M for which |M | = |K| = |C| is
perfectly secret, if and only if:

• Every key k ∈ K is chosen with equal probability
1/|K| by a random generator.

• For every m ∈ M and every c ∈ C, there exists a
unique key k ∈ K such that the encryption scheme
outputs c.

By Shannon’s theorem, we formally prove the perfect
secrecy of our encryption scheme against eavesdropping (At-
tack 1) as long as no adversary has all the m1, m2, ..., mk.
Note that the adversary cannot obtain all the messages if k
paths are adversary disjoint paths. In Theorem 6, we assume
that an adversary does not have mi (1 ≤ i ≤ k), and thus mi

works as a key.



Theorem 6 Let m := m1⊕m2⊕ ...⊕mk be messages to be
sent out. Given M , K, and C, the encryption scheme of the
MPAR framework with the k-path mode achieves the perfect
secrecy against eavesdropping as long as no adversary has mi

for 1 ≤ i ≤ k.

Proof: We prove the above claim by Shannon’s Theorem.
Denoting mi = m⊕m1 ⊕m2 ⊕ ...mi−1 ⊕mi+1 ⊕ ...⊕mk,
mi works as a key and mi works as a cipher. The length
of mi is the same as m and mi for any 1 ≤ i ≤ k, and
hence, |M | = |K| = |C| holds. Since any of m1, m2, ..., and
mk−1 are randomly generated with the uniform distribution,
Pr[key = mi] = 1/|K| holds. For every m ∈M and mi ∈ C,
there exists a unique mi such that mi = m ⊕mi. Therefore,
by Shannon’s Theorem, the above claim must be true. This
completes the proof.

VII. PERFORMANCE EVALUATION

In this section, computer simulations are conducted to
evaluate the proposed scheme. Along with our MPAR with the
k-path route discovery protocol, the ideal protocol and Greedy-
AA [9] are implemented as follows:

• The ideal protocol with a perfect encryption scheme is
assumed to deliver messages successfully when there
is a path that contains no adversary as an intermediate
node, which is provided by Condition 1. Although
such a protocol does not exist, it represents the upper
bound of the performance that any avoidance routing
can possibly achieve.

• Greedy-AA [9] computes the shortest safe path that
satisfies Condition 2. The cost of Greedy-AA is large,
but the lowest number of hops among safe paths is
guaranteed. However, for successful message delivery,
there must exist a safe path between a source and
a destination such that no node on the path has
adversaries as its neighbors.

A. Simulation Configurations

A network is generated by randomly placing nodes in an
800 x 800 unit square region. The number of nodes ranges
from 100 to 400, and the communication range is set to be
100 units. Thus, the average number of neighbors of each node
ranges from 4.9 to 19.6. One to ten percent of nodes are set
to be adversaries. For each network realization, a source and
a destination are randomly selected. For each setting, 1,000
simulations are conducted.

Both the independent adversary and collusion attacks sce-
narios are considered. In the first scenario, adversaries never
collude. In the second scenario, a set of connected adversaries
are assumed to collude together by assembling eavesdropped
data. We assume that each node can detect adversaries in its
neighbors by anomaly detection. However, it is not distinguish-
able if a set of adversaries collude, since connected adversaries
are distanced by more than one hop.

B. Performance Metric

As performance metrics, the message delivery rate, hop
stretch, and the amount of traffic are used as follows:

• The message delivery rate is defined as the probability
that a safe path can be found by each avoidance

protocol. The ideal protocol succeeds when Condi-
tion 1 is met, and this provides the upper bound
of the delivery rate. Greedy-AA succeeds only when
Condition 2 is met. The proposed MPAR with the two-
path route discovery protocol will succeed when either
Condition 2 or Condition 3 holds. That is, there exists
a safe path or a pair of adversary disjoint paths.

• The hop stretch is defined as the ratio between the
actual number of hops and the lowest number of
hops that a protocol incurs. Note that the lowest
number of hops is defined as the minimum number
of hops between a source and a destination excluding
adversaries from the network, which can be achieved
by the ideal protocol. For our MPAR protocol, there
may be k paths, say p1, p2, ..., and pk, and hence the
number of hops is defined as the larger one of the two,
i.e., max{|p1|, |p2|, ..., |pk|}.

• The amount of traffic is defined as the number of
message transmissions. This metric is somewhat re-
lated to the number of hops, because the number
of message transmissions increases as the number of
hops increases. For the proposed MPAR, the sum of
the number of message transmissions via all the k
paths is considered as the amount of traffic.

C. Simulation Results

Figure 5 shows the delivery rate with respect to the
number of neighbors. The percentage of adversaries is set
to be 5%. The delivery rate increases as the number of
neighbors increases. This is because having more neighbors
means that there are more paths, and as a result, more routing
opportunities exist. As can be seen in the figure, our MPAR
significantly improves the performance compared with Greedy-
AA, and the delivery rate is very close to the upper bound when
the number of neighbors is larger than 15.

Figure 6 demonstrates the delivery rate with respect to the
percentage of adversaries. The number of nodes is set to be
300. It is natural that the delivery rate decreases in proportion
to the percentage of adversaries. With our scheme, the delivery
rate gradually decreases compared with Greedy-AA, and thus
we can say that the proposed MPAR significantly improves the
routing opportunity.

Figure 7 illustrates the hop stretch with respect to the
number of neighbors. The percentage of adversaries is again
set to be 5%. The hop stretch of the MPAR framework is
slightly longer than that of Greedy-AA, but the difference
is not significant. Overall, the hop stretch is upper bounded
by approximately 1.27. Considering the improvement of the
delivery rate shown in Figure 5, this overhead is acceptable.

Figure 8 presents the hop stretch with respect to the
percentage of adversaries. The number of nodes are again set to
be 300. The hop stretch of MPAR increases as the percentage
of adversaries increases, while that of Greedy-AA decreases
when the percentage of adversaries is larger than 4%. This
is because the number of hops can be computed only when
a message is delivered. Message deliveries over Greedy-AA
are most likely to fail if the distance between source and
destination nodes is long. As a result, Greedy-AA results in a
smaller hop stretch as only short paths are counted. However,
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from Figures 6 and 8, it can be seen that our MPAR can still
securely deliver a message with a greater number of hops.

Figure 9 depicts the amount of traffic with respect to the
number of neighbors. As can be seen in the figure, MPAR
incurs more traffic than the other protocols. However, we
would like to emphasize that the larger amount of traffic does
not necessarily mean that MPAR is poor. Putting Figures 5
and 6 together, it can be seen that Greedy-AA has a lower
delivery rate, which contributes to a smaller amount of traffic
since the message delivery is frequently terminated in the
middle of a routing process. In addition, as we claim in
Section IV-D, the MPAR framework does not introduce extra
traffic in a network where Greedy-AA securely delivers a
message. When a safe path does not exist between a source and
a destination, MPAR introduces additional traffic overhead to
discover adversary disjoint paths for the k-path routing mode
in securely delivering a message.

Figure 10 plots the amount of traffic with respect to the
percentage of adversaries. Apparently, the amount of traffic
resulting from our MPAR increases as the percentage of
adversaries increases. This is because having more adversaries
in the network means that we have to rely more on the
multi-path mode. As a result, the amount of traffic increases
due to the redundant messages. On the other hand, the 70%
routing process by Greedy-AA terminates message forwarding
in networks with 10% adversaries, as Figure 6 indicates. This
is why Greedy-AA introduces a smaller amount of traffic than
does the ideal protocol.

D. Impact of Collusion Attacks

Figure 11 shows the delivery rate under collusion attacks
with respect to the number of neighbors. In the case that
adversaries collude together, the delivery rate is lower than the
case that no adversaries collude. In addition, it is interesting
that the delivery rate decreases when the number of neighbors

is greater or equal to 14. This is because more neighbors
indicate that more adversaries are connected to each other to
collude. From Figures 5 and 11, MPAR does not show any
significant performance degradation due to collusion attacks.

Figure 12 illustrates the delivery rate under collusion
attacks with respect to the percentage of adversaries. Compared
with Figure 6, the delivery rate of MPAR decreases by up to
13%. However, the proposed solution still maintains a higher
delivery rate than that of Greedy-AA. Thus, we claim that
MPAR can accommodate a certain degree of collusion attacks.

E. The Statistics

Figure 13 presents the cumulative distribution function
(CDF) of the number of adversary disjoint paths for different
numbers of nodes in a network. In the figure, the CDF does not
reach 1, because the MPAR protocol cannot produce adversary
disjoint paths in the networks where neither Condition 2 nor
Condition 3 hold. In the case of the low network density
(100 nodes), MPAR fails to find adversary disjoint paths and
consequently results in low performance. However, when the
number of nodes is greater than or equal to 200, the CDF is
close to 1 by using more than one path. In addition, the figure
indicates that two adversary disjoint paths are sufficient for
securely delivering data most of the time.

VIII. CONCLUSION

In this paper, we investigate the avoidance routing problem.
First, we formulate the network condition required by an ideal
avoidance routing protocol with a perfect encryption scheme
and any single-path routing protocol. Since the existing solu-
tions simply avoid insecure areas, the routing opportunity thus
is very limited. To tackle this issue, we propose a framework
of Multi-Path Area Avoidance (MPAR), in which a message,
m, is encoded into k pieces by m = m1 ⊕ m2 ⊕ ... ⊕ mk

and each mi is sent via a different path. By doing this, an
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adversary cannot have access to m unless she obtains all
pieces of the message mi (1 ≤ i ≤ k), while a legitimate
receiver can assemble m by the XOR operation. Based on this
framework, we develop the k-path route discovery protocol
which discovers k adversary disjoint paths. In addition, the
encoding scheme in the proposed solution achieves perfect
secrecy under the condition that an adversary does not have
mi for some i (1 ≤ i ≤ k), and that adversaries do not collude
with each other. The simulation results show that our approach
significantly improves the message delivery rate over the exist-
ing solutions even in the collusion attacks scenario. We believe
that our MPAR framework serves as the foundation of critical
communication environments, in which adversaries may spend
a huge amount of computational and human resources to break
encrypted data.
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