
Envisioning an Information Assurance and Performance
Infrastructure for the Internet of Things

Jamie Payton, Xiaojiang Du, Xubin He, and Jie Wu

Department of Computer and Information Sciences

Temple University, Philadelphia, PA, USA

{payton, dux, xubin.he, jiewu}@temple.edu

Abstract—The Internet of Things (IoT), in which sensing
and actuation is embedded in everyday objects connected via
the Internet, has the potential to support an increased level
of intelligent, dynamic decision making cross a wide array
of domains, such as smart cities, intelligent agriculture, and
emergency response management. However, IoT systems are
vulnerable to security threats, which limits their widespread
adoption. In addition, in the future, systems will be challenged by
the large amounts of IoT data communicated over the network
and stored in cloud-based data centers. In this vision paper,
outline a roadmap for innovative research on IoT security and
performance, including the creation of secure communication
protocols, IoT network threat detection, elastic computing al-
gorithms, and computational offloading in IoT systems.

Index Terms—Internet of Things (IoTs), performance, security

I. INTRODUCTION

The deployment of Internet of Things (IoT) devices is

experiencing rapid growth and is expected to reach between

20 to 30 billion connected devices by the year 2020 [1]. Net-

worked systems that integrate IoT devices have the potential

to support intelligent cyber-human systems across a variety of

application domains. For example, IoT-enabled smart city de-

ployments can improve traffic management, pedestrian safety,

parking, energy consumption, and emergency response. Other

envisioned applications include intelligent inventory control,

supply chain management, agriculture, and transportation. In

order to realize the potential of these and other IoT-enabled

systems, it is necessary to address two primary concerns:

IoT security. A key challenge is the ability to protect sensi-

tive data in IoT networks and to secure IoT-enabled networks,

particularly when used to support safety critical applications

like emergency response. Because IoT-enabled devices are

often resource-limited in terms of computational power and

storage, it is not straightforward to apply existing security

architectures and protocols. Currently, there is no end-to-end

solution for secure communication across a large network of

IoT devices. New approaches to securely authenticate users

to, pair with, and bind to IoT devices are needed, along

with end-to-end communication schemes. Furthermore, IoT

devices are susceptible to new kinds of threats that target their

specific capabilities [2], such as GPS spoofing attacks [3] that

compromise location-aware operation in IoT systems. New

network threat detection approaches must be developed to

address IoT-specific vulnerabilities.

IoT performance. IoT deployments generate streaming

data at large scales over extended time frames. As a result,

they are typically supported by a cloud-based infrastructure.

Within cloud-based data centers, open research challenges

remain in storing large amounts of data reliably and efficiently.

Additionally, task-resource allocation remains an open issue.

Often, allocation of resources is static, requiring a priori
knowledge of program behavior. However, the computational

load, communication load, and the volume of data produced

in IoT systems is highly dynamic. For example, on a smart

campus, the population may sharply increase when there is

a basketball game held in the campus arena. As fans enter

the arena for the game, they trigger sensors (e.g., security

cameras, acoustic sensors that monitor crowd excitement, floor

pressure sensors that detect stationary and mobile groups) and

actuators; as a result, the volume of IoT data will sharply

increase and demand for network communication changes.

Similarly, the need for other kinds of resources can rapidly

and dramatically vary over time in response to changes in the

IoT network. For example, in a campus emergency response

scenario, increased computational resources may be needed to

rapidly track persons of interest using wearable body cameras

and campus security cameras.

The exploration of IoT systems research to address se-

curity and performance challenges requires implementation,

deployment, and evaluation on networks of cloud servers,

edge nodes, and IoT devices. While simulation is a useful

tool, existing network simulators do not include methods for

generating realistic sensor data and environmental context for

IoT devices, particularly when nodes are mobile. Publicly

accessible network testbeds for mobile and IoT devices, such

as Fit IoT lab [4] and SmartSantander [5], include a limited

range of IoT sensors, and do not consider the mobility of

IoT devices carried or worn by humans. In addition, existing

IoT testbeds and publicly accessible cloud infrastructures (e.g.,

Amazon Web Services) do not support experimentation with

security protocols, vulnerabilities, or network attacks.

We contend that a publicly accessible research infrastructure

for Information Assurance and Performance in the Internet

of Things (IAP-IoT) is needed. Such an infrastructure would

enable a number of innovative research projects on IoT se-

curity and performance, as well as on the related supporting

technologies, such as robust data storage schemes and elastic

provisioning algorithms for cloud-based IoT systems. In this

vision paper, we outline a set of research challenges that can
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be supported by the development and deployment of such an

infrastructure.

II. SECURITY RESEARCH CHALLENGE: SECURE IOT

COMMUNICATION

IoT holds promise for enabling more intelligent and respon-

sive applications that improve our daily lives, from enabling

improved traffic management, emergency response, and water

and energy infrastructure in smart cities to enabling smart

refrigerators that order groceries and smart showers that detect

fall incidents in smart homes. A defining characteristic of

these and other IoT-enabled systems is the ability to sense

and act upon conditions within the environment. Often, that

means collecting private and sensitive information about an

individual’s activities, habits, and location. As such, it is

important to consider the privacy and security of IoT data.

IoT devices are small and resource-constrained, which limits

the set of solutions that can be deployed on them; for example,

it is often not feasible to deploy computationally-intensive

cryptographic operations that are the standard in conventional

security protocols. New, lightweight approaches for end-to-end

communication are needed to ensure: (1) secure pairing, such

that only an authorized user can pair a controlling application

with the IoT device; (2) secure binding, which allows only

the authorized user to use the paired controlling application

to configure the device; and (3) end-to-end encryption of

communication with the IoT device.

Secure pairing. It is a common practice in industry that

at bootstrapping, an IoT device is open for any user to pair

with the device. Such openness allows for flexibility, but is

also a potential security hazard. How can we allow a user to

claim ownership of and securely connect to the IoT device?

One option is to require co-location with the physical IoT

device at the time of pairing, using an approach that requires

visual inspection of a ”secret” displayed on the device. For

example, instead of working with an open Access Point, the

IoT device can use Wi-Fi Protected Access II (WPA2) and

display a onetime passcode on a LED. The user can use this

passcode to connect to the IoT device. Once a user is paired

with the IoT device and configuration is done, the IoT device

cannot be reset and will not get into the AP mode displaying

a onetime password unless the user explicitly un-pairs herself

and the device. Once the user relinquishes her ownership, the

device is reset to the factory setting and another user can take

the ownership, pair with the IoT device, configure and use it.

Secure binding. During binding, the paired controlling

application can configure the IoT device and connect it to the

Internet and to its authorized users. A series of authentication

steps can be used for developing an approach to secure

binding between the user and an IoT device: a. An IoT device

authenticates a user for the purpose of device operation; b.

The IoT device authenticates a publish/subscribe server for

its genuineness; c. The user authenticates a publish/subscribe

server for its genuineness; d. The publish/subscribe server

authenticates the IoT device for the use of the server; e. The

publish/subscribe server authenticates the user for the use of

the server; f. The user authenticates the device for the use of

the device resources (if there is such a need).

End-to-end encryption. We want end-to-end encrypted

communications between a user and a device so that the server

does not know the content for user privacy. One challenge

is how the user and device share keys. A potentially viable

approach is pre-shared-key scheme [6]. That is, during secure

binding, the user and the device establish a pre-shared-key

that will be used later to encrypt their communication. If the

user gets a certificate from the device, then the RSA-based or

authenticated Diffie-Hellman key exchange can be used. That

is, during the key exchange process, the user and device sign

the messages they send to the other party. Research is needed

to study how to generate and update keys for encryption and

integrity from the pre-shared-key.

III. SECURITY RESEARCH CHALLENGE: DETECTING IOT

NETWORK THREATS

Even with secure end-to-end protocols, we can expect that

IoT-enabled networks will be subject to cyberattacks. Although

there are a wide range of detection methods for traditional net-

work attacks, IoT devices are small and resource-constrained,

which limits the set of solutions that can be deployed on

them. To combat this, a number of IoT-specific approaches

to detecting network threats have been developed [7], [8],

but most result in significant energy consumption or require

supplementary hardware that cannot be retrofitted for use in

existing IoT deployments. Furthermore, the use of IoT devices

introduces new system vulnerabilities and opportunities for

cyberattacks. For example, IoT applications often rely on

location-aware services, typically supported by GPS; since

small, resource-constrained IoT devices rely on unencrypted

GPS signals, they are highly susceptible to GPS spoofing.

It is particularly important to detect and mitigate such

threats in IoT networks, as they are increasingly introduced to

support safety critical applications like emergency response,

water filtration plants, and energy grids. Behavior-based net-

work security threat detection approaches, which derive mod-

els of normal, expected behavior from a history of network

activity, have been shown to be effective for detecting a broad

range of known and unknown attacks in traditional networks

(see [9] for survey). However, these approaches are limited in

their ability to identify attacks that are specific to mobile and

IoT-enabled applications, such as GPS spoofing.

As a starting point for addressing these limitations, we

envision a context-aware approach that leverages sensing and

actuation on IoT devices to detect emerging threats, like GPS

spoofing, in IoT systems. A key insight is that users often act in

particular roles for a given IoT application; those roles often

have a predictable behaviors in a given application context.

For example, an emergency responder has a predictable set of

physical actions (e.g., administer oxygen, transport supplies)

and associated data accesses and application service interac-

tions (e.g., record vital signs, request additional resources)

in a given setting (e.g., co-located with victim, at Mobile
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Fig. 1: Role-based behavioral threat detection for IoT

Operations Command Center) given their particular role (e.g.,

Lead Emergency Medical Technician, Incident Commander).

We believe that a promising approach is to extend behavior-

based threat detection approaches to incorporate the use of

environmental context, application usage, and network com-

munication for a user acting in a given role in an IoT-

enabled network. In particular, role-based behavioral models

that include physical actions can help to detect anomalous

behaviors that represent potential network threats. By exam-

ining sensor data from IoT devices, we can learn models that

detect anomalous sequences of physical activities, application

usage, and network communications. For example, we can

derive an expected behavior pattern in which an emergency

responder may first collect first aid equipment, apply a blood

pressure cuff to a co-located victim, access medical records

and report vital signs to a nearby medical facility, and apply

oxygen. From such derived patterns, we can find anomalies.

For example, a responder administering first aid to a co-located

victim should not access criminal records; the anomaly may

indicate that the users account has been compromised.

As illustrated in Figure 1, we apply a multi-phase machine

learning approach to develop a framework for role-based

behavioral threat detection. The first phase of our approach

applies supervised machine learning techniques to wearable

IoT sensor data to develop a model of component physical

activities (e.g., sweep flashlight, administer oxygen mask to

victim) performed by users in IoT networks. In the second

phase, we apply a sequence detection technique to identify

sequences of component actions that comprise a role-based

application-specific activity. For example, administering first

aid may consist of: using a light to check a victims pupil

dilation, checking a victims blood pressure, checking a victims

heart rate, using an emergency response application to check

the victims medical history, administering oxygen, and using

the emergency application to schedule transport for the victim

to a nearby medical treatment facility. Once these sequences

are identified, a rule inferencing algorithm [10] is applied

to identify normal, expected role-based behavioral sequences.

These behavioral sequences include physical actions, physical

location, application usage, and network communication. The

learned model of role-specific sequences is then used to detect

anomalous behaviors for a given role in IoT networks.

In a pilot study, 9 participants played a role in a simulated

exercise to search for a lost hiker. The protocol included

using a shoulder radio, sending their location, searching with a

flashlight, and blowing a whistle at certain points in the search.

When the hiker was found, participants were instructed to use

an application to request backup, blow a whistle, perform a

high wave to signal other personal, check eyes, take blood

pressure, and use the app to send vitals. We applied a random

forest classification algorithm to sensor data collected from

accelerometers and gyroscopes embedded on smartwatches to

identify physical actions that are performed by the participants.

We then evaluated our rule inferencing approach to detect

anomalous activity sequences that indicate a potential network

threat. We injected two types of attacks into the network traffic:

a GPS spoofing attack and a data exfiltration attack that is

enabled by the compromise of a user account. Because attacks

are typically rare, we include a small number of attack-related

samples: only 15 instances of attack-related behaviors out of

thousands. Our results show promise for detecting anomalous

behaviors in IoT-enabled networks, with an average accuracy

of 96% for classifying anomalous and normal behaviors.

While the pilot study shows that role-based behavioral

approaches shows promise in IoT network threat detection, a

more extensive exploration is needed. To support approaches

like this one, research challenges include:

Developing a scalable approach to labeling ground
truth activity sequences. To generalize the approach and

support exploration across a broad range of domains, activities,

and additional potential threats, data collection exercises are

needed with large numbers of participants, actions, and activ-

ity sequences. Even when testbeds incorporate wearable IoT

sensors that can be used for activity sequence recognition, it is

typically necessary to manually capture ground truth labels of

actions and activity sequences. This is a considerable challenge

when performed at a large scale. To reduce the burden of

manual labeling, active learning for activity recognition [?] can

be applied, intelligently prompting users to provide labels for

recently performed activity sequences that are not adequately

captured by our learned model. Using active learning in a

way that minimizes user interruptions and maximizes correct

self-labeling is an open challenge. Vetted, large scale data

sets are needed by the research community for benchmarking

and to reduce the overhead associated with data collection.

However, the activities of interest may vary across projects; as

such, another open challenge is to promote multi-model active

learning, where several relevant activities could be selected to

correctly label for a single action performed by the user.

Developing a probabilistic approaches for identifying
anomalous activity sequences. The approach outlined here

generates a deterministic set of rules for identifying normal

and abnormal role-based behaviors. However, a more flexible

approach would incorporate probabilistic models for detecting

potential anomalous activities.

Exploring deep learning approaches for identifying
anomalous activity sequences. Deep learning methods offer a

powerful approach to identifying patterns and learning models

for anomaly detection. However, deep learning models require

large amounts of training data, but existing data sets are quite

small. The proposed infrastructure will enable the collection

of large data sets from wearable and fixed IoT sensors and

offer the opportunity deep learning for role-based behavioral
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threat detection in IoT networks.

IV. PERFORMANCE RESEARCH CHALLENGE: IOT DATA

CENTER TASK ALLOCATION

Often, IoT devices are supported by cloud-based systems,

with much of the vast amounts of streaming IoT data, and even

computation, offloaded to the cloud. Task-resource allocation

has been an important component in cloud-based data center

networks (DCNs), and will be increasingly important as more

IoT systems are deployed. An open problem in task-resource

allocation is the ability to provision the maximum admissi-

ble load (MAL) of VMs in physical machines (PMs). The

limitation of static load distribution is that it assigns tasks to

nodes in a once-and-for-all manner, and thus, requires a priori
knowledge of program behavior. To avoid load redistribution

during a run time where the load grows, we introduce max-
imum elasticity scheduling, which has the maximum growth

potential subject to the node and link capacities.

We model the network as a tree G in a typical DCN. Each

leaf node is a physical machine (PM) and each internal node

is a switch. A load at a leaf node is called a computation

load, and it determines the communication load (bandwidth).

We use the hose model [11] for communication where each

node has an aggregated performance guarantee to the set of

all other nodes. Figure 2 shows a two-level, three-node binary

tree where each PM (leaf node) is represented as a slotted

rectangle (e.g., VM slots or computation loads) and each

internal node (switch) is represented as a circle. Numbers

associated with nodes and links are the available VM slots

and the communication bandwidth, respectively. We assume

that each VM has B Gbps total communication with other

VMs. Using the hose model, the communication load of the

left link and the right link is the same: the lesser of the two

leafs assigned VMs is multiplied by B. This is analogous to

the maximum flow of a cut in a tree. We study the following

two provisioning problems: (1) Given a graph G with available

node and link capacities, what is the MAL of G under the hose

model? (2) Given a load that is admissible, what is the optimal

schedule so that the uniform growth rate at all leaf nodes is

maximized under the capacity constraint?

The optimal schedule of the second problem is called the

schedule with the maximum elasticity. The MAL in Figure 2a

is 10, with 4 VMs (loads) assigned to the left leaf node and

6 assigned to the right leaf node. Both the left link and the

right leaf node reach maximum capacities. Suppose that we

now have a load of 5 to be assigned, which is below the MAL.

The schedule with maximum elasticity assigns 2 loads to the

left leaf node and 3 loads to the right.

4 7
v2

5 6

2 5
v3

6 4

v1

5 6

4 min{8, 6}

11 6

6

7

6

8

16

(b) (c)

v4 v5 v6 v7

Fig. 3: An optimal solution with 3-level abstraction

Our preliminary work [12] starts with an iterative calcula-

tion process (called simple solution) for MAL when the root

is given. The directed binary tree that is used to represent the

orientation is called an aggregation tree. The simple solution

iteratively abstracts the given tree in a bottom-up manner to

the root of the given binary tree. As shown in Figure 2, the

basic unit of the abstraction is a two-level, three-node branch

that becomes one virtual node at the higher level. In this

abstraction, one internal node and two virtual nodes serve as

the child nodes of the internal node. At the bottom level of

the tree, a virtual node is a leaf node. At all other levels,

a virtual node is abstracted from the branch rooted at the

same node. Suppose Ni (Li) and Nr (Lr) have available

node space (link bandwidth) for the left and right virtual

nodes, respectively, N = min{Ni, Li} + min{Nr, Lr}. The

minimization operation ensures that the value of each branch

satisfies both node space and link bandwidth requirements.

This abstraction process continues level-by-level until the tree

is reduced to a single virtual node. The available capacity of

this virtual node is the MAL. Once the MAL is determined,

we can iteratively determine the schedule that achieves the

maximum elasticity. The process is top-down as the load is

partitioned based on the proportion of left and right branch

loads (i.e., min{N,L}).

To obtain the optimal solution, we apply the simple solution

to different orientations (i.e., different roots in addition to the

given tree root used in the simple solution) of the aggregation

tree and select the best one (i.e., the orientation with the

maximum MAL). Fig. 3 shows an example of an orientation

that generates maximum MAL at node v2 and three levels

of abstraction. A virtual node with v3, v6, and v7 has a load

of min{6, 2} + min{4, 5} = 6. The MAL is 16, which is

min{5, 4}+min{6, 7}+min{6, 6} as shown in Fig. 3b. If a

load of 8 is given, top-down load distribution can be applied to

obtain the maximum elasticity. For example, the load assign-

ment at the level-2 abstraction (Fig. 3b) is calculated based

on the proportions of three branches: min{5, 4}, min{6, 7},

and min{6, 6}. That is, the optimal load assignments are 2, 3,

and 3 to the right, middle, and right branches, respectively.

The final load assignment is (v4, v5, v6, v7) = (2, 3, 1, 2),

which maximizes the uniform growth rate. [12] shows that the
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optimal solution uses 2 log n+1 steps (n is the number of leaf

nodes). The computation and communication complexities are

both linear to n. Some future challenges of elastic scheduling

include the following:

Extending the elastic model to general trees and other
topologies. The optimal solution can be easily extended to any

k-nary tree structure. The key difference is that each internal

node needs to keep track of the virtual load value of each

branch. Another challenge is the extension to other structures

The SDN controller can program a particular topology select-

ing appropriate ports of each switch and server. One interesting

subarea to explore elasticity is multiple paths routing like

Multiprotocol Label Switching (MPLS) [13].

Developing other communication load models. To gen-

eralize the model, we set L = f(N), where f is a constant

multiplier, say c. To avoid remapping f , we can scale-down

the available link bandwidth by a factor of c; therefore, the

same optimal solution can be applied. Our approach cannot

be directly applied when the mapping function is nonlinear

because the total communication load generated depends on

the way the computation load is partitioned. For multiple

requests, we can examine the approach where one Virtual

Private Network (VPN) [14] is used for each request.

Exploring special configurations for efficiency gain.
When we consider elasticity, the bottleneck must be either

in the link or the node in terms of growth capability. We can

consider special situations under which the simple solution

is optimal. A given tree infrastructure is a computational-

bottleneck if for any two-level, three-node subtree, Nl =
min{Nl, Ll} and Nr = min{Nr, Lr}. The intuition behind

the computational bottleneck structure is that elasticity bottle-

necks appear at the leaf nodes. For example, for any two-level,

three-node subtree in a fat-tree topology, where L > Ll +Lr.

This fat-tree structure is frequently used in DCNs because

upper links usually carry more traffic, so a higher bandwidth

must be used. Given a binary tree that has a computational-

bottleneck or is a fat-tree, the simple solution is optimal.

V. PERFORMANCE RESEARCH CHALLENGE: RELIABLE,

HIGH PERFORMANCE IOT DATA STORAGE

With the explosively growing online digital data, partic-

ularly via a large number of various IoT devices, how to

store the data efficiently and reliably are two major con-

cerns to researchers. To address these concerns, deduplication

techniques that identify and eliminate duplicate data chunks

have been proposed [15], [16], [17]. However, deduplication

fundamentally changes the reliability of stored objects. As

a result, the data deduplication may not provide sufficient

level of fault tolerance to the system, in which case, erasure

coding [18], [19], [20] can be considered. Erasure coding

encodes original data blocks into an expanded set of encoded

blocks, such that once there is certain number of original

data blocks fail, we can always reconstruct the failed data

block with the encoded blocks [21], [22]. However, simply

employing erasure coding into the deduplication system may

impact the encoding performance and system reliability.

1. chunking

/dedupe

Writing buffer 

…
 

data chunks 

… 2. Sorting  

according to rc

…
 

file stream 

data chunks 

with high rc 

data chunks 

 with low rc 

…
 

…
 

3. encode 3. encode

data nodes 

…
 

4. distribute

Fig. 4: Data flow of reference counter dedup.

Several works have been proposed recently which integrate

erasure coding into deduplication to ensure the data reliability

and availability [23], [24], [25]. However, little work has been

done to explore erasure coded data deduplication systems

for IoT applications. To address this problem, we envision

a reference-counter-aware data deduplication scheme [26] to

provide robust storage systems for IoT applications.

Exploring a reference-counter aware data deduplication.
The traditional Round-Robin placement of the chunks in

deduplication system causes high extra encoding overhead.

By randomly placing and encoding the chunks, the reliability

of the system is not ensured. Further research is needed to

improve reliability. One approach forward is to encode data

chunks according to their reference-counters. Figure 4 shows

the data flow of such a scheme. First, files go through the

chunking and dedupe process, which are the same with the

traditional deduplication system. Second, the unique chunks

will then go to the writing buer and get sorted by their

reference-counters, which will determine how they get era-

sure coded. Chunks with high/low reference-counter will be

encoded together respectively. The third step erasure-codes

chunks into stripes. In the fourth step, after encoding, chunks

will go into the container buer and be flushed into the storage

nodes when the container is full. By doing this we can

exploit the trade-off between storage eciency and reliability

among dierent erasure codes after they are employed in the

deduplication system.

Developing a risk-aware failure identification scheme to
expedite failure recovery. In a traditional failure identification

scheme, all data chunks share the same identification time

threshold. However, failure identification schemes [27] can be

developed which are failure-aware. In such schemes, chunk

failures in data stripes experiencing different numbers of

failed chunks can be identified using different time thresholds.

For those chunks in a high risk stripe (a stripe with many

failed chunks), a shorter identification time is adopted, thus

improving the overall data reliability and availability. For

those chunks in a low risk stripe (one with only a few failed

chunks), a longer identification time is adopted, thus reducing
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the repair network traffic. Therefore, the reliability, availability,

and serviceability of systems can be improved simultaneously.

VI. CONCLUSIONS

In this vision paper, we identified several challenges in

systems research on security and performance in the IoT. Ex-

ploring these research challenges requires a realistic testbed for

implementation, deployment, and evaluation. Such a testbed

should includes a set of IoT devices that sample a wide

range of environmental data, facilities for annotating and

accessing IoT data with ground truth labels, and the ability to

experiment with IoT vulnerabilities and the configuration of

security protocols. Furthermore, the testbed should allow for

investigating the reliability, availability, and serviceability of

cloud-based infrastructure for underlying task allocation and

cloud storage of IoT data and services at the large scales that

we expect in envisioned deployments.

Beyond the challenges identified here, a testbed that pro-

vides such services is essential for high-fidelity evaluations

of IoT, edge, and data center research projects, providing

researchers with the ability to support their experiments with

realistic network and data conditions that are not supported

by simulation software. Making such a testbed publicly ac-

cessible is essential to broadly support systems research that

focuses on IoT security and performance research. With recent

funding from the National Science Foundation, we plan to

develop such a testbed with a web-based interface that allows

researchers to reserve resources of the infrastructure to execute

their own experiments. Evaluation metrics supported within

the proposed infrastructure include those related to IoT device

and system security, load distribution on virtual and physi-

cal machines, power consumption, communication overhead,

computation overhead, and latency. In addition, researchers

will be able to request access to testbed data (may need to

be anonymized) network traffic, IoT sensor data, and mobility

traces collected within the infrastructure. As such, this project

not only advances the research infrastructure available at

Temple University (TU), it increases the capacity for exper-

imental evaluation for algorithms and protocols designed for

IoT device and system, edge, data center and storage system.
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