
IEEE TRANSACTIONS ON BIG DATA 1

Cost-efficient Heterogeneous Worker
Recruitment under Coverage Requirement in

Spatial Crowdsourcing
Ning Wang, Student Member, IEEE, and Jie Wu, Fellow, IEEE

Abstract—With the progress of mobile devices and the successful forms of using the wisdom of crowds, spatial crowdsourcing has
attracted much attention from the research community. The idea of spatial crowdsourcing is recruiting a set of available crowds to finish
the spatial tasks located in crowdsourcing locations, e.g., landmarks, by using their handheld devices. This paper addresses the worker
recruitment problem in spatial crowdsourcing under the coverage and workload-balancing requirements. The coverage constraint
means that any crowdsourcing location should be visited by at least one of the recruited workers to satisfy the Quality-of-Service
requirement, e.g., traffic monitoring or climate forecast. In addition, we argue that each crowdsourcing operation has a cost in reality,
e.g., data traffic or energy consumption and the resource may be limited at each crowdsourcing location. The objective of this paper is
to solve a Coverage and Balanced Crowdsourcing Recruiting (CBCR) problem, which ensures the coverage requirement and
minimizes the maximum crowdsourcing cost for any crowdsourcing location. We prove that the CBCR problem is NP-hard in the
general case. Then, we discuss the CBCR problem in the 1-D scenario. In the 1-D scenario, we first propose a directionally coverage
scheme and further extend it to a Polynomial-Time Approximation Scheme (PTAS) to trade-off the computation complexity and the
performance. The performance can be bounded to 2 + ε, where ε can be an arbitrary small value. Then, we found that there exists a
sub-optimal structure, and thus the dynamic programming approach is proposed to find the optimal solution in the 1-D scenario. In the
general 2-D scenario, we first prove that it has a sub-modular property and thus the naive greedy algorithm has an approximation ratio
of lnn+ 1. In addition, we propose a randomized rounding algorithm with an expectation bound of O(logn

log logn
). Extensive experiments

on realistic traces demonstrate the effectiveness of the proposed algorithms.

Index Terms—Mobile edge computing, spatial crowdsourcing, task allocation, mobile networks.

F

1 INTRODUCTION

W ITH the ubiquity of mobile devices and vehicles
equipped with high-fidelity sensors and the devel-

opment of wireless networks (e.g., WiFi and LTE) in past
years, all kinds of data have become widely available and
large in amount. Traditional infrastructure-based computing
approaches or systems [1, 2] began to show their limitations,
i.e, high system implementation costs, difficult-to-handle
dynamic environments and hard-to-utilize kinds of big data
that accelerate ubiquitous intelligence in the real-world. To
address the aforementioned two challenges, spatial crowd-
sourcing [3] also called participatory crowdsourcing, has
emerged in the past few years. The idea of spatial crowd-
sourcing is to recruit a set of people/vehicles, called work-
ers, to actively collect and report data using their mobile
devices for a given campaign. Therefore, there is no need
to build a specific system using the ubiquitous sensors in
smart devices/vehicles and enjoy a pay-as-you-go character.
The difference between online crowdsourcing [4] and spatial
crowdsourcing is that for online crowdsourcing, everyone
can register as a worker to conduct a crowdsourcing task,
however, spatial crowdsourcing consists of location-specific
tasks, the people who agree to participate in the spatial
crowdsourcing have to physically be at specific locations

• N. Wang and J. Wu are with Department of Computer and Information
Sciences, Temple University, USA, PA, 19122.
E-mail: ning.wang@temple.edu

Manuscript received April 19, 2005; revised August 26, 2015.

to complete the tasks. There are many applications, such as
sharing economy (e.g., Uber and Waze [5, 6]), geographical
data generation (e.g., OpenStreetMap [7]), and road traffic
monitoring (e.g., Waze [6]).

Existing spatial crowdsourcing mechanisms [8–11] do
not consider the coverage requirement, i.e., collected data
from all crowdsourcing locations in an urban area. However,
the coverage problem is the requirement of many practical
applications, such as weather forecasts, e.g., DroneSense
[13], and traffic route optimization, e.g., CalTel [14], Nericell
[15], and GreenGPS [16]. For example, for the navigation
service provider, it can provide a good route only after the
server gets all traffic information in the monitoring area.
Otherwise, if the server does not have the traffic information
for certain road segment in the recommended route, the
result might be far from optimal, e.g., an accident in the
unknown road segment. That is, missing data from any
crowdsourcing location might have a huge impact on the
final result, therefore, the desired performance (e.g., QoS)
cannot be guaranteed without the coverage constraint.

The second requirement, which is important but often
ignored in spatial crowdsourcing, is the workload balanc-
ing requirement for each crowdsourcing location. In real-
ity, there is a cost (e.g., battery consumption, time, cellu-
lar traffic, and pay-off) for each crowdsourcing operation,
and the budget (e.g., battery, money, etc.) in each crowd-
sourcing location is limited. For example, workers collect
environment/traffic information from a Wireless Sensor

IEEE TRANSACTIONS ON BIG DATA 2

Worker Sensor Communication

w1

s1

s2

s3

w3

w2

Fig. 1. An illustration of the network model in real applications.

Network (WSN) in a target area, and the data collection
operation is a wireless communication operation and it
will consume a certain energy. The energy consumption
amount is related to the communication distance, current
network Signal-to-Interference-plus-Noise Ratio (SINR), etc.
The solar-charging sensor in each location has limited bat-
tery per day and if the communication energy consumption
cannot exceed the any sensor’s battery in the network,
the whole WSN dies. Therefore, to maximize the WSN’s
lifetime, we need to balance the energy-consumption of
each sensor and such a requirement has widely explored
in WSNs [17]. Another application scenario is Waze carpool
[6]. The different between Waze carpool with taxi and Uber
is that Waze drivers already have their own driving routing,
and drivers only pick passengers whose destination is on
their commute routes. In such a scenario, there are lim-
ited crowdsourcing tasks, waiting for passengers, in each
crowdsourcing location and if many workers arrive at a
crowdsourcing location and find that there is no remaining
task, it will discourage many people from taking part in
the crowdsourcing platform. To avoid such a situation, the
maximum cost for any crowdsourcing location should be
minimized.

Motivated by the aforementioned two challenges, this
paper addresses the worker recruitment problem in spatial
crowdsourcing. In the proposed model, there are a set of
spatial crowdsourcing locations and workers. The trajectory
of each worker is known, which is reasonable considering
that fact navigation softwares are widely used today and
the trajectory information is generated and collected. In
addition, there is a crowdsourcing cost when it visits a
crowdsourcing location. Our goal is to find a recruitment
solution which ensures all the crowdsourcing locations in an
area can be visited by at least one worker, while minimizing
the maximal cost for all crowdsourcing locations. We refer to
this problem as the Coverage and Balanced Crowdsourcing
Recruiting (CBCR) problem. The potential applications of
the CBCR problem are intelligent applications in smart
cities, e.g., the intelligent transportation system.

An illustration of the network model and CBCR problem
is shown in Fig. 1, where there are four vehicles and 3 of
them can be recruited as workers. There are 3 traffic sensors,
which collect traffic-related information in this area and can
communicate with vehicles through short-range commu-

nication interface, e.g., WiFi and Bluetooth. Among them,
worker w1 can collect data from sensors s1 and s2, worker
w2 can collect data from sensors s2 and s3, and worker
w3 does not collect data from sensors in this toy example.
For each data collection, there is a communication energy
consumption, which is related to the distance between them.
Therefore, the worker w1 has a larger cost for collecting
data from sensor 2 than sensor 1. To satisfy the coverage
constraint, workers w1 and w2 should be recruited together.

The proposed CBCR problem is proven to be NP-hard in
the general 2-D scenario. Then, we discuss the solution of
the CBCR problem in the 1-D scenario. In the 1-D scenario,
we first observe that the naive greedy algorithm might lead
to cost accumulation, and thus the maximal workload of
a crowdsourcing location can be huge. Then, we propose
a worker recruitment scheme by covering crowdsourcing
locations directionally from one side to another side. There-
fore, at most two workers will cover one crowdsourcing
location, and thus the cost accumulation is controlled. After
that, a PTAS extension is applied in the aforementioned
coverage method to trade-off the computation complexity
and the performance. The idea is that we divide workers
into two sets, i.e., a cheap worker set and a costly worker set,
and only select workers in the cheap worker set. Therefore,
the performance can be bounded to 2 + ε, where ε can
be an arbitrary small value. Lastly, we found that a sub-
optimal structure exists and thus the dynamic programming
approach is proposed to find the optimal solution in the 1-D
scenario. In the general 2-D scenario, the sub-optimal solu-
tion does not exist anymore. To address the CBCR problem,
we first prove that it has a sub-modular property, and thus
an approximation ratio of lnn+1. In addition, we propose a
randomized rounding algorithm with an expectation bound.

The contributions of this paper are as follows:

• To our best knowledge, we are the first to con-
sider the coverage requirement and the workload
balancing of the crowdsourcing locations in spatial
crowdsourcing.

• In the 1-D scenario, we propose a PTAS solution.
Later, we propose a dynamic programming approach
to find the optimal solution.

• In the general 2-D scenario, we prove that the pro-
posed CBCR problem has a sub-modular property,
and thus there is an approximation ratio of 1 + lnn
for the greedy algorithm.

• In the general 2-D scenario, we propose a random-
ized rounding algorithm which can solve the pro-
gram effectively and with a high probability.

• The effectiveness of the proposed algorithms are
demonstrated through three real datasets.

The remainder of the paper is organized as follows. The
related works about spatial crowdsourcing and its main
challenges are in Section II. The problem statement and its
challenges are introduced in Section III. The greedy scheme
and optimal solution in the 1-D scenario are provided and
analyzed in Section IV. The general solution and its analysis
for the 2-D scenario are presented in Section V. The exper-
imental results are shown in Section VI. We conclude the
paper in Section VII.

IEEE TRANSACTIONS ON BIG DATA 3

2 RELATED WORKS

With the wide adaptation of crowdsourcing applications,
task coverage and participant selection in the crowdsourc-
ing system have drawn much attention from researchers
in recent years [8–11, 18–20]. We start from initial online
crowdsourcing then move to the spatial crowdsourcing.
The existing works in spatial crowdsourcing can be mainly
categorized into two types based on whether the worker’s
trajectory is predetermined or not.

2.1 Worker Trajectory Planning

In this category, the worker’s trajectory is controlled and
planned by the server [10, 11, 21]. Therefore, the major
problem is a trajectory planning problem, i.e., the planned
trajectory of a worker can maximize the benefit. The most fa-
mous application example is Uber, some other applications
are TaskRabbit and WeGoLook [22], which are crowdsourc-
ing agent platforms. Previous researchers have produced
many works where there is only one worker in their spatial
crowdsourcing model. In [10], each task has a deadline and a
feasible route of a worker should make sure that all the tasks
in the route can be finished before their deadline. Facing
this constraint, they proposed an approach to maximize the
number of tasks that a worker can finish by using dynamic
programming. In [8], the authors noticed that there are time
conflicts for task assignments, which further complicates the
planning problem. A mapping solution with pruning will
reduce the complexity. The authors argues that there are
multiple workers in the network and workers may have
competing relationships. Therefore, the optimal trajectory
for a particular worker might not be the optimal trajectory in
terms of benefiting of the network. To address this situation,
a simple greedy collaborative trajectory planning scheme
is that if there are unassigned tasks and workers, the sys-
tem selects a worker whose feasible trajectory achieves the
maximum benefit. However, this approach does not really
address the multiple worker collaborative crowdsourcing.
That is also the reason why the method in [8] does not have
a performance bound. Similar problems and workers are in
[21, 23]. In [24], they considered the issue where tasks are
not pre-known but arrived online. In [25], authors tried use
semi-bandit learning method to maximize task reliability
and minimize travel costs.

2.2 Trajectory Coverage

In this category, each worker’s trajectory is predetermined
[18, 26]. Therefore, the major problem is recruiting the
most cost-efficient worker to maximize the crowdsourcing
task. The application background is the sharing economy, it
would be great if people could earn some benefits and not be
bothered, i.e., detouring, by the crowdsourcing platform at
the same time. An application example is Waze Carpool [6],
people can earn some money by picking-up people on their
commute trajectories. There are many theoretical studies
on task assignments and participant selection problems,
playing trade-offs among the crowdsourcing budgets and
the coverage range [18, 26, 27]. The difference between
their models and proposed model in this paper is that they
consider maximizing the coverage range. However, in many

scenarios, ensuring the coverage in a certain area, such as
traffic monitoring or surveillance, with the minimal cost
is very important. In [19], authors considered the coverage
requirement in the crowdsourcing and minimized the over-
all recruiting cost. A greedy algorithm with a performance
analysis is proposed. The difference between their works
and the proposed work in this paper is that they consider
the overall crowdsourcing cost. We argue that the workload
balance is very important, thus, we consider the crowd-
sourcing cost for each crowdsourcing location. In [28], the
authors considered the workload constraint but the cover-
age constraint was not considered. In [29], the authors con-
sidered the trade-off between load balance of each worker
and utility maximization by modeling the recruitment as a
Nash bargaining game. In [30], they considered the situation
where the result of a worker may not reach a certain quality
and argued that for each crowdsourcing location, the total
quality of workers pass it should be maximized. In [31],
authors jointly consider the amount of assigned tasks and
coverage area of workers.

2.3 Time-involving Recruitment
Considering the fact that workers arrives in different time in
spatial crowdsourcing systems, it is a fundamental problem
to optimize the system performance in a dynamic way.
Given the future trajectories of participants, authors in [29]
consider how to maximize coverage in a series of time
window with limited budget. In [24], authors consider an
online user-task matching problem. The worker arrive in an
online manner and every worker has to be assigned to a task
upon its arrival. The object is to minimize the movement
length of all workers. They provide a simple and greedy
algorithm which turns out to be have a constant approxima-
tion ratio. In [32], they further considered tasks and workers
all arrive in an online manner. However, in this case, they
consider each task has a deadline and thus how to design
the worker’s trajectory so that the amount of processed
tasks is maximized. In [33], they consider a 3-dimensional
online matching, where the worker and requester have to
meet a specific location and a bounded greedy algorithm
was proposed which has a tighter competitive ratio. In
[34], the authors considered the budget distribution problem
overtime. Since the workers arrives dynamically, there is a
trade-off to distribute the fixed budget in each time window
or dynamically change the budget in each time window.

3 MODEL AND PROBLEM

In this section, we introduce the network model used in this
paper, followed by the problem formulation. The hardness
of the proposed problem is shown at the end.

3.1 Model
In this paper, we discuss a spatial crowdsourcing scenario
under a centralized matter, which is the case in many
spatial crowdsourcing applications (e.g., [5, 6, 22]). We as-
sume there are n workers (e.g., people or vehicles) who
agree to accept the crowdsourcing task at a time slot,
W = {w1, w2, · · · , wn}. Each worker has a known crowd-
sourcing trajectory, ti, which is reasonable since navigation

IEEE TRANSACTIONS ON BIG DATA 4

TABLE 1
Summary of symbols

Symbol Interpretation
n The total number of available workers
m The total number of total crowdsourcing location
wi A available worker
ti The trajectory of worker wi

xi A recruiting decision boolean variable for wi

X A recruiting decision vector for n available workers
li A crowdsourcing location

cij The crowdsourcing cost for wi to location lj
U A set of selected workers

f(U) The maximum crowdsourcing location cost using U

applications/devices are widely used today. For example,
in Waze [6], the drivers share the traffic information on
their way home. Therefore, we have a trajectory vector, T ,
T = {t1, t2, · · · , tn}. To simplify the illustration of the trajec-
tory, the network is assumed to be discretized into grids. The
trajectory of each worker is approximated based on grids,
and the calculation error is bounded by the discretization
level, i.e., the grid length. In addition, we assume that the
spatial crowdsourcing area can be mapped into a 2-D grid
topology and each crowdsourcing location belongs to a grid.
Note that if there are multiple crowdsourcing locations in
one grid, we will increase the discretization level until there
is at most only one crowdsourcing location in one grid.
There are two types of locations: a crowdsourcing location,
denoted as a black block in Fig. 2, and a regular location. In
a crowdsourcing location, there is a crowdsourcing task. In a
regular location, there is not a crowdsourcing task. Suppose
there are m crowdsourcing locations, L = {l1, l2, · · · , lm}.
The length of ti is denoted as |ti|, which is the number
of crowdsourcing locations that wi passes. Workers can
only move in four directions, up, down, left, and right, to
mimic the way that people move along roads in reality. An
illustration of the network model is shown in Fig. 2.

In this paper, we assume if there is a crowdsourcing
task available for a worker, i.e., the trajectory of that worker
covers the crowdsourcing location, the worker will conduct
that crowdsourcing task. Therefore, there is no crowdsourc-
ing task selection freedom for the worker. However, the
proposed model can be extended to a general scenario
where each worker has the freedom to select which crowd-
sourcing task it performs by a simple transformation. The
transformation is that if a worker prefers not to conduct
a crowdsourcing task for a crowdsourcing location, it is
equivalent to the case that the worker takes a detour and
does not pass that crowdsourcing location. In this paper, we
have a 2-D cost vector, C,

C =


c11 c12 . . . c1m
c21 c22 . . . c2m

...
...

...
...

cn1 cn2 . . . cnm

 .
There is a heterogeneous crowdsourcing cost, e.g., pay-off,
energy consumption for each crowdsourcing operation, and
cij denotes the cost for the crowdsourcing location lj by the
worker wi. It is a more general model than the previous
homogeneous model in [35]. In [35], the cost vector is a 1-D
vector, where C = {c1, · · · , cn}.

l1l1 l2l2

l3l3 l4l4

l2l1

l3 l4

w1

w2

w3 w4

Fig. 2. An illustration of crowdsourcing model in this paper, where the
grids with black blocks are spatial crowdsourcing locations.

A recruitment policy is a vector X = {x1, x2, · · · , xn},
which determines whether the workerwi is selected (xi = 1)
or not (xi = 0) to conduct the crowdsourcing task. The
workload of a crowdsourcing location lj is denoted as∑
lj∈ti cijxi. Note that there is a reachability issue for each

worker. When calculating the crowdsourcing location work-
load of lj , it counts the workload only when the recruited
a worker trajectory ti includes this crowdsourcing location,
i.e., lj ∈ ti. If lj does not in wi’s trajectory, i.e., lj /∈ ti, the
cost of recruiting wi will not be added to the location lj .

In addition, we use U to denote the set of workers which
are selected in a recruitment policy. That is, U = {W |xi =
1} and f(U) to denote the maximum location cost with set
U .

3.2 Problem Formulation
To address the coverage requirement of spatial crowdsourc-
ing, e.g., traffic monitoring, route recommendation, climate
forecast, and surveillance systems, we argue that the data
should be collected from all |L| crowdsourcing locations
before calculation to ensure a certain quality level. In ad-
dition, a practical issue in crowdsourcing is that there is
a crowdsourcing cost for paying the visited workers and
there should be a budget for each crowdsourcing location.
Therefore, we propose the Coverage and Balanced Crowd-
sourcing Recruiting (CBCR) problem in this paper, which is
formulated as follows.

As for the problem formulation, the proposed CBCR
problem is changed into

min max
j

∑
lj∈ti

cijxi

s.t.
∑
lj∈ti

xi ≥ 1, ∀lj xi ∈ {0, 1},
(1)

where the objective is to find a worker recruitment solution
so that the maximum crowdsourcing location cost for all
crowdsourcing locations is minimized and the constraint
ensures that every crowdsourcing location is covered.

To illustrate the CBCR problem, there is a motivational
example in Fig. 2, where there are 4 workers, w1, w2, w3,
and w4, with 4 crowdsourcing locations, namely, l1, l2, l3,
and l4. Assume workers have an identical cost for visiting
any crowdsourcing location in this toy example. In Fig. 1,
the worker w1 visits l1, l3, and l4. We cannot only select w1,
since this recruiting solution does not satisfy the coverage

IEEE TRANSACTIONS ON BIG DATA 5

constraint. To satisfy the coverage constraint, there are three
feasible recruitment strategies, i.e., {w1, w2}, {w1, w4}, and
{w2, w3}. For the first two solutions, the crowdsourcing
location l1 or l4 is covered twice. However, in the last
solution, all the crowdsourcing locations are only covered
once, which is better in terms of balancing the workload.

3.3 Hardness of CBCR problem

Theorem 1. The proposed CBCR problem is NP-hard.

Proof. To show the decision version of the CBCR (CBCR-
D) ∈ NP, suppose a recruiting policy, X , is given. Clearly,
we can verify the correctness of X in polynomial time.
Specifically, the complexity of the verification algorithm is
O(m), where m is the number of crowdsourcing locations.

To show that CBCR-D ∈ NP-hard, we reduce the tri-
partite matching problem to it in polynomial time, which
is NP-complete [36]. The tripartite matching problem can
be formulated as: given sets B,G, and H , each containing
n elements and a ternary relation T ∈ B × G × H , that
is, T consists of triples (b, g, h) such that b ∈ B, g ∈ G,
and h ∈ H . find a set of n triples in T , no two of which
have a component in common. We present a polynomial
time reduction and construct an instance of the CBCR-D as
follows:

(←) Consider an instance of the CBCR-D in which
cij = 1. m is a multiple of 3 and m crowdsourcing locations
can be partitioned into three equal sets. Each worker visits
exactly 3 crowdsourcing locations from these 3 location
sets respectively. It is equivalent to that in which we build
a graph G = (V,E), where V has m nodes and each
node represents a crowdsourcing location. All nodes are
partitioned into three sets and each of the sets has m/3
nodes. The nodes formulate sets B and G, and H . If a
worker visits two locations successively, there is an edge
between these two nodes. And for the locations that each
worker visited formulate a 3-tuple set T , which contains
one element from each of B, G, and H . We now argue that
the instance of tripartite matching is a ”yes” instance, i.e.
there is an instance of the CBCR-D.

(→) If the constructed instance of the CBCR-D satisfies
all the criterion, the selected trajectories form an instance
of tripartite matching according to the problem definition.
Therefore, the CBCR-D problem is NP-hard.

4 1-D SCENARIO

In this scenario, we assume that all the crowdsourcing
locations are in a line-topology. Application for this type of
line-topology is road segment monitoring, e.g., a highway
situation. On the highway, different vehicles enter in differ-
ent entrances and leave at different exits. Without loss of
generality, let us denote the crowdsourcing locations from
one side to the another side as l1 to lm for the remainder
of this section. The line topology simplifies the CBCR prob-
lem, since the overlapping relationship between workers is
relatively simple.

Algorithm 1 MG algorithm

Input: The vectors of T and C .
Output: The recruiting vector X .

1: while ∃l /∈ ∪ti do
2: Set Imin =∞ and idx = −1
3: for i from 1 to W\U do
4: for j from 1 to m do
5: if lj ∈ ti and f(U ∪ {wi})− f(U) < Imin then
6: Imin = f(U ∪ {wi})− f(U), idx = i.
7: Add widx to U and set xidx = 1.

Algorithm 2 CO algorithm

Input: The vectors of T and C .
Output: The recruiting vector X .

1: while ∃l /∈ ∪ti do
2: Set Imax = −∞ and idx = −1
3: for ∀t, where li ∈ t do
4: if | ∪wj∈U∪{wi} tj | − | ∪wj∈U tj | > Imax then
5: Imax = | ∪wj∈U∪{wi} tj | − | ∪wj∈U tj |, idx = i.
6: Add widx to U and set xidx = 1.

4.1 Greedy Approaches

In this subsection, we propose two greedy solutions first,
followed by the performance analysis and limitations with
the proposed greedy algorithms. The first naive greedy
algorithm is widely used in many applications. We observe
its drawbacks in the 1-D scenario and propose the second
greedy algorithm to improve the naive greedy algorithm.

4.1.1 Naive greedy algorithm

A natural idea is to select the worker who increases the
maximal workload cost the least to cover the network in
each round. Therefore, we propose the Min-max Greedy
(MG) algorithm as a baseline algorithm in this paper. The
detailed algorithm is shown in Algorithm 1, which starts
with an empty set. In each iteration, we check all the unas-
signed players and add the matchmaking which minimizes
the marginal gain of the objective function, i.e.,

w ← arg min
wi∈W\U

{f(U ∪ wi)− f(U)} (2)

The drawback of the MG algorithm is that a single crowd-
sourcing location might be unnecessarily covered multiple
times in the MG algorithm and such unnecessary coverage
can accumulate and lead to a bad result.

Theorem 2. In the optimal solution, a crowdsourcing location
will not be covered by 3 workers in the 1-D scenario.

Proof. This theorem can be proven by contradiction. If we
project all the trajectories for a special crowdsourcing loca-
tion into the road, we can always find a trajectory whose
starting position is the left-most, and we can also find a
trajectory whose end position is the right-most. Then, we
can use these two trajectories, possibly as one trajectory, to
cover this crowdsourcing location.

IEEE TRANSACTIONS ON BIG DATA 6

li

t1w1
w2 t2
w3 t3

(a) case 1

li

t1w1
w2 t2
w3 t3

(b) case 2

Fig. 3. Two cases for a crowdsourcing location.

4.1.2 Directional coverage algorithm
Facing this drawback of the MG algorithm and theorem
2, we propose the Coverage-Only (CO) algorithm, which
covers all the crowdsourcing locations from one side to the
other side, i.e., from l1 to lm. Each time, we select the worker
in an uncovered area, which increases the coverage most
from left to right. That is,

w ← argmax{| ∪wj∈U∪{wi} tj | − | ∪wj∈U tj |} (3)

where ∪wj∈U tj denotes all crowdsourcing locations covered
so far by set U , and | ∪wj∈U tj | denotes the number of
covered locations by ∪wj∈U tj . The detailed algorithm is
shown in Algorithm 2, which selects a worker which can
extend the coverage at most in a round. It is easy to prove
that the result of the CO algorithm is always feasible and it
can be proven by contradiction. The CO algorithm takes ad-
vantage of the contiguous trajectory overlapping property
in the 1-D scenario, as shown in theorem 2, and achieves the
performance bound, shown in theorem 3.

Theorem 3. The CO algorithm has a 2cmax approximation ratio
in the 1-D scenario, where cmax equals to max

cij
ci′j′

,∀i, i′, j, j′.

Proof. The proof insight is that each time, we guarantee that
a new crowdsourcing location will be covered, so that it
avoids unnecessary coverage accumulation. The problem
can be proven through contradiction, assuming that there is
a crowdsourcing location, li, that 3 workers can visit. Based
on the end position of their trajectories from left to right,
we denote these three trajectories as t1, t2, and t3 and their
starting positions as s1, s2, and s3. Then, for the starting
points of t1 and t2, two cases exist: s1 < s2 or s1 > s2,
as shown in Fig. 3. In the first case, the CO algorithm will
select t1 rather than t2. In the second case, the CO algorithm
will select t2 instead of t1. Therefore, neither of two cases
exist in the CO algorithm. Otherwise, there would be a
contradiction. As a result, there are at most two workers
visiting a crowdsourcing location and the cost is bounded
by 2cmax, cmax = max

cij
ci′j′

,∀i, i′, j, j′.

4.2 CO-PTAS algorithm
We observe that the bad performance of the CO algorithm
is due to the improper recruitment of workers with a large
recruiting cost. Therefore, if these jobs are scheduled with a
low priority, they cannot have a big influence on the final
result. Based on this observation, we propose a Polynomial-
Time Approximation Scheme (PTAS) algorithm. Given all
the workers, we partition the workers into two sets: costly
workers and cheap workers. Let us use ri to denote the
ratio between the maximum crowdsourcing cost of a worker
and the maximum crowdsourcing cost in the network, i.e.,

Algorithm 3 CO-PTAS algorithm

Input: The vector of T , C , and ε.
1: for from t0 to tn do
2: if cij ≤ ε

2 max∀i,j cij ∀i, j then
3: Add wi to S.
4: else
5: Add wi to B.
6: Call CO algorithm for workers/trajectories in S.
7: if the result is a coverage then
8: Modify the guess, ε, and repeat.
9: else

10: Return the best result so far.

Algorithm 4 Dynamic programming algorithm

Input: The vector of T and C .
1: Initialize the state record d[··]
2: for check crowdsourcing location i from l1 to lm do
3: for for all crowdsourcing locations li′ , li′ ≤ li do
4: if tj can reach location li′ then
5: d[i, j] = mini′<i,j′≤j max{d[i′, j′],
6: max∀lk∈tj {cj′k + cjk}}
7: Update the d[i, j] for location li
8: Find min d[m·]
9: Return X

ri = max
cij ,∀j
cij ,∀i,j . We call a worker, wi, a costly worker, if

ri > ε/2. Let B and S denote the set of costly workers and
cheap workers respectively, i.e., B = {wi : ri > ε/2} and
S = {wi : ri ≤ ε/2}.

The optimal ε can be found through the binary search.
Initially, we find the maximum worker cost in the network.
Then, we set ε = 1 and try to check if we can find a feasible
schedule through the CO algorithm. If so, we decrease the
value of ε to a half, otherwise we increase the value of ε
by 2. After the ε is changed, we calculate the corresponding
sets B and S and apply the CO algorithm in the new set
S. Then, the problem becomes finding a feasible solution in
set S. Then, according to theorem 2, the optimal value is at
most twice this value.

Theorem 4. The CO-PTAS algorithm can achieve a 2 + ε
approximation ratio in the proposed problem.

The proof is similar to the approximation ratio proof of
the CO algorithm. The insight is that if all crowdsourcing
operation costs are the same, the CO algorithm achieves
an approximation of 2. The PTAS scheme gradually re-
moves costly workers so that only the most cost-efficient
workers are selected. For the complexity of the CO-PTAS
algorithm, the CO-PATS algorithm at most calls the CO
algorithm log(n) times according to the binary search.
Therefore, the overall complexity of the CO-PTAS algorithm
is O(mnlog(n)).

An illustration of these three algorithms is in Fig. 4,
where there are four workers, and their crowdsourcing
operation cost at each crowdsourcing location is shown in
the figure. The MG algorithm will select w1 first, since it
will only increase by 1.4 at most, followed by w4, which
further increases by 0.6 for the maximum workload cost.

IEEE TRANSACTIONS ON BIG DATA 7

location l1 l2 l3 l4

3

1.
4

t4 2

t1

t2

t3

1.
5

1

1.
5

1

w1

w2

w3

w4

c ij

Fig. 4. An example of 1-D network in the heterogeneous model.

Then, to finish the coverage requirement, w2 should also
be selected. As a result, the maximum workload cost is 3.5
at crowdsourcing location l4. As for the CO algorithm, it
directionally covers from l1 to l4. Therefore, w1 is selected
first, followed by w3 in the worst case. Then, the maximum
workload cost is 3 at crowdsourcing location l3. However, in
the CO-PTAS algorithm, when ε = 1, w3 will have a lower
priority for being selected. Then, the CO-PTAS algorithm
will use w1 and w2 to finish the coverage, and the maximum
workload cost is 2.5 at crowdsourcing location l2.

4.3 Dynamic Programming Approach
We notice that the trajectory of a worker can only have influ-
ence on contiguous locations in the 1-D scenario. Therefore,
we can partition the problem into a series of sub-problems to
further overcome the improper selection of cost trajectories.

Assume the crowdsourcing locations from one side to
another side (e.g., from left to right) is l1, l2, · · · lm. Without
loss of generality, we assume trajectories are ordered based
on their ending positions. In dynamic programming, we
maintain a 2-D vector d[·, ·] to store the best result so far.
That is, d[i, j] is the optimal solution from crowdsourcing
locations l1 to li, and j denotes that the last trajectory is used
to cover location li. The objective of dynamic programming
is to find min d[m, j],∀j. Note that if a trajectory, tj , does
not cover li, d[i, j] equals ∞, which ensures that we will
not select tj to cover location li. Initially d[0, j] = 0,∀j,
which means that before we select any trajectories, the
minimal maximum cost is 0. Then we can get the following
relationship:

d[i, j] =

 0 i = 0

min
i′<i,j′≤j

max{d[i′, j′], max
∀lk∈tj

{cj′k + cjk}} i > 0

(4)
where location li′ is any crowdsourcing location that is no
smaller than the first crowdsourcing location before the
starting point of tj . j′ is any trajectory whose index is
smaller than j. For example, if j = 3, l′i can be crowd-
sourcing locations l1 and l2, tj′ can be t1 or t2. The idea
behind Eq. 4 is that if we want to find the optimal solutions
up to crowdsourcing location li with trajectory tj as the last
trajectory, we only need to check all sub-optimal solutions
from the previous location i′ with trajectory tj′ to ensure the
coverage constraint. If adding tj to the crowdsourcing loca-
tion from li′ to li does not increase the maximum cost (i.e.,
d[i′, j′] > max∀lk∈tj {cj′k + cjk}), we keep the maximum
cost, (i.e., d[i, j] = d[i′, j′]). Otherwise, we update the max-
imum cost of d[i, j], (i.e., d[i, j] = max∀lk∈tj {cj′k + cjk}).

Algorithm 5 Rounding algorithm

Input: The vector of T and C .
Output: The recruiting vector X .

1: Relax the problem into a linear programming.
2: Solve the relaxed linear programming problem and get

fractional assignment vector X?.
3: for for l1 to lm do
4: for ∀li ∈ ti do
5: Assign each ti to an interval between 0 and

∑
x?i .

6: Randomly generate a value in the whole range.
7: Pick the xi, if the random value is in its interval.

Note that cj′k can be zero, in which case tj′ ends at the
previous crowdsourcing location before tj starts. Note that
the reason that we can maintain the number of trajectories
covering one crowdsourcing location rather than the set of
combinations of these trajectories is that the latter always
leads to a worse result.

An example to illustrate the dynamic programming
approach is shown in Fig. 4. For crowdsourcing location
l1, since it is only covered by trajectory ti, d[1, 1] equals
1.4. Similarly, there are two trajectories covering crowd-
sourcing location l2, thus, we have d[2, 1] = 1.4 and
d[2, 2] = 2.5. The optimal solution that covers the crowd-
sourcing location from l1 to l2 is min{d[2, 1], d[2, 2]} = 1.4.
For crowdsourcing location l3, there are two trajectories,
t2 and t3, covering it. For t2, it is already calculated in
the previous crowdsourcing location, therefore, d[3, 2] =
d[2, 2] = 2.5. For t3, it checks all the previous solutions
up until crowdsourcing location l2. Therefore, d[3, 3] =
min{max{d[2, 1], c33},max{d[2, 2], c23 + c33}} = 3. In the
former case, t1 ends before t3, hence c13 = 0. Therefore, the
optimal solution up to l3 is min{d[3, 2], d[3, 3]} = 2.5. For
crowdsourcing location t4, the optimal solution up to l4 is
min{d[4, 2], d[4, 3], d[4, 4]} = 2.5.

The complexity analysis of dynamic programming is
shown as follows. Dynamic programming requires storing
O(mn) states. For each state update, we need to check
O(mn log n) times at most. This is because the algorithm
needs to trace back to find the optimal solution in each
previous location, O(m), and check the optimal solution at
that crowdsourcing location, which is O(n). The dynamic
programming approach still needs a sorting algorithm to
find the smallest cj , which is O(log n). Thus, the overall
time complexity is O(m2n2 log n).

5 GENERAL 2-D SCENARIO

In this section, we further discuss the general solution in the
2-D scenario by exploring the inherent property of the CBCR
problem. The application scenario for the 2-D scenario is
traffic monitoring in an urban area.

In the 1-D scenario, the overlapping relationship be-
tween different trajectories is simple. There are only two
cases in total for two trajectories. (1) They do not have over-
lapping relationships with each other. (2) They overlap with
each other, and all the overlapping locations are contiguous.
However, there is no such property in the general 2-D case.
An illustration of this property in the 1-D scenario is shown

IEEE TRANSACTIONS ON BIG DATA 8

location

w1

w2

w3

l2l2 l3l3 l4l4 l5l5 l7l7l6l6 l8l8l1l1

l2l2 l3l3 l4l4 l5l5 l7l7l6l6 l8l8l1l1

(a) 1-D scenario

location

w1

w2

w3

l2l2 l3l3 l4l4

l5l5 l7l7l6l6 l8l8

l1l1

l2l2 l3l3 l4l4 l5l5 l7l7l6l6 l8l8l1l1

(b) 2-D scenario

Fig. 5. The trajectory of workers in the 1-D and 2-D scenarios.

in Fig. 5, where there are 8 crowdsourcing locations. In Fig.
5(a), if we map workers’ trajectories into a 1-D dimension,
their trajectories are contiguous. In Fig. 5(a), w1 and w3 do
not overlap with each other. Workers w2 and w3 overlap
at crowdsourcing locations l3 and l4, which are adjacent
to each other. However, in Fig. 5(b), if we map workers’
trajectories into a 1-D dimension, their trajectories might be
discontinuous, e.g., w1’s trajectory is {l1, l2, l3, l5, l7} in Fig.
5(b). Its trajectory overlaps with worker w3’s trajectory at
crowdsourcing locations l5 and l7, which are not adjacent
with each other. Therefore, there is no sub-optimal structure,
that is, the optimal solution in a sub-problem may have an
impact on the later recruitment assignment.

5.1 Sub-modular property

Due to the fact that the CBCR problem is NP-hard in the
2-D scenario, it is impossible to try every combination and
backtracking if a matchmaking combination leads to a bad
result. Instead, we try to gradually expand the matchmak-
ing assignment. However, during the expanding procedure,
the error might increase. We prove that the error can be
bounded. That is the insight of the sub-modular property.

Theorem 5. The objective function, f(U), of the CBCR problem
is nonnegative, monotone, and sub-modular.

Proof. According to the definition of cost, it has a mini-
mal value of 0 and it cannot be negative. Therefore, f(U)
is nonnegative. If there exists two sets U ′ and U ′′, and
U ′ ⊆ U ′′ ⊆ U . Let us denote the worker set whose
trajectories cover the crowdsourcing location lk as U ′k, and
U ′′k , respectively. Clearly, U ′k ⊆ U ′′k , otherwise, there is a
contradiction that U ′ ⊆ U ′′. Then, based on the inclusion
relation, fk(U ′k) =

∑
wi∈U ′ cik ≤ fk(U

′′
k) =

∑
wi∈U ′′ cik

and fk(U) = maxk∈[1,m] fk(Uk), where fk(·) is the objective
value in lk. Therefore, f(U ′) ≤ f(U ′′) and f(U) is mono-
tone.

Based on the calculation of fk(Uk), for any crowdsourc-
ing location lk,

fk(Uk ∪ w′i) = max{f(Uk),
∑

ui∈{Uk∪w′
i}

cik}. (5)

Let us denote wi′ and wi′′ as two newly recruited work-
ers and wi′ and wi′′ ∈ W\U . If the following inequation is
true,

f(U∪{wi′})+f(U∪wi′′}) ≥ f(U∪{wi′ , wi′′})+f(U), (6)

the CBCR problem is submodular. When wi′ and wi′′ do not
have overlaps in their trajectories, the two sides of above
inequation are equal since wi′ and wi′′ have no influence on
each other. Therefore, we focus on the following condition,
where wi′ and wi′′ have overlaps in their trajectories at
crowdsourcing location gk, that is,

fk(Uk ∪ {wi′}) + fk(Uk ∪ wi′′})
≥ fk(Uk ∪ {wi′ , wi′′}) + f(Uk),

(7)

Based on Eq. 5, we prove that the inequation 7 is true in all
the following cases.

(1) if
∑
wi∈{Uk∪w′

i}
cik ≤ fk(Uk) and

∑
wi∈{Uk∪w′′

i }
cik ≤

fk(Uk). In this case, the two sides of InEq. 7 are
the same and equal to 2fk(Uk) according to Eq. 5.
Therefore, InEq. 6 is true. (2) if

∑
wi∈{Uk∪w′

i}
cik ≥

fk(Uk) and
∑
wi∈{Uk∪w′′

i }
cik ≥ fk(Uk), the left side

of Eq. 6 is
∑
wi∈{Uk∪w′

i}
cik +

∑
wi∈{Uk∪w′′

i }
cik ≥∑

ui∈{Uk∪{w′
i,w

′′
i }}

wi + fk(Uk) and InEq. 6 is true. (3) if∑
wi∈{Uk∪w′

i}
cik ≥ fk(Uk) or

∑
ui∈{Uk∪w′′

i }
wi ≥ fk(Uk),

two sides of InEq. 7 equal to
∑
wi∈{Uk∪{w′

i,w
′′
i }}

cik+fk(Uk)
and InEq. 7 is true. Therefore, f(U) is sub-modular.

According to the results in [37], the MG algorithm in the
general case has an approximation ratio of 1 + lnn.

5.2 Randomized Rounding Approach
In this subsection, we propose to using a rounding tech-
nique [38] to propose a randomized rounding algorithm.
For the original problem in Eq. 1, it is equivalent to finding
a smallest value θ, which ensures that the workload of any
crowdsourcing location is no larger than θ. Then, if we relax
the formulation from xi ∈ {0, 1} to xi ∈ [0, 1], Eq. 1 becomes
a linear programming problem as follows

min θ

s.t.
∑
lj∈ti

cijxi ≤ θ,∑
lj∈ti

xi ≥ 1, xi ∈ [0, 1] ∀i, j.
(8)

Eq. 8 can be optimally solved using the linear programming
solver and therefore, we can get the optimal θ? and the
corresponding assignment vector {x?1, x?2, · · · , x?n}.

For the original problem, we can use {x?1, x?2, · · · , x?n} to
get a randomized rounding result. In detail, the randomized
rounding algorithm gives each worker a probability of being
recruited. For every crowdsourcing location li from l1 to lm,

IEEE TRANSACTIONS ON BIG DATA 9

(a) San Franciso (b) Seattle (c) Rome

Fig. 6. The city map

(a) San Franciso
4 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5

#104

1.5

1.51

1.52

1.53

1.54

1.55

1.56

1.57

1.58

1.59

1.6
#105

(b) Seattle (c) Rome

Fig. 7. The vehicles’ movement history

we check all trajectories that include li. These trajectories
are selected based on the their corresponding x? in the
linear programming solution. For example, we have three
workers with x?1 = 0.5, x?2 = 0.3, and x?3 = 0.2 who
visit a crowdsourcing location. The randomized rounding
algorithm will randomly generate a number between 0 and
1, the sum of 0.5, 0.3, and 0.2. If the number is between 0
and 0.5, the randomized rounding algorithm will pick the
first worker. If the number is between 0.5 and 0.8, it will
pick the second worker, and if the number is between 0.8
and 1, it will pick the third worker. The result generated
by the randomized rounding algorithm is always a feasible
solution. This is because the random assignment ensures
that one trajectory for a crowdsourcing location will be
selected.

The performance of the randomized rounding algorithm
is as follows. Since all workers are selected with probability
xi independently, we get

Pr[
∑

T :lj∈ti

cijE[xi]] =
∑

T :lj∈ti

cijE[xi]

=
∑

cij · x?i ≤ θ?,
(9)

the expected cost on any location is at most θ?. However,
since we have many crowdsourcing locations in the net-
work, some crowdsourcing locations may end up with a
larger cost than the expectation. We would like to show that
there is some number λ such that for every crowdsourcing
location, Pr[cijxi ≥ λθ?] ≤ 1

nm . Then, by the union bound,
Pr[∃li,

∑
cijxi ≥ λθ?] ≤ |L|

mn ≤
1
n . That is, we would get a

λ approximation with a 1
n probability to exceed the λθ?. In

the following, we will prove that λ = O(logn
log logn).

Theorem 6. The proposed randomized rounding algorithm has
an O(logn

log logn) approximation ratio.

Proof. Without loss of generality, let us assume that all
rounds of the randomized rounding algorithm are all
disjoint events. Workers are selected with probabilities
{x?1, x?2, ..., x?n} for any crowdsourcing location li, where x?i
follows the independent and identically distributed random
distribution, the probability that

∑
x?i is normalized to 1.

Let random variables xi ∈ [0, 1]. Therefore, E[
∑
cijxi] =∑n

1 cijE[xi] =: θ?. Then, for any λ > 0 by using the
Chernoff bounds, we get the following result due to the
random selection:

Pr[
∑

cijxi ≥ (1 + λ)θ?] ≤
(eλ

(1 + λ)1+λ

)θ?
(10)

It is equivalent to

Pr[
∑

cijxi > λθ?]

≤ (
eλ−1

λλ
)−λθ

?

≤ (λ/e)−λ
(11)

If we set λλ ≈ n, we have λ = O(logn
log logn) and Eq. 11 ≤ 1

n .

The insight of the randomized rounding algorithm is
that the lower bound of the optimal recruitment assignment
can be calculated and the random walk can reach the opti-
mal assignment with a designed probability.

IEEE TRANSACTIONS ON BIG DATA 10

10 20 30 40 50
worker cost

0

50

100

150

200
m

ax
im

um
 lo

ca
tio

n
co

st MG
CO
PT
DP

(a) San Franciso

10 20 30 40 50
worker cost

0

20

40

60

80

m
ax

im
um

 lo
ca

tio
n

co
st MG

CO
PT
DP

(b) Seattle

10 20 30 40 50
worker cost

0

20

40

60

m
ax

im
um

 lo
ca

tio
n

co
st MG

CO
PT
DP

(c) Rome
Fig. 8. Performance evaluation of different cost ranges in the 1-D scenario.

5 10 15 20
crowdsourcing location (n)

10

20

30

40

m
ax

im
um

 lo
ca

tio
n

co
st MG

CO
PT
DP

(a) San Franciso

2 3 4 5 6
crowdsourcing location (n)

20

40

60

80

100

m
ax

im
um

 lo
ca

tio
n

co
st MG

CO
PT
DP

(b) Seattle

5 10 15 20
crowdsourcing location (n)

20

40

60

80

100

m
ax

im
um

 lo
ca

tio
n

co
st MG

CO
PT
DP

(c) Rome
Fig. 9. Performance evaluation of different amounts of crowdsourcing locations in the 1-D scenario.

6 PERFORMANCE EVALUATION

In this section, we first discuss the experimental setting,
followed by the algorithm introduction. The last part of this
section is the experimental results under different settings.

6.1 Traces

The EPFL [39] trace is the taxi trace collected from San
Francisco, USA. It contains GPS coordinates of 537 taxies
over 30 days. Another trace that we use is the Seattle bus
[40] trace. The traces were collected from 750 buses while
on different routes in Seattle, USA for several weeks. The
Rome taxi trace [41] contains GPS coordinates of 320 taxies
in Rome, Italy. The experimental areas are shown in Figs. 7,
where the trajectories of taxies in the EPFL trace and buses
in the Seattle trace can be fitted into grids well. However,
the trajectories of taxies in the Rome trace represent a more
general case. Also, buses and taxies have different move-
ment patterns, i.e., where a taxi visits most area of the city,
however each bus has a limited coverage area. Therefore,
these there datasets represent three different scenarios.

Some detailed experiment parameters are as follows: we
choose the centers of these three cities, 10,000 (ft) × 10,000
(ft), as the experiment area. Then, we divide the experiment
area into grids. The grid size is 200 (ft) × 200 (ft), which
is the typical WiFi range under 2.4 GHz in 802.11 protocol
for outdoor environment [42]. The experiment area and the
vehicles’ movement history are shown in Fig. 6 and 7. We
consider that once a vehicle reaches a grid, it can success-
fully finish the crowdsourcing task. Since the data record
amount is huge in these three traces, in the experiment,
we choose the first 40 taxis in the EPFL trace, 2, 183, 479
records, and we choose 236 buses in the Seattle bus trace,

401, 577 records. In the Rome trace, we choose the first 109
taxies, 1, 000, 000 records. Since we do not have the cost
information in these three traces, we generate five different
costs, which refers to 5 different costs in Uber cars [5], i.e.,
UberPool, UberX, UberXL, UberSelect, and UberBlack in
reality.

6.2 Experiment Setting

The trajectory of a taxi/bus is all grids that it visited in the
experimental area. In the 1-D scenario, we randomly select
a row in the area to conduct the experiments. The crowd-
sourcing locations are randomly selected among the grids
[4, 20] and [2, 6], respectively in three datasets. For each
vehicle, we use the uniform distribution and the exponential
distribution with parameter 1 to assign a crowdsourcing
operation cost. The enter position and the exit position are
considered as the left-most grid and the right-most grid,
respectively. In the 2-D scenario, we randomly select [5,
25] and [4, 20] crowdsourcing locations in the 2-D scenario.
In addition, we use the uniform distribution to assign the
vehicle cost. All the experiments are repeated 500 to 2000
times to ensure convergence.

6.3 Algorithm Comparison

We propose four algorithms in the 1-D scenario.

• Min-max greedy (MG) algorithm selects the worker
candidate sets that increase the max-cost of any
crowdsourcing location at least, then among them,
the worker who can increase the coverage most is
selected until the network is covered, which is widely
used in combination optimization [37].

IEEE TRANSACTIONS ON BIG DATA 11

10 20 30 40 50
worker cost

0

100

200

300
m

ax
im

um
 lo

ca
tio

n
co

st MG(U)
MG(E)
CO(U)
CO(E)
PT(U)
PT(E)
DP(U)
DP(E)

(a) San Franciso

2 3 4 5 6
worker cost

0

20

40

60

80

100

m
ax

im
um

 lo
ca

tio
n

co
st MG(U)

MG(E)
CO(U)
CO(E)
PT(U)
PT(E)
DP(U)
DP(E)

(b) Seattle

10 20 30 40 50
worker cost

0

20

40

60

80

m
ax

im
um

 lo
ca

tio
n

co
st MG(U)

MG(E)
CO(U)
CO(E)
PT(U)
PT(E)
DP(U)
DP(E)

(c) Rome
Fig. 10. Performance evaluation of different cost distributions in the 1-D scenario.

10 20 30 40 50
worker cost

0

50

100

150

m
ax

im
um

 lo
ca

tio
n

co
st MG

CO
PT
RD

(a) San Franciso

5 10 15 20
worker cost

0

20

40

60

80

100

120

m
ax

im
um

 lo
ca

tio
n

co
st MG

CO
PT
RD

(b) Seattle

5 10 15 20
worker cost

0

20

40

60

80

m
ax

im
um

 lo
ca

tio
n

co
st MG

CO
PT
RD

(c) Rome
Fig. 11. Performance comparison of different cost ranges in the 2-D scenario.

• Coverage-only (CO) algorithm selects a set of workers
from one side to another side without considering
their cost.

• PTAS (PT) algorithm divides the workers into to
two sets according to their corresponding costs, then,
uses the worker with the lowest cost to cover the net-
work. Then, we try to find the optimal set partition.
The ε is 0.1 in the experiments.

• Dynamic programming (DP) algorithm uses the pro-
posed dynamic programming technique to find the
optimal solution.

In the generate 2-D scenario, the MG algorithm can be
applied directly. For the CO and PT algorithms, they can
be extended into the 2-D scenario by covering the area row-
by-row/column-by-column. We compare their performance
with the randomized rounding (RD) algorithm, which uses the
randomized rounding technique to select the workers.

6.4 Experimental results
In this subsection, we will discuss the average maximum
crowdsourcing location cost of the proposed algorithms in
the 1-D scenario and the 2-D scenario in terms of different
average cost values, different crowdsourcing locations, and
different cost distributions.

6.4.1 Different cost ranges in the 1-D scenario
Fig. 8 shows the performance results of the proposed four
algorithms in the 1-D scenario. The results show that along
with the worker cost increase, the performance difference
between the proposed four algorithms increases. The DP al-
gorithm always achieves the best performance, i.e., the low-
est maximum workload cost, followed by the PT algorithm

in all three datasets. As for the MG and CO algorithms, CO
algorithm has a better performance in the EPFL and Seattle
traces but a worse performance in the Rome trace, which
is related to the experimental setting. The reason is that the
roads in the first two traces can be approximated as grids
well. Therefore, it is easy to find a worker who can cover
multiple crowdsourcing locations. However, for the Rome
trace, the majority of workers’ trajectories can only cover a
few crowdsourcing locations in 1-D scenario. Therefore, in
first two traces, the CO algorithm can significantly reduce
the total amount of selected workers, and thus leads to a
good performance. For the Rome trace, the CO algorithm
cannot reduce the total amount of selected worker well and
its drawback appears, i.e., worker with high cost might be
selected. On average, the PT algorithm’s performance is
very close to the optimal algorithm, 10% of the performance
loss at the benefit of a lower computation complexity. The
CO and MG algorithms only achieve 25% to 30% perfor-
mance compared with the optimal solution. However, their
computation complexity is much lower.

6.4.2 Different crowdsourcing location amounts in the 1-D
scenario
The performance results of different crowdsourcing location
amounts in three datasets are shown in Fig. 9. It is clear
that along with the increase of crowdsourcing locations,
the performance of the MG algorithm decreases sharply.
When there are only a few crowdsourcing locations, the
MG algorithm achieves the second-best algorithm. How-
ever, it achieves the worst performance in the case where
there are many crowdsourcing locations. For the remaining
three algorithms, along with the increase of crowdsourcing

IEEE TRANSACTIONS ON BIG DATA 12

locations, the cost does not increase much, which shows the
effectiveness of directional coverage, i.e., the error cannot
accumulate. The PT algorithm reduces the cost about 35%
more on average in these three datasets than CO algorithm
at the cost of extra computation complexity. Therefore, if
the crowdsourcing locations are few, the MG algorithm
achieves a good performance-cost trade-off. If there are
many crowdsourcing locations, the PT algorithm achieves
a good performance-cost trade-off. The insight behind it
is that when the crowdsourcing location is sparse, the im-
proper selection of the MG algorithm increases. However,
then the crowdsourcing location becomes dense, and the
improper of the MG algorithm decreases, since it becomes
easy to cover some uncovered areas.

6.4.3 Different cost distributions in the 1-D scenario
In the experiments, we discuss the influence of different cost
distributions, i.e., uniform distribution and exponential cost
distribution, in three datasets. Let us use F(U) to denote the
uniform cost distribution and F(E) to denote the exponential
distribution for each algorithm, respectively. For example,
MG(U) is the performance result of the MG algorithm
under uniform distribution. The results are shown in Fig.
10. From Figs. 10(a), 10(b) and 10(c), we can conclude that
the exponential crowdsourcing cost distribution leads to
a worse performance than the uniform cost distribution.
The reason is that we focus on the worst situation rather
than the average situation in the CBCR problem. There is
a higher probability in the exponential distribution that all
the available workers for a crowdsourcing location has a
high crowdsourcing operation cost than the uniform dis-
tribution and there might be high error accumulation in
some crowdsourcing locations. In detail, Figs. 10(a) and
10(b) show similar results where MG(E) and CO(E) achieve
the worst and the second-worst performances, followed by
MG(U), CO(U), PT(E), DP(E), PT(U), and DP(U) algorithms.
Though the average crowdsourcing costs are the same in
two distributions, the maximum crowdsourcing location is
doubled. The result in the Rome trace is a little different as
shown in Fig. 10(c). The MG(E) algorithm is better than the
MG(U) algorithm when the worker cost is small.

6.4.4 Different cost ranges in the 2-D scenario
Fig. 11 shows the performance results of the proposed four
algorithms in the 2-D scenario. Similarly, along with the
worker cost increase, the performance difference between
the proposed four algorithms increases. The RD algorithm
always achieves the best performance, i.e., the lowest max-
imum workload cost, followed by the PT algorithm in all
three datasets. As for the MG and CO algorithms, the
MG algorithm always has better performance than the CO
algorithm, which is different from the 1-D scenario. The
reason is that in the 2-D scenario, the CO algorithm tries
to avoid redundant coverage, and thus covers row-by-
row/column-by-column. However, the performance is not
that good considering the fact that there are many redun-
dancies from previously covered rows/columns. Therefore,
the CO algorithm does not have a good performance in
the 2-D scenario. In addition, crowdsourcing cost is not
considered in the CO algorithm. The PT algorithm achieves
a similar performance to the MG algorithm at the cost of

an extra computation complexity as shown in Figs. 11(b)
and 11(c). The RD algorithm achieves a 15% performance
gain compared with the optimal solution. However, their
computation complexity is the highest.

6.4.5 Different crowdsourcing location amounts in the 2-D
scenario
The performance results of different crowdsourcing location
amounts in the 2-D scenario are shown in Fig. 12. It is clear
that along with the increase of the amount of crowdsourcing
locations, the performance of the proposed four algorithm
becomes worse. Among them, the performance difference
between the RD algorithm and the other three algorithm
becomes larger. For the remaining three algorithms, the MG
algorithm’s performance is better than the PT algorithm in
the Seattle and Rome traces, which shows that directional
coverage will still lead to huge error accumulation. The
worst algorithm is the CO algorithm in all three datasets.
Note that the MG algorithm achieves a 40% performance
gain over the CO algorithm with a similar time complexity.
The RD algorithm has a 30% performance gain at the cost
of extra time complexity. In Figs. 12(a) and 12(c), the CO
algorithm achieves a larger maximum workload cost than
the MG algorithm. However, in the Seattle trace, the CO
algorithm achieves 30% of the maximum workload cost
of that of the MG algorithm. The reason might be that
the taxies visit the whole grid area more uniformly than
the buses. Therefore, we can more easily find a taxi with
a smaller cost to cover the same area. However, different
buses’ routes are more different.

6.4.6 Different cost distributions in the 2-D scenario
Fig. 13 shows the result of different cost distributions in
the 2-D scenario. Figs. 13(a), 13(b), and 13(c) show a sim-
ilar performance order of the four algorithms in terms of
different cost distribution. That is, the maximum workload
cost decreases following the order of the MG, CO, PT, and
RD algorithms. The difference from the 1-D scenario is
that the performance difference in two cost distributions
becomes even larger. The insight behind it is that when
the crowdsourcing cost distribution is exponential, the im-
proper selection of the MG algorithm leads to a worse
result. From Figs. 13(a), 13(b) and 13(c), we notice that
the experimental distribution further increases the cost of
the CO algorithm by 150%, 200%, and 250%, respectively.
However, for the MG and RD algorithms, the cost increase
is less than 50%, which demonstrates the effectiveness of
these two algorithms in the general case.

7 CONCLUSION AND FUTURE WORK

In this paper, we address coverage and workload-balancing
in spatial crowdsourcing, which are ignored in existing
approaches. The coverage constraint means that any crowd-
sourcing location should be visited by at least one of the
recruited workers to satisfy the Quality-of-Service require-
ment for some applications. In addition, there is a hetero-
geneous cost for each crowdsourcing operation in reality,
e.g., data traffic or energy/recourse consumption and the
resource/energy may be limited at each crowdsourcing
location. The objective of this paper is to solve the Coverage

IEEE TRANSACTIONS ON BIG DATA 13

5 10 15 20
crowdsourcing location (n)

0

20

40

60

80

100
m

ax
im

um
 lo

ca
tio

n
co

st MG
CO
PT
RD

(a) San Franciso

5 10 15 20
crowdsourcing location (n)

0

20

40

60

80

m
ax

im
um

 lo
ca

tio
n

co
st MG

CO
PT
RD

(b) Seattle

5 10 15 20
crowdsourcing location (n)

0

10

20

30

40

50

m
ax

im
um

 lo
ca

tio
n

co
st MG

CO
PT
RD

(c) Rome
Fig. 12. Performance comparison of different amounts of crowdsourcing locations in the 2-D scenario.

10 20 30 40 50
worker cost

0

100

200

300

400

m
ax

im
um

 lo
ca

tio
n

co
st MG(U)

MG(E)
CO(U)
CO(E)
PT(U)
PT(E)
RD(U)
RD(E)

(a) San Franciso

5 10 15 20
worker cost

0

50

100

150

m
ax

im
um

 lo
ca

tio
n

co
st MG(U)

MG(E)
CO(U)
CO(E)
PT(U)
PT(E)
RD(U)
RD(E)

(b) Seattle

10 20 30 40 50
worker cost

0

20

40

60

80

100

m
ax

im
um

 lo
ca

tio
n

co
st MG(U)

MG(E)
CO(U)
CO(E)
PT(U)
PT(E)
RD(U)
RD(E)

(c) Rome
Fig. 13. Performance comparison of different cost distributions in the 2-D scenario.

and Balanced Crowdsourcing Recruiting (CBCR) problem,
which ensures the coverage requirement and minimizes
the maximum crowdsourcing cost for any crowdsourcing
location at the same time.

We prove that the CBCR problem is NP-hard in the gen-
eral case. Then, we discuss the solution of CBCR problem in
1-D scenario. In the 1-D scenario, we first propose a naive
greedy algorithm and a PTAS scheme to trade-off the com-
putation complexity and the performance. The performance
can be bounded to 2 + ε, where ε can be an arbitrary small
value. Then, we found that a sub-optimal structure exists,
and thus the optimal dynamic programming approach is
proposed to find the optimal solution in the 1-D scenario.
In the general 2-D scenario, we first prove that the CBCR
problem has a sub-modular property and thus the naive
greedy algorithm has an approximation ratio of lnn + 1.
In addition, we propose a randomized rounding algorithm
with an expectation bound of O(logn

log logn). Extensive exper-
iments from three realistic vehicle traces demonstrate the
effectiveness of the proposed algorithms.

In this paper, we assume that each worker’s trajectory
is totally deterministic and this is no detour flexibility at
all. One of the future directions is to conduct research on
a limited flexibility model, where each worker has their
original trajectories and a detour distance threshold. That is,
it is acceptable to detour for a short distance to earn larger
benefit. The real application is like UberPool. In this case,
how to optimally recruit workers in spatial crowdsourcing
under budget constraint is our interest. In addition, we
are seeking opportunity to implement the proposed spatial
crowdsourcing approaches into real system, therefore, we
can adjust the proposed algorithm into the real setting.

ACKNOWLEDGMENTS

This research was supported in part by NSF grants CNS
1757533, CNS1629746, CNS 1564128, CNS 1449860, CNS
1461932, CNS 1460971, and IIP 1439672.

REFERENCES

[1] N. Wang and J. Wu, “Opportunistic wifi offloading in a
vehicular environment: Waiting or downloading now?” in
Proceedings of the IEEE INFOCOM, 2016.

[2] J. Yick, B. Mukherjee, and D. Ghosal, “Wireless sensor
network survey,” Computer networks, vol. 52, no. 12, pp.
2292–2330, 2008.

[3] Y. Zhao and Q. Han, “Spatial crowdsourcing: current state
and future directions,” IEEE Communications Magazine,
vol. 54, no. 7, pp. 102–107, 2016.

[4] D. C. Brabham, “Crowdsourcing as a model for problem
solving: An introduction and cases,” Convergence, vol. 14,
no. 1, pp. 75–90, 2008.

[5] https://en.wikipedia.org/wiki/Uber (company).
[6] https://www.waze.com.
[7] https://www.openstreetmap.org.
[8] J. She, Y. Tong, and L. Chen, “Utility-aware social event-

participant planning,” in Proceedings of the ACM SIGMOD
ICMD, 2015.

[9] Z. He and D. Zhang, “Cost-efficient traffic-aware data
collection protocol in vanet,” Ad Hoc Networks, 2016.

[10] D. Deng, C. Shahabi, and U. Demiryurek, “Maximizing the
number of worker’s self-selected tasks in spatial crowd-
sourcing,” in Proceedings of the ACM SIGSPATIAL, 2013.

[11] J. She, Y. Tong, L. Chen, and C. C. Cao, “Conflict-aware
event-participant arrangement,” in Proceedings of the IEEE
ICDE, 2015.

[12] N. Wang and J. Wu, “Optimal cellular traffic offloading
through opportunistic mobile networks by data partition-
ing,” in Proceedings of the IEEE ICC, 2018.

IEEE TRANSACTIONS ON BIG DATA 14

[13] W. Sun, Q. Li, and C.-K. Tham, “Wireless deployed and
participatory sensing system for environmental monitor-
ing,” in Proceedings of the IEEE SECON, 2014.

[14] B. Hull, V. Bychkovsky, Y. Zhang, K. Chen, M. Goraczko,
A. Miu, E. Shih, H. Balakrishnan, and S. Madden, “Cartel:
a distributed mobile sensor computing system,” in Proceed-
ings of the ACM SenSys, 2006.

[15] P. Mohan, V. N. Padmanabhan, and R. Ramjee, “Nericell:
rich monitoring of road and traffic conditions using mobile
smartphones,” in Proceedings of the ACM SenSys, 2008.

[16] F. Saremi, O. Fatemieh, H. Ahmadi, H. Wang, T. Abdelza-
her, R. Ganti, H. Liu, S. Hu, S. Li, and L. Su, “Experiences
with greengpsfuel-efficient navigation using participatory
sensing,” IEEE Transactions on Mobile Computing, vol. 15,
no. 3, pp. 672–689, 2016.

[17] M. Liaqat, A. Gani, M. H. Anisi, S. H. Ab Hamid,
A. Akhunzada, M. K. Khan, and R. L. Ali, “Distance-based
and low energy adaptive clustering protocol for wireless
sensor networks,” PloS one, vol. 11, no. 9, p. e0161340, 2016.

[18] Y. Chon, N. D. Lane, Y. Kim, F. Zhao, and H. Cha, “Un-
derstanding the coverage and scalability of place-centric
crowdsensing,” in Proceedings of the ACM Ubicomp, 2013.

[19] X. Zhang, Z. Yang, Y. Liu, and S. Tang, “On reliable task
assignment for spatial crowdsourcing,” IEEE Transactions
on Emerging Topics in Computing.

[20] B. Guo, Y. Liu, W. Wu, Z. Yu, and Q. Han, “Activecrowd:
A framework for optimized multitask allocation in mo-
bile crowdsensing systems,” IEEE Transactions on Human-
Machine Systems, 2016.

[21] H. Zheng, N. Wang, and J. Wu, “Minimizing deep sea data
collection delay with autonomous underwater vehicles,”
Journal of Parallel and Distributed Computing, vol. 104, pp.
99–113, 2017.

[22] J. Prassl and M. Risak, “Uber, taskrabbit, and co.: Platforms
as employers-rethinking the legal analysis of crowdwork,”
Comp. Lab. L. & Pol’y J., vol. 37, p. 619, 2015.

[23] N. Wang and J. Wu, “Trajectory scheduling for timely
data report in underwater wireless sensor networks,” in
Proceedings of the IEEE GLOBECOM, 2015.

[24] Y. Tong, J. She, B. Ding, L. Wang, and L. Chen, “Online
mobile micro-task allocation in spatial crowdsourcing,” in
Proceedings of the IEEE ICDE, 2016.

[25] U. ul Hassan and E. Curry, “Efficient task assignment
for spatial crowdsourcing: A combinatorial fractional op-
timization approach with semi-bandit learning,” Expert
Systems with Applications, vol. 58, pp. 36–56, 2016.

[26] D. Zhao, H. Ma, and L. Liu, “Energy-efficient opportunis-
tic coverage for people-centric urban sensing,” Wireless
networks, vol. 20, no. 6, pp. 1461–1476, 2014.

[27] H. Xiong, D. Zhang, G. Chen, L. Wang, and V. Gauthier,
“Crowdtasker: Maximizing coverage quality in piggyback
crowdsensing under budget constraint,” in Proceedings of
the IEEE PerCom, 2015.

[28] D.-H. Shin, S. He, and J. Zhang, “Joint sensing task and
subband allocation for large-scale spectrum profiling,” in
Proceedings of the IEEE INFOCOM, 2015.

[29] Z. He, J. Cao, and X. Liu, “High quality participant recruit-
ment in vehicle-based crowdsourcing using predictable
mobility,” in Proceedings of the IEEE INFOCOM, 2015.

[30] P. Cheng, X. Lian, Z. Chen, R. Fu, L. Chen, J. Han, and
J. Zhao, “Reliable diversity-based spatial crowdsourcing
by moving workers,” Proceedings of the VLDB Endowment,
vol. 8, no. 10, pp. 1022–1033, 2015.

[31] X. Zhang, Z. Yang, Y.-J. Gong, Y. Liu, and S. Tang, “Spa-
tialrecruiter: maximizing sensing coverage in selecting
workers for spatial crowdsourcing,” IEEE Transactions on
Vehicular Technology, vol. 66, no. 6, pp. 5229–5240, 2017.

[32] Y. Tong, L. Wang, Z. Zhou, B. Ding, L. Chen, J. Ye, and
K. Xu, “Flexible online task assignment in real-time spatial
data,” Proceedings of the VLDB Endowment, 2017.

[33] T. Song, Y. Tong, L. Wang, J. She, B. Yao, L. Chen, and
K. Xu, “Trichromatic online matching in real-time spatial
crowdsourcing,” in Proceedings of the IEEE ICDE, 2017.

[34] H. To, L. Fan, L. Tran, and C. Shahabi, “Real-time task
assignment in hyperlocal spatial crowdsourcing under
budget constraints,” in Proceedings of the IEEE PerCom,
2016.

[35] N. Wang, J. Wu, and P. Ostovari, “Coverage and min-max
workload cost in spatial crowdsourcing,” in Proceedings of
the IEEE UIC, 2017.

[36] Y. Niu, L. Pan, M. J. Pérez-Jiménez, and M. R. Font, “A tis-
sue p systems based uniform solution to tripartite match-
ing problem,” Fundamenta Informaticae, vol. 109, no. 2, pp.
179–188, 2011.

[37] A. Krause and D. Golovin, “Submodular function maxi-
mization.” 2014.

[38] P. Raghavan and C. D. Tompson, “Randomized rounding:
a technique for provably good algorithms and algorithmic
proofs,” Combinatorica, vol. 7, no. 4, pp. 365–374, 1987.

[39] M. Piorkowski, N. Sarafijanovic-Djukic, and M. Gross-
glauser, “A parsimonious model of mobile partitioned
networks with clustering,” in Proceedings of the IEEE COM-
SNETS, 2009.

[40] J. G. Jetcheva, Y.-C. Hu, S. PalChaudhuri, A. K. Saha, and
D. B. Johnson, “Design and evaluation of a metropolitan
area multitier wireless ad hoc network architecture,” in
Proceedings of the IEEE HotMobile, 2003.

[41] L. Bracciale, M. Bonola, P. Loreti, G. Bianchi,
R. Amici, and A. Rabuffi, “CRAWDAD dataset
roma/taxi (v. 2014-07-17),” Downloaded from
https://crawdad.org/roma/taxi/20140717, Jul. 2014.

[42] http://www.wi-fi.org/.html.

Ning Wang received his B.Eng. in Electrical En-
gineering from the University of Electronic Sci-
ence and Technology of China, Chengdu, China
in 2013. He is currently a 5th year Ph.D. student
in the Department of Computer and Information
SciencesTemple University, Philadelphia, Penn-
sylvania, USA. His research focuses on mobile
edge networks, data offloading and pub/sub sys-
tems.

Jie Wu is the Associate Vice Provost for Inter-
national Affairs at Temple University. He also
serves as the Director of the Center for Net-
worked Computing and a Laura H. Carnell pro-
fessor. He served as the Chair of Computer and
Information Sciences from 2009 to 2016. Prior
to joining Temple University, he was a program
director at the National Science Foundation and
was a distinguished professor at Florida Atlantic
University. His current research interests include
mobile computing and wireless networks, routing

protocols, cloud and green computing, network trust and security, and
social network applications. Dr. Wu regularly publishes in scholarly jour-
nals, conference proceedings, and books. He serves on several editorial
boards, including IEEE Transactions on Service Computing and the
Journal of Parallel and Distributed Computing. Dr. Wu was general co-
chair for IEEE MASS 2006, IEEE IPDPS 2008, IEEE ICDCS 2013, ACM
MobiHoc 2014, ICPP 2016, and IEEE CNS 2016, as well as program co-
chair for IEEE INFOCOM 2011 and CCF CNCC 2013. He was an IEEE
Computer Society Distinguished Visitor, ACM Distinguished Speaker,
and chair for the IEEE Technical Committee on Distributed Processing
(TCDP). Dr. Wu is a CCF Distinguished Speaker and a Fellow of the
IEEE. He is the recipient of the 2011 China Computer Federation (CCF)
Overseas Outstanding Achievement Award.

