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Abstract—In online social networks, people may want to make
new friends to maximize their social influences. For example,
business page owners on Facebook want to influence as many
people as possible for commercial advantages. Hence, we study
a friend recommendation strategy with the perspective of social
influence maximization. For the system provider (e.g., Facebook),
the objective is to recommend a fixed number of new friends to
a given user, such that the given user can maximize his/her social
influence through making new friends. Our problem is proved
to be NP-hard. A greedy friend recommendation algorithm with
an approximation ratio of 1 − 1

e
is proposed, according to the

submodular property. It involves a sub-problem of computing the
influence spread. A novel method, which considers the multipath
effect, is proposed to compute the influence spread. Experiments
demonstrate the efficiency and effectiveness of our algorithms.

Index Terms—Online social network, friend recommendation,
social influence maximization, multipath effect.

I. INTRODUCTION

Online Social Networks (OSNs) mainly focus on building
social relations among users who share interests, activities,
backgrounds, stories, and real-life connections. They are valu-
able tools used by many people to extend their daily contacts.
Most OSNs are web-based and provide means for users to
interact with each other over the Internet. OSNs are not only
a way to keep in touch, but also a way of life. Existing OSNs
such as Facebook, Twitter, and VK account for three of the
top ten most-visited web sites in the world [1]. As of January
2014, 74% of online adults use OSNs [2].

As one of the essential components in OSNs, the friend
recommendation system aims to seek appropriate people with
whom users can make new friends. Classic approaches make
recommendations according to the social proximities among
the users, hypothesizing that people with close social circles
are potential friends. For instance, the Facebook “People You
May Know” feature recommends people to connect with each
other, according to a friend-of-a-friend strategy [3]. In other
words, if two unconnected users share many common friends,
then they are recommended to become new friends. Friend
recommendations on Facebook prioritize friends-of-friends
over strangers (i.e., people who are not friends or friends-of-
friends). Content-based and location-based recommendation
strategies have also been proposed. In these approaches, people
who share similar contents, or are geographically nearby, are
recommended to connect with each other [4, 5].

We observe that people may want to make new friends
with the objective of maximizing their social influences. The
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Fig. 1. The tradeoff in the friend recommendation strategy.

world-famous best-selling book, “How to Win Friends and
Influence People,” considers making friends and influencing
people to be closely interrelated [6]. Consequently, people
can use OSNs to advance their careers and businesses. For
example, Facebook provides business page services [7] for
their owners to influence other people for commercial ad-
vantages (selling and advertising). Twitter also provides page
promotion services for salesmen to attract high-value followers
as potential customers. A successful story is that of Drew
Ressler, who dramatically gained 1,300 new followers while
targeting audiences interested in music and photography [8].

This paper focuses on the friend recommendation strategy
with the perspective of social influence maximization. For the
system provider, the objective is to recommend a fixed number
of new friends to a given user, such that the given user can
maximize his/her social influence through new friends. Our
problem is proved to be NP-hard. New challenges arise from
the tradeoff between the friend acceptance probability and
the propagation capability. The friend acceptance probability
is self-explanatory. The propagation capability measures the
influence spread beyond the given user that is brought by
the recommended friend. A motivational example is shown
in Fig. 1, where v0 wants to maximize his/her social influence
through making a new friend (candidates are v4 and v7).
Arrows in Fig. 1 are bidirectional friendships. In terms of
the friend acceptance probability, v4 is a friend-of-a-friend of
v0, but v7 is a stranger. Hence, v4 is more likely to accept
the friend request from v0 and then propagate v0’s influence.
However, in terms of the propagation capability, v4 cannot
further propagate v0’s influence to the users v5 and v6 (since
they do not connect with each other). On the other hand, v7
is influential and can propagate v0’s influence to v5 and v6,
but v7 is not likely to accept the friend request from v0. This
is because v0 and v7 are not socially proximal to each other.
The tradeoff between the friend acceptance probability and the
propagation capability should be investigated.



A greedy friend recommendation strategy is proposed to
balance the above tradeoff. Moreover, it is an extension of the
classic social influence maximization problem [9]. It involves
an NP-hard sub-problem of the influence spread computation
[10]: given the OSN topology and a specified user, how many
people can this user influence? Since OSNs are typically large,
the scalability issue challenges classic solutions [11]. Through
leveraging the structural properties of OSNs, we propose a
novel method to efficiently compute the influence spread,
based on the multipath effect.

Our main contributions are summarized as follows:
• We address a novel friend recommendation problem with

the perspective of social influence maximization. Our
problem is proved to be NP-hard. A greedy approxima-
tion algorithm with a ratio of 1− 1

e is discussed.
• We propose a novel influence spread computation method

to support greedy friend recommendations. The multipath
effect is explored.

• Extensive real data-driven experiments are conducted to
evaluate the proposed algorithms. Evaluation results are
shown from different perspectives to provide insightful
conclusions for real-world applications.

The remainder of this paper is organized as follows. Section
II surveys related works. Section III formulates the problem.
Section IV describes the greedy recommendation algorithm.
Section V computes the influence spread. Section VI includes
experiments. Finally, Section VII concludes the paper.

II. RELATED WORK

Social Influence Propagation. Independent cascade is one
of the most classic models for describing social influence
propagations [9, 12]. It starts with a set of initially-influenced
people, and then executes a probabilistic rule to propagate
influences. The number of eventually-influenced people is
denoted as the influence spread, the computation of which is
NP-hard [10]. Several time-efficient methods were proposed to
estimate the influence spread. Chen et al. [10, 11] simplified
the influence spread computation by restricting the influence to
propagate along the maximum influence path. Borgs et al. [13]
studied the influence spread by sampling methods, assuming
that the statistical properties of an OSN is stable. This paper
uses the existing independent cascade model to address a
novel friend recommendation problem. Our contributions also
include a novel influence spread computation method.

Friend Recommendation. The friend recommendation sys-
tem is an essential component of an OSN. Authors in [3, 14]
hypothesized that people with close social circles are potential
friends. Bu et al. [4] proposed that users who like the same
music should be recommended to become friends with each
other. Zhang et al. [15] considered that users make friends by
sharing the same profiles. As for location-based approaches
[5, 16], geographically nearby users are recommended to
connect with each other. Differing from previous approaches,
our friend recommendation strategy focuses on the perspective
of maximizing the social influence of a specified user.

III. PRELIMINARIES AND PROBLEM FORMULATION

A. Independent Cascade
The scenario of this paper is an OSN, which is modeled

as a directed weighted graph G = (V,E). Here, V is a set
of nodes (users), and E ⊆ V 2 is a set of weighted edges
(friendships between users). An edge from user v to user u is
denoted by evu with the edge weight of wvu. Edge weights
serve as probabilities for influence propagations, depending
on the friendship closeness and the content popularity [17].
We use existing works [9–12] to determine edge weights.
The independent cascade model is used to simulate influence
propagations. It starts with a set of initially-influenced nodes
(called seed nodes). The other nodes are initially-uninfluenced.
The influence propagation process unfolds in discrete time
steps according to the following probabilistic rule [9]. When a
node v first becomes influenced in a time step, it has a single
chance to influence each currently uninfluenced neighbor u.
Then, the probability that u is influenced by v depends on wvu.
If u has multiple newly-influenced neighbors, their influence
propagations can be sequenced in an arbitrary order. Once u
is influenced, it will influence its neighbors in the next time
step; however, u does not propagate any further influences in
subsequent time steps. The above process terminates until no
more uninfluenced nodes are influenced. We have:

Definition 1: The expected number of nodes eventually-
influenced by seed nodes is defined as the influence spread.

Unfortunately, the computation of the influence spread is
known as NP-hard [10]. Currently, it could be computed by
time-consuming Monte-Carlo simulations, information-lossy
heuristics, or sampling methods with strong assumptions.

B. Problem Formulation
This paper studies the friend recommendation strategy with

the perspective of social influence maximization (i.e., maxi-
mizing influence spread). The motivation is that people may
want to make new friends to maximize their social influence.
People, such as political party leaders, film stars, and business
salesmen, sometimes combine making friends and influencing
people as a lifestyle. Therefore, OSNs have a strong potential
for adopting our friend recommendation strategy. For example,
a salesman on Facebook or Twitter would like to influence as
many people as possible for commercial advantages [18, 19].

This paper designs a friend recommendation strategy for
an OSN system provider (e.g., Facebook). The objective is
to recommend a fixed number (denoted by k) of new friends
to a given user (denoted by v0), such that v0 can maximize
his/her social influence spread through making new friends.
The independent cascade model [9] is adopted as the influence
cascade model, where v0 is initially-influenced and the other
nodes are initially-uninfluenced. The existing friends of v0 are
eliminated in the recommendations. In other words, we want to
maximize the influence spread of v0 through k new friendships
(new edges). The friend acceptance probabilities depend on the
social proximities between v0 and the recommended people.
This is because a stranger is less likely to accept the friend
request from v0 than a friend-of-friend of v0.
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An example is shown in Fig. 2, where edges are directed and
the numbers on edges are their weights. If v3 is recommended
to v0, a new edge of ev0v3 may be added, depending on
the friend acceptance probability that is estimated by their
social proximity. Similar to the other edge weights, the weight,
wv0v3 , of the new edge is also determined by existing works
[9–12], according to the friendship closeness and the content
popularity. The challenge comes from the tradeoff between the
friend acceptance probability and the propagation capability.
Although influential strangers can effectively propagate v0’s
influence, they are less likely to accept the friend request from
v0. On the other hand, friends-of-friends are likely to accept
the friend request from v0, but may not effectively propagate
v0’s influence. This tradeoff should be explored.

IV. COMBINING FRIEND RECOMMENDATION AND
SOCIAL INFLUENCE MAXIMIZATION

A. Friend Acceptance Probability

This subsection describes the friend acceptance probability.
If v is recommended to v0 as a new friend, v0 may influence
more people through forming a new friendship with v. Let
fv0v denote the friend acceptance probability that v accepts
the friend request from v0 (i.e., a new edge of ev0v is formed).
Strangers are people who are not friends or friends-of-friends
of v0. We have the following justifications for fv0v:

• fv0v can be different for different strangers of v. This
is because v0 could judge their friendship potential from
multiple fields such as common interests, school of grad-
uation, place of work, and so on.

• Compared to the event in which v is a stranger of v0,
fv0v should be larger if v is a friend-of-a-friend of v0.
This is because people are more likely to accept a friend
request from friends-of-friends than from strangers.

These two unique properties are the major differences between
our metric and existing classic metrics (e.g., Jaccard’s coeffi-
cient and Katz coefficient) [9]. Based on above justifications,
fv0v is formally defined as follows:

fv0v = αv ×
|N(v0) ∩N ′(v)|
|N(v0) ∪N ′(v)|

+ βv (1)

In Eq. 1, N(v) and N ′(v) denote the sets of outgoing and
incoming neighboring nodes of v, respectively. The fraction
of |N(v0)∩N ′(v)|

|N(v0)∪N ′(v)| is the common neighbor similarity from v0
to v. It measures the number of common friends of v0 and v.
αv and βv are coefficients. To guarantee 0 ≤ fv0v ≤ 1, we
have 0 ≤ αv ≤ 1, 0 ≤ βv ≤ 1, and 0 ≤ αv + βv ≤ 1. While

αv measures the impact of friends-of-friends, βv measures the
probability that people form a friendship with a stranger. αv

and βv can vary among different people. When v is a friend-
of-a-friend of v0, fv0v is no smaller than βv . This is because
N(v0) ∩N ′(v) ̸= ∅. On the other hand, when v is a stranger
to v0, fv0v reduces to βv, which is its minimum value. An
example is shown in Fig. 2. If we have αv3 = 0.5 and βv3 =
0.1, then fv0v3 = 0.5× 1

5 + 0.1 = 0.2.
Note that fv0v does not depend on the edge weight wv0v .

This is simply because the edge weight measures the influence
propagation probability rather than the friendship closeness.
Eq. 1 can be improved by considering the friendship closeness.
Another notable point is that we use existing works [9–12] to
determine the weights of edges, including the weights of new
edges that results from friend recommendations.

B. NP-hardness, Submodularity, and Greedy Approximation

This subsection explores the friend recommendation prob-
lem. Let R denote the set of users that are recommended to v0
for making new friends. The constraint is |R| ≤ k, and |R| is
the set cardinality of R. Once a user (say v) is recommended
to v0, the probability that v accepts the friend request from v0
is fv0v. The independent cascade model is adopted stimulate
influence propagations. In our problem, only v0 is initially-
influenced, and the other nodes are initially-uninfluenced. Let
σ(R) denote the influence spread. Based on Definition 1, σ(R)
is the expected number of nodes eventually-influenced by v0
with friend recommendations in R. Note that, when R = ∅,
σ(R) is not necessarily 0, since v0 can still influence existing
friends. We have the following theorem:

Theorem 1: Our friend recommendation problem, which
selects R to maximize σ(R), is NP-hard.

Proof: The proof is done by reducing the Maximum Cov-
erage Problem (MCP) to a special case of our problem. The
MCP is NP-hard [20], and is based on sets of elements. Given
a number of k, its objective is to select k sets, such that the
number of covered elements are maximized. If a set is selected,
its elements are covered.

The reduction is done by mapping sets and elements to 2-
hop and 3-hop friends of v0, respectively. Edge weights in our
problem are specially designed. Only weights of edges from
2-hop friends to 3-hop friends of v0 are 1, and the others
are 0. As a special case of our problem, let G be a directed
acyclic graph with the source of v0. Fig. 3 shows such an
example: set {v6, v7} is mapped to node v3, set {v7, v8} is
mapped to node v4, and set {v8} is mapped to node v5. We
use fv0v = 1 and wv0v = 1 for all v ∈ R. At this time, the



Algorithm 1 Greedy Friend Recommendation
Input: The graph, G, and the given user, v0;
Output: The set of recommended people, R;

1: Initialize R = ∅;
2: for i = 1 to k do
3: Select v = arg maxu

[
σ(R ∪ {u})− σ(R)

]
;

4: R = R ∪ {v};
5: return R;

optimal recommendation will only recommend 2-hop friends
of v0, since 3-hop friends can be influenced through 2-hop
friends. For example, the optimal recommendation will not
recommend v6 and v7, since the recommendation of v3 is
better. Hence, people, who are influenced by v0 in the optimal
recommendation, are composed of exactly k 2-hop friends and
some 3-hop friends that correspond to the optimally-covered
elements in the MCP. Therefore, the MCP reduces to a special
case of our problem. Since the MCP can be reduced from
the set cover problem that is NP-complete [20], our friend
recommendation problem is NP-hard. �

The idea of our proof is to weaken the tradeoff between the
friend acceptance probability and the propagation capability
by using fv0v = 1 and wv0v = 1 for all v ∈ R. We have:

Definition 2: σ(R) is submodular, if it satisfies a natural
diminishing returns property: the marginal gain from adding a
node to the set R is at least as high as the marginal gain from
adding the same node to a superset of R.

Theorem 2: σ(R) is submodular with respect to R.
Proof: Let pR(v) denote the probability that the node v is

eventually-influenced by v0 with R. Clearly, we have σ(R) =∑
v∈V \{v0} pR(v). We show that pR(v) is submodular with

respect to R, through considering the influence propagation
paths from v0 to v. To see this, let R′ denote an arbitrary
superset of R, i.e., R ⊆ R′. Submodularity means that

pR∪{u}(v)− pR(v) ≥ pR′∪{u}(v)− pR′(v) (2)

where u ∈ V \R. This inequality in Eq. 2 clearly holds, when
the influence propagation paths from v0 to v via u have some
overlaps with those via R′\R. An example of such overlaps
is shown as u1 and u2 in Fig. 4, where dashed arrows are
influence propagation paths. The equality in Eq. 2 holds, only
when the influence propagation paths from v0 to v via u are
fully independent with those via R′\R. An example is u3 in
Fig. 4. Therefore, for all v, pR(v) is submodular with respect
to R. Considering that a non-negative linear combination of
submodular functions is also submodular, we can conclude
that σ(R) is submodular with respect to R. �

The insight behind Theorem 2 is very intuitive: the social
influences brought by the people who are recommended later
have potential overlaps with those who are recommended ear-
lier. Hence, the marginal gain of the influence spread satisfies
the law of diminishing returns. According to [21], a greedy
algorithm with a submodular objective function guarantees an
approximation ratio of 1 − 1

e to the optimal algorithm. This

algorithm is shown as Algorithm 1. It iteratively selects the
user, who can maximize the marginal influence spread, into
the recommendations. Note that the tradeoff between the friend
acceptance probability and the propagation capability has been
automatically considered in the computation of σ(R). Existing
friends of v0 are eliminated in the friend recommendations.

A critical drawback of Algorithm 1 is that the computation
of the influence spread is NP-hard [10]. Consequently, line 3
in Algorithm 1 cannot be optimally computed within a poly-
nomial time complexity. State-of-the-art [10, 11, 22] cannot
decently solve this problem. Hence, in the next section, a novel
method is proposed to efficiently and accurately compute the
influence spread. It serves as a sub-algorithm for line 3 in
Algorithm 1, i.e., it computes σ(R) for a given R.

V. INFLUENCE SPREAD COMPUTATION

A. Classic Approaches and Their Limitations

The influence spread computation is NP-hard [10], and it is
usually done by Monte-Carlo simulations. The most classic ap-
proaches for this problem are proposed by Chen et al. [10, 11].
They simplified the influence spread computation by restrict-
ing the influence to propagate along the maximum influence
path. In other words, the graph is reduced to an arborescence
structure (called maximum influence arborescence model).
Later, their method is improved by reducing the graph to a
directed acyclic graph (DAG). An example is shown in Fig. 5.
The original graph is shown in Fig. 5(a), where v0 is initially-
influenced and the other nodes are initially-uninfluenced. The
probability that the node v is eventually-influenced is denoted
by pR(v). We have σ(R) =

∑
v∈V \{v0} pR(v). The challenge

comes from the multipath effect, meaning that there may exist
an exponential number of paths to propagate the influence
from v0 to an arbitrary node. In Fig. 5(a), v1 can be possibly
influenced via the v0-v1 path, or the v0-v2-v1 path. Note that
the number of paths in a graph increases exponentially with
respect to the number of nodes, leading to the NP-hardness
for the influence spread computation. To restrict the number
of paths, the approach in [10] reduces the graph to a tree, as
shown in Fig. 5(b). We get pR(v1) = 0.5 and pR(v2) = 0.8
by this approach. It is information-lossy since ev1v2 and ev2v1

are discarded. The improved approach in [11] reduces the
graph to a DAG, as shown in Fig. 5(c). We get pR(v1) = 0.5
and pR(v2) = 0.84 for this approach, where only ev2v1 is
discarded. Considering the multipath effect, the optimal result
in Fig. 5(a) is that pR(v1) = 0.5+0.8·0.4−0.5·0.8·0.4 = 0.66
and pR(v2) = 0.8 + 0.5 · 0.4 − 0.8 · 0.5 · 0.4 = 0.84. Classic
approaches are inaccurate, since some edges are removed to
restrict the number of paths for influence propagations.

B. Multipath Effect in Influence Propagations

Our key idea for the influence spread computation is to mit-
igate the multipath effect by considering several top influence
propagation paths within a non-exponential time complexity.
There exists a tradeoff between the number of paths and the
computation accuracy of the influence spread. If we consider
more paths in the computation of the influence spread, then the
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result is more accurate, at the cost of a higher time complexity.
Through a coarse estimation, this subsection shows how many
paths are sufficient to obtain an accurate pR(v) for node v.

Our coarse estimation is based on the existing literature for
scale-free networks [23]. OSNs are typically scale-free [24].
Let ⟨·⟩ denote the mean value of a variable. For example,
⟨w⟩ is the average edge weight and ⟨d⟩ is the average out-
degree. Let |V | denote the number of nodes in G. Let NL(v)
denote the expected number of paths from v0 to v that have
L intermediate nodes. We assume that each node (excluding
v0 and v) has a probability of λv to be an intermediate node
in a path from v0 to v. Note that λv (0 ≤ λv ≤ 1) represents
the graph skewness among different users. We have:

NL(v) =

[
(|V | − 2)!

(|V | − 2− L)!
· λL

v · (1− λv)
|V |−L

]
· ⟨d⟩

L

|V |L
(3)

Here, (|V |−2)!
(|V |−2−L)! is the number of permutations for selecting

L nodes from |V | − 2 nodes (excluding v0 and v) as ordered
intermediate nodes on the path from v0 to v. The probability
of the corresponding permutation is λL

v · (1−λv)
|V |−L. Then,

⟨d⟩
|V | is the average probability that a predecessor node on the
path connects to the successor node. In scale-free networks,
we typically consider that L is small with respect to |V | [23],
meaning that (|V |−2)!

(|V |−2−L)! ·
1

|V |L ≈ 1
|V | . We rewrite Eq. 3:

NL(v) ≈
(1− λv)

|V |

|V |
·
[ λv

1− λv
⟨d⟩

]L
(4)

When λv

1−λv
⟨d⟩ > 1, NL(v) is expected to grow exponentially

with respect to L, and thus, traversing all the paths from v0
to v is time-consuming (the general case). Let L∗ denote the
length of the unweighted shortest path from v0 to v, we have:

NL∗(v) ≈ (1− λv)
|V |

|V |
·
[ λv

1− λv
⟨d⟩

]L∗

(5)

L∗ and NL∗(v) can be obtained by Dijkstra’s algorithm. |V |
and ⟨d⟩ can be obtained through network statistics. Therefore,
λv can be adaptively computed through Eq. 5.

The expected probability that v is influenced by v0 through
a path of length L is ⟨w⟩L. All the paths with length L, in total,
should bring an expected influence propagation probability of
1 − (1 − ⟨w⟩L)NL(v). If these paths are independent of each
other and ⟨w⟩L ≪ 1, then we have the following estimation:

1− (1− ⟨w⟩L)NL(v) ≈ ⟨w⟩LNL(v)

≈ (1− λv)
|V |

|V |
·
[ λv

1− λv
⟨w⟩⟨d⟩

]L
(6)

Eq. 6 implies two insights. When λv

1−λv
⟨w⟩⟨d⟩ ≥ 1, v is likely

to be eventually-influenced by v0, since Eq. 6 becomes close
to one. In this case, several top paths are sufficient to propagate
v0’s influence to v. This is because these paths already bring
an influence probability that is close to one. Consequently,
we do not need to consider longer paths for the computation
of pR(v). The hard scenario is λv

1−λv
⟨w⟩⟨d⟩ < 1. In this case,

Eq. 6 decreases exponentially with respect to L. This indicates
that v0’s influence is much more likely to propagate along the
shorter paths than the longer paths. Top paths can dominate the
influence propagation. When λv

1−λv
⟨w⟩⟨d⟩ < 1, the following

equation can show such dominations:

1−
∏L∗+ l

L=L∗(1− (1−λv)
|V |

|V |

[
λv

1−λv
⟨w⟩⟨d⟩

]L
)

1−
∏∞

L=L∗(1− (1−λv)|V |

|V |

[
λv

1−λv
⟨w⟩⟨d⟩

]L
)

(7)

≥

∑L∗+ l
L=L∗

(1−λv)
|V |

|V |

[
λv

1−λv
⟨w⟩⟨d⟩

]L
∑∞

L=L∗
(1−λv)|V |

|V |

[
λv

1−λv
⟨w⟩⟨d⟩

]L = 1−
[ λv

1−λv
⟨w⟩⟨d⟩

]l+1

The fraction in the top line of Eq. 7 is the ratio of (i) the
expected influence propagation probability brought by paths
with lengths from L∗ to L∗ + l to (ii) the expected influence
propagation probability brought by all paths. Eq. 7 shows
that, if we consider a little bit more paths (in addition to the
shortest path), then the computational error of pR(v) can be
exponentially reduced. Although the estimation in Eq. 7 is
coarse-grained, it still provides an important intuition for the
influence spread computation: if we rank all the paths from
v0 to v by their influence probabilities, then the several top
paths are sufficient to approximate pR(v). The next subsection
computes the influence spread based on this intuition.

C. Multipath-sensitive Influence Spread Computation

Motivated by Eq. 7, we propose a Polynomial-Time Approx-
imation Scheme (PTAS) for the influence spread computation,
assuming λv

1−λv
⟨w⟩⟨d⟩ < 1. The key idea to mitigate the mul-

tipath effect by considering several top influence propagation
paths within a non-exponential time complexity. We argue that
this PTAS should also work well when λv

1−λv
⟨w⟩⟨d⟩ ≥ 1, since

several top paths already bring an influence probability that is
close to one (as analyzed in Eq. 6). Let ε denote a control
parameter (0 ≤ ε ≤ 1). The PTAS is expected to obtain a
ratio, 1−ε, to the optimal algorithm (under some assumptions
in the derivation of Eq. 7). Based on Eq. 7, we have:

1− ε = 1−
[ λv

1− λv
⟨w⟩⟨d⟩

]l+1

(8)

Since parameters ε, ⟨w⟩, ⟨d⟩, and λv are known, we have:

l = −1 + ln ε
/
ln

[ λv

1− λv
⟨w⟩⟨d⟩

]
(9)



Algorithm 2 Influence Spread Computation
Input: The graph, G, and the given user, v0;

The set of recommended people, R;
The control parameter, ε;

Output: The influence spread, σ(R);

1: for each node v in R do
2: Add the edge, ev0v, with weight, wv0v, to the graph, G;
3: Compute fv0v based on Eq. 1;
4: Update wv0v = fv0v × wv0v;
5: Call unweighted Dijkstra’s algorithm from v0 to determine

the unweighted shortest paths from v0 to the other nodes;
then, L∗ and NL∗(v) can be obtained for each v;

6: Parameters L∗, NL∗(v), ⟨d⟩, V , and ε are known; based on
Eq. 5, compute λv for each v; based on Eq. 10, compute
the total number of paths, θv, for each v;

7: Convert the edge weights to distance weights through a
negative log(·) operation; call weighted Yen’s algorithm to
compute the loopless weighted shortest paths from v0 to
the other nodes; for each v, θv paths from v0 are obtained;

8: for each node v in G except v0 do
9: Based on θv loopless paths, construct a DAG from v0

to v; based on the topological order, compute pR(v);
10: return σ(R) =

∑
v∈V \{v0} pR(v);

The total number of paths from v0 to v, denoted by θv, is:

θv =

L∗+ l∑
L=L∗

NL(v) = NL∗(v) ·
l∑

i=0

[ λv

1− λv
⟨d⟩

]i

= NL∗(v) ·

[
λv

1−λv
⟨d⟩

] ln ε

ln[
λv

1−λv
⟨w⟩⟨d⟩] − 1[

λv

1−λv
⟨d⟩

]
− 1

(10)

θv is rounded to an integer for the algorithm implementation.
Algorithm 2 is proposed as the PTAS. It is a sub-algorithm

for line 3 in Algorithm 1. It include three stages:
• The first stage (lines 1 to 4) processes the friend recom-

mendations. For v ∈ R, a new edge is added. The edge
weight is determined by the existing works [9–12]. fv0v
is computed based on Eq. 1. Edge weights are updated to
show the impact of the friend acceptance probability.

• The second stage (lines 5 to 7) determines the set of paths
to compute the influence spread. Through a coarse esti-
mation, the number of paths, θv , is adaptively determined.
Note that θv can be different for different v, since the
graph skewness is considered by λv. We convert the edge
weights to the distance weights through a negative log(·)
operation. Yen’s algorithm [25] is called to compute the
set of loopless weighted shortest paths from v0 to v. For
each v, we obtain θv paths from v0. If θv < 1, we use
only one path. If θv is larger than the number of available
loopless paths, then all loopless paths are used.

• In the third stage (lines 8 to 10), for each v, we compute
the probability that v is influenced by v0, i.e., pR(v).
Since θv loopless paths are obtained by the second stage,
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Fig. 6. An example for the influence spread computation.

a DAG can be constructed. Then, pR(v) can be computed
following a topological order in the DAG.

An example of Algorithm 2 is shown in Fig. 6. Fig. 6(a)
shows G with R = {v3}. In the first stage of Fig. 6(b), ev0v3

is added with wv0v3 = 0.75. Existing works [9–12] are used
to determine all the edge weights, including wv0v3 . Suppose
αv3 = 0.9 and βv3 = 0.5, then we compute fv0v3 = 0.9× 1

3 +
0.5 = 0.8 based on Eq. 1. To incorporate the friend acceptance
probability, wv0v3 is updated to be 0.6. In the second stage of
Fig. 6(c), we determine the set of paths for the influence spread
computation. The number of paths, θv, is determined by Eqs. 5
and 10. Our example only includes the process for v1. For
simplicity, let θv1 = 3. Then, Yen’s algorithm determines three
loopless weighted shortest paths from v0 to v1, i.e., v0-v1, v0-
v2-v1, and v0-v3-v1. Since these paths are loopless, the third
stage of Fig. 6(d) computes pR(v1) with a topological order,
pR(v1) = 1−(1−0.8)×(1−0.5·0.4)×(1−0.6·0.2) = 0.8592.

Due to Yen’s algorithm [25], the time complexity of Algo-
rithm 2 is O(θ|V |·(|E|+|V | log |V |)). Here, θ is the maximum
number of paths for a node, i.e., θ = maxv θv. The first stage
takes O(k) to go through each recommendation. The third
stage takes O(|V |·(|V |+|E|)) due to the topological sort. The
key insight of Algorithm 2 is to mitigate the multipath effect
by considering several top influence propagation paths within
a non-exponential time complexity. To guarantee accuracies,
the number of need paths is estimated by Eqs. 5 and 10.

VI. EXPERIMENTS

A. Dataset Information

Our experiments use three datasets: Facebook [26], Epinions
[27], and Wiki [28]. Facebook is an online social networking
service launched in 2004. Users on Facebook can create a user
profile, add other users as friends, post status updates and pho-
tos, share videos, and receive notifications when others update
their profiles. The Facebook “People You May Know” feature



TABLE I
DATASET STATISTICS

Facebook Epinions Wiki
Number of nodes 63,731 18,098 7,115
Number of edges 817,035 355,754 103,689
Average degree 25.6 19.6 14.6

Network Diameter 15 11 7
Global clustering coefficient 0.148 0.138 0.141

Average edge weight 0.0271 0.0285 0.0076

recommends new friends based on a friend-of-a-friend strategy
[3]. Facebook also provides business page services [7] to users
for social influence maximizations, meaning that our approach
can be potentially applied on Facebook. Epinions is a general
consumer review site launched in 1999. Epinions users could
read new and old reviews about a variety of products to help
them decide on a purchase. Our approach can be applied on
users who want to disseminate their product reviews [29]. Wiki
is a free encyclopedia written collaboratively by volunteers
(i.e., users). A small portion of users are administrators. In
order for a user to become an administrator, a request must be
issued and voted. A directed edge is represented by that a user
votes for another user. Our approach can be applied on users
who want to get more votes. Note that these three datasets do
not include information on edge weights. Following existing
works [9–12], we use directed common neighbor similarities
[9] to determine edge weights. Finally, the statistics of these
three datasets are shown in Table I.

B. Comparison Algorithms

Our experiments focus on the increased influence spread
brought by the recommendations, under different settings
(e.g., numbers of recommended people, values of αv and
βv, and outgoing degrees of v0). The increased influence
spread can be computed by σ(R) − σ(∅). Note that σ(∅) is
not necessarily 0, since v0 can still influence some people
through existing friends. For comparison, six algorithms are
included. (i) Alg 1 & OPT stands for Algorithm 1 with the
optimal influence spread computation. The influence spread is
computed through time-consuming Monte-Carlo simulations.
Alg 1 & OPT guarantees an approximation ratio of 1 − 1

e to
the optimal algorithm. (ii) Alg 1 & Alg 2 is Algorithm 1 with
a non-optimal influence spread computation. The influence
spread is computed through Algorithm 2 (we set ε = 0.1 by
default). We want to check the gap between Alg 1 & OPT and
Alg 1 & Alg 2. (iii) MaxSim is for a greedy algorithm that
iteratively selects a user with a maximum common neighbor
similarity (in terms of v0). It is currently used on Facebook
[3]. Recommended people are friends-of-friends of v0. (iv)
MaxDeg stands for a greedy algorithm that iteratively selects a
user with a maximum outgoing degree. Recommended people
have the highest outgoing degrees. (v) Random is a baseline
algorithm that recommends friends uniform-randomly. All
these algorithms are implemented in a centralized manner.

We also set up experiments to compare different algorithms
for the influence spread computation. For comparison, five
algorithms are included, as described in the following. (i) Tree

[10]. This algorithm computes the influence spread through
a maximum influence arborescence model, where influences
are restricted to propagate along maximum influence paths.
(ii) DAG [11]. This algorithm reduces the graph to a DAG
to compute the influence spread. The influence probabilities
are sequentially determined following a topological order in
the DAG. (iii) IMRank [22]. This algorithm computes the
influence spread through iterative neighborhood exchanges.
The probability that a given node is influenced depends on
that of its neighbors. The drawback is that IMRank ignores
path dependency issues. (iv) Alg 2 denotes Algorithm 2, which
computes the influence spread through considering additional
paths. (v) OPT. This algorithm optimally computes the influ-
ence spread by time-consuming Monte-Carlo simulations [30].

C. Evaluation Results on Friend Recommendations

In this subsection, we report the evaluation results on friend
recommendations. First, we investigate the impact of k (i.e.,
the number of recommended friends). We set αv = 0.9 and
βv = 0.1 for all people. v0 is uniform-randomly picked from
all the nodes. The results are averaged over 10,000 times
for smoothness and are shown in Fig. 7. Three subfigures
represent results in three different datasets, respectively. It can
be seen that Alg 1 & OPT performs better than Alg 1 & Alg 2,
since the former one computes the influence spread optimally
at the cost of time consumption. However, the gap between
their performances is limited, meaning that Alg 1 & Alg 2
estimates the influence spread accurately. Meanwhile, MaxSim
outperforms MaxDeg, meaning that we are more likely to
recommended friends-of-friends than strangers (users who
are not friends or friends-of-friends). For all the algorithms,
the increased influence spread, σ(R) − σ(∅), satisfies the
diminishing return effect with respect to k. This is because
people influenced by later recommendations have potential
overlays with those influenced by earlier recommendations.

We also study the impact of v0. For convenience, we classify
users into two types by their outgoing degrees. If a user has
an outgoing degree that is no larger than 100, it is called
a normal user. Otherwise, it is called a popular user. We
would like to see the difference between recommendations for
normal users and those for popular users, as shown in Fig. 8.
An interesting phenomenon is that, our recommendations
are more effective for popular users than normal users on
Facebook and Wiki, but are less effective for popular users
than normal users in Epinions. This is because popular users
are already influential in Epinions. We also observe that, for
popular users, MaxDeg outperforms MaxSim in Facebook and
Wiki, while MaxSim outperforms MaxDeg in Epinions. A
possible explanation for the above phenomenon is that, when
we intend to recommend influential strangers over friends-of-
friends (MaxDeg outperforms MaxSim), users could greatly
improve their social influence, since their influences are no
longer limited to their current social circles. Recommendations
for popular users are not necessarily more effective than those
for normal users, depending on the application scenario.
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Fig. 7. The evaluation results on the impact of k (the number of recommended friends).
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Fig. 8. The evaluation results on the impact of v0 (normal users or popular users).

Finally, the impacts of αv and βv are studied. βv is set to
be the same for all people and then tuned. We set αv = 1−βv

and k = 10. v0 is uniform-randomly picked from all the nodes.
The results are averaged over 10,000 times for smoothness and
are shown in Fig. 9. It can be seen that σ(R)−σ(∅) in all the
algorithms increases with respect to βv. MaxSim outperforms
MaxDeg for small βv, but MaxDeg outperforms MaxSim for
large βv . The reason is stated as follows. When βv is small,
we favor recommending friends-of-friends of v0. For example,
in Eq. 1, only friends-of-friends are recommended to v0, when
βv = 0. On the other hand, when βv is large, we would favor
recommending influential strangers. This is because, when βv

is large, influential strangers are likely to accept the friend
request from v0 and then propagate v0’s influence. Fig. 10
shows the percentage of strangers recommended by Alg 1 &
Alg 2. When βv = 0.1, less than 30% of the recommendations
are strangers. In contrast, when βv = 0.5, about half of the
recommendations are strangers.

D. Evaluation Results on Influence Spread Computations

This subsection evaluates the influence spread computation.
v0 is uniform-randomly picked from all the nodes. We use

k = 0, i.e., the result is the number of people that v0 can
influence through existing friends. Users are classified into
normal users and popular users, according to the same rule in
the previous subsection. The impact of the control parameter,
ε, is studied. For Algorithm 2, we set ε = 0.1 and ε = 0.3,
respectively. They are denoted as Alg 2 (0.1) and Alg 2 (0.3).
The results are also averaged over 10,000 times.

The evaluation results are shown in Fig. 11. On average,
popular users have much larger influence spreads than normal
users. The algorithm of Tree significantly underestimates the
influence spread. Although DAG improves Tree by considering
more paths, it still underestimates the influence spread. The
latest approach of IMRank is outperformed by Alg 2 (0.1),
since IMRank does not consider the number of paths in the
influence spread computation. In contrast, Alg 2 (0.1) has
an accurate estimation of the true influence spread, through
considering the dominating influence propagation paths. Errors
of Alg 2 (0.1) are within 10% for both normal users and
popular users in the three datasets. The impact of the control
parameter is also significant. Note that Algorithm 2 is expected
to obtain a ratio, 1− ε, to the optimal algorithm (under some
assumptions in Eqs. 5 and 10). A smaller ε brings a more
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Fig. 9. The evaluation results on the impact of αv and βv . We set αv = 1− βv .
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Fig. 11. Evaluations of influence spread computation methods.

accurate computation of the influence spread. While ε = 0.3
brings an inaccurate influence spread computation, ε = 0.1
can bring a result that is close to the optimal algorithm.

VII. CONCLUSION

This paper studies the friend recommendation strategy with
the perspective of social influence maximization. For the
system provider, the objective is to recommend k new friends
to a given user, such that the given user can maximize his/her
social influence through new friends. Our problem is proved
to be NP-hard. A greedy approximation algorithm with a ratio
of 1 − 1

e is proposed based on the submodular property. By
considering the multipath effect, a novel method is proposed to
accurately compute the influence spread. Experiments verify
the efficiency and effectiveness of our approach.
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