Fault-Tolerant and Secure Data Transmission Using Random Linear Network Coding

Pouya Ostovari and Jie Wu

Computer & Information Sciences Temple University

Center for Networked Computing http://www.cnc.temple.edu

Agenda

- Introduction
 - Multi-path network coding
 - Fault tolerance and security
- Fault-tolerant and secure data transmission
 - Problem definition
 - Problem formulation
- Evaluations
- Conclusions

Introduction

- Multi-path transmission
 - Fault tolerance (FT) via redundancy
 - Transmitting data through multiple paths
 - Paths with different reliabilities
 - More redundancy increases FT, but increases the cost as well
 - Security
 - Encryption, public/private keys
 - Overhead of encryption methods

•

Network Coding

XOR network coding

Single multicast

Two destinations

Capacity of each

link: one packet

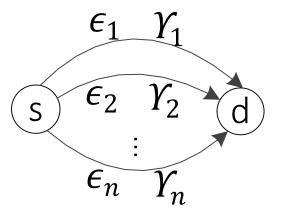
Two packets

 d_1 and d_2

No coding

Coding

Source


*s*₁ *s*₁ p_2 p_1 p_1 p_2 r_1 r_2 r_1 r_2 p_1 p_1 p_2 p_2 r_3 r_3 p_1 p_1 p_2 p_1 p_2 $p_1 + p_2$ r_4 r_4 $p_1 + p_2$ p_1 d_1 d_2 p_1 d_1 d_2 $p_1 + p_2$

Destinatinos

Simple System Setting

• Transmission a file with *m* packets via *n* disjoint paths

- Path failure model
 - If a path fails, all of the transmitted packets over that path fail
- Eavesdropper probability: fixed
 - e.g. in wireless networks depends on location of the eavesdropper
- Objective
 - Balance fault tolerance and security

Linear Coding

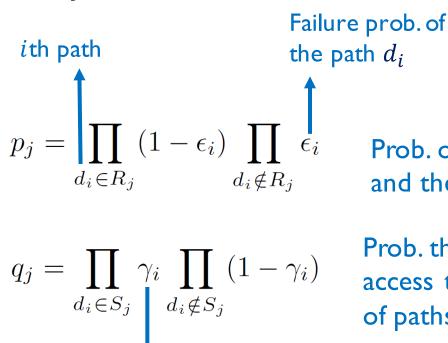
- Random linear network coding Failure prob. • Linear combinations of the packets $\begin{cases}
 q_1 = \alpha_{1,1}p_1 + \alpha_{1,2}p_2 + \alpha_{1,3}p_3 \\
 q_2 = \alpha_{2,1}p_1 + \alpha_{2,2}p_2 + \alpha_{2,3}p_3 \\
 \vdots \\
 q_k = \alpha_{k,1}p_1 + \alpha_{k,2}p_2 + \alpha_{k,3}p_3
 \end{cases}$ Eavesdropping prob. $\epsilon_1 \quad \gamma_1 \\
 \epsilon_1 \quad \gamma_1 \\
 \epsilon_2 \quad \gamma_2 \\
 c_n \quad \gamma_n$
 - m=3 linearly independent coded packets are sufficient for decoding, using Gaussian elimination
- If we code *m* packets, eavesdropper/destination needs *m* coded packets to retrieve the original packets
- *m* and *n* can be different numbers

Fault Tolerance and Security

• FT

• *m* linearly independent coded packets are sufficient for retrieving the original data

Security

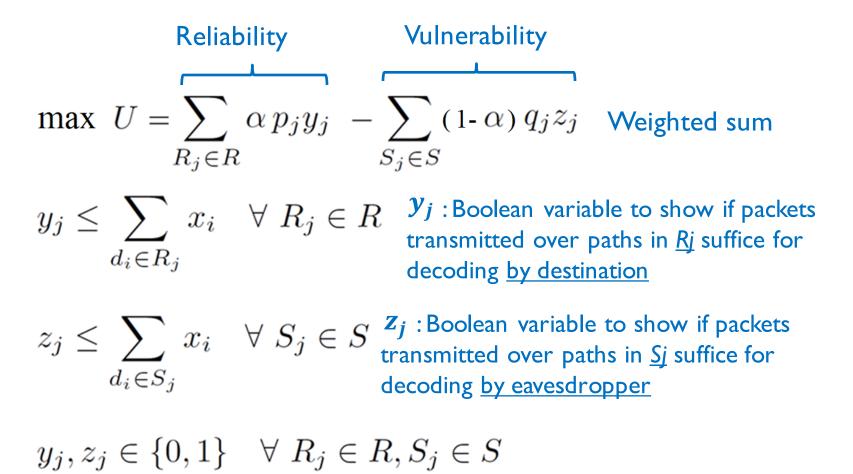

- Eavesdropper cannot decode the coded packets unless it has *m* linearly independent packets
- Challenge

More transmitted coded packets

More robust against failures More vulnerable against eavesdropping

- With *n* paths, there are 2^{*n*} possible failure/eavesdropping cases
 - *R*_{*j*}: set of paths that do not fail
 - S_j : set of overheared paths by eavesdropper

Eavesdropping prob. of the *i*th path


Prob. of paths in set $\,R_j\,$ not to fail and the rest fail

Prob. that an eavesdropper has only access to data transmitted on the set of paths in ${\cal S}_{j}$

Problem Formulation-Case 1

- Objective function as a function of FT and security.
 - x_i : rate of transmitted packets over path d_i
 - Sum of x_i can be greater than 1
 - *R and S*: power set of the paths

Problem Formulation- Case 2

- We set reliability threshold as a constraint.
- We then minimize the eavesdropping probability.

eavesdropping

S

$$\begin{array}{ll} \min \ U = \sum_{S_j \in S} q_j z_j & \begin{array}{ll} \mbox{Minimizing prob. of} \\ \mbox{successful eavesdropp} \end{array} \\ s.t & \sum_{R_j \in R} p_j y_j \geq t & \begin{array}{ll} \mbox{Reliability threshold } t \end{array} \\ y_j \leq \sum_{d_i \in R_j} x_i & \forall \ R_j \in R \end{array} \\ z_j \leq \sum_{d_i \in S_j} x_i & \forall \ S_j \in S \end{array} \\ y_j, z_j \in \{0, 1\} & \forall R_j \in R, \ S_j \in S \end{array}$$

Problem Formulation- Case 3

- This is the reverse of Case 2.
 - We set eavesdropping prob. threshold as a constraint.
 - We maximize the reliability.

 $\max U = \sum p_j y_j \qquad \text{Maximizing the reliability}$ $R_i \in R$ s.t $\sum q_j z_j \le t$ Security threshold t $R_i \in R$ $y_j \leq \sum x_i \quad \forall \ R_j \in R$ $d_i \in R_i$ $z_j \le \sum x_i \quad \forall \ S_j \in S$ $d_i \in S_j$ $y_i, z_i \in \{0, 1\} \quad \forall \ R_i \in R, S_i \in S$

Relaxation to Linear Programming, Case 1 (LP)

- NP-complete
 - mixed integer and linear programming optimizations
- Modifying the integer variables to real variables

$$\begin{array}{ll} \max \ U = \sum_{R_j \in R} \alpha \ p_j y_j - \sum_{S_j \in S} (1 - \alpha) \ q_j z_j \\ y_j \leq \sum_{d_i \in R_j} x_i \quad \forall \ R_j \in R \\ \end{array}$$

$$\begin{array}{ll} \text{ng integer} \\ \text{es to real} \quad z_j \leq \sum_{d_i \in S_j} x_i \quad \forall \ S_j \in S \\ y_j, z_j \in (0, 1) \quad \forall \ R_j \in R, S_j \in S \end{array}$$

Heuristic Solution-HR

- Complexity of the relaxed linear programming
 - Liner to the number of variables and constraints
 - With *n* paths, there are 2^n possible failure/eavesdropping cases
- Heuristic

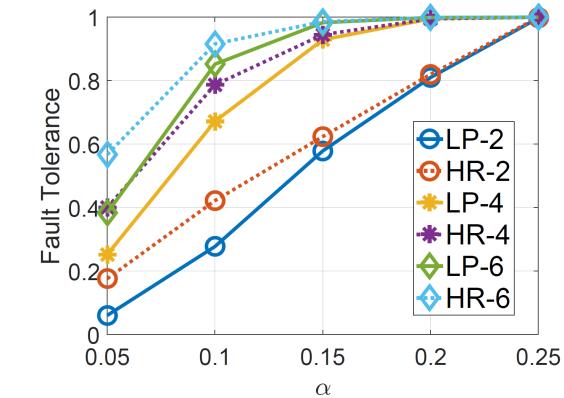
 \boldsymbol{S}

• Distribution of the transmissions <u>proportional</u> to the <u>failure rate</u> and <u>eavesdropping prob.</u> of the paths

$$\max U = \sum_{d_i \in D} \begin{bmatrix} \alpha(1 - \epsilon_i)x_i - (1 - \alpha)\gamma_i x_i \end{bmatrix}$$

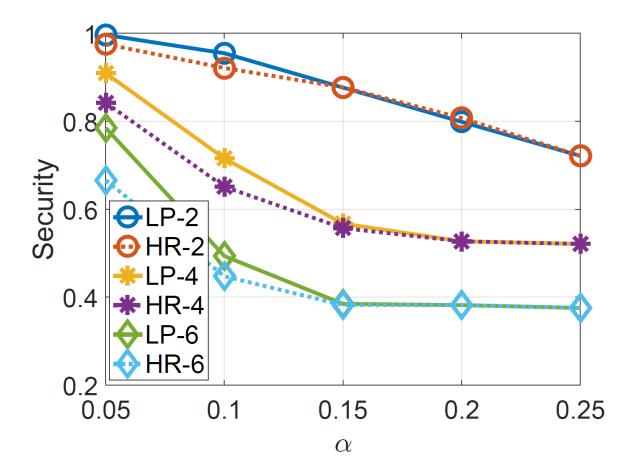
Reliability of the ith path Eavesdropping prob.
$$t \sum_{i=1}^{n} x_i \ge 1$$

 $x_i \in (0, 1) \quad \forall \ d_i \in D$

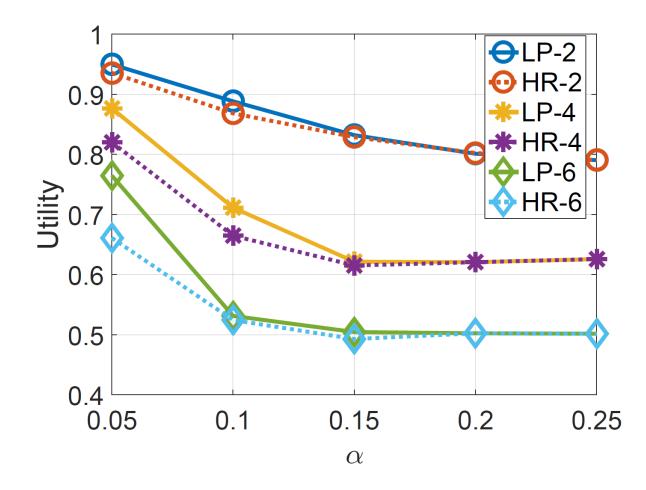

Evaluations

- Simulator in Matlab environment
- We use Linprog tool of Matlab to find the solution of the optimizations
- 100 simulation runs
- Two settings
 - LP-*n*: relaxed optimization case 1(linear programming) with *n* paths
 - HR-*n*: heuristic solution with *n* paths

Evaluations-FT


- Path failure prob. of each path: [0,0.1]
- Eavesdropping prob. of each path: [0,0.3]

- Reliability of heuristic (HR) is close to LP
- HR over-estimates the reliability
- More paths enhances the reliability


Evaluations- Security

- Security of HR is close to LP
- HR under-estimates the security
- More paths reduces the security

Evaluations- Utility

- The utility of HR and LP is close
- More paths reduces utility (because of the higher eavesdropping prob. selected compared to the path failure prob.)

Future Work

- Using the idea of critical path
 - Finding a critical path in a general graph
- Impact of multi-path on FT and security
 - More realistic and heterogeneous prob. distributions
- Impact of correlation
 - Failure prob. and eavesdropping prob.

