
 Verifiable Ranked Search Over
 Dynamic Encrypted
 Data in Cloud Computing
 Presenter: Xiaohong Nie†

Joint work with
Qin Liu†, Xuhui Liu†, Tao Peng§, and Jie Wu¶

† College of Computer Science and Electronic Engineering, Hunan University, P. R. China, 410082
§ School of Information Science and Engineering, Central South University, P. R. China, 410083

¶ Department of Computer and Information Sciences, Temple University, Philadelphia, PA 19122, USA

Outline
• A : Introduction
• B : Preliminaries
• C : Main Idea
• D : Scheme Implementation
• E : Experiment Results
• F : Conclusion

Introduction A

Introduction
• Existing research suggests encrypting data before outsourcing and

adopting Searchable Symmetric Encryption (SSE) to facilitate
keyword-based searches on the ciphertexts.

• However, no prior SSE constructions can achieve sublinear search

time, efficient update and verification, and on-demand file retrieval.

To address this, we propose our scheme.

Design Goal (Our scheme)

(1) Ranked search. The user is allowed to perform a top-K search to
retrieve the best matched files.

(2) Dynamic. The user is able to update (add and delete) files stored
in the cloud.

(3) Verifiability. The malicious CSP may delete encrypted files not
commonly used to save memory space, or it may forge the search
results to deceive the user.

Contributions
• A verifiable, ranked, and dynamic SSE scheme to preserve big data

security in a cloud environment.

• Allowing the user to efficiently update the file collection and verify

the correctness of a top-K search while preserving user privacy from
the CSP.

B Preliminaries

System Model

1. The data owner creates ciphertexts C = {C1, . . . , Cn} for each of file Di , and then

builds an encrypted index I and a verifiable matrix V from D, and the universal
keywords W = {w1, . . . , wm}.

2. The data owner performs updates (add/delete) on ciphertexts and retrieve the
data of interest on demand in a verifiable way.

3. The CSP provides data storage and query services. The cloud users pay the
services residing on the cloud or deploy their applications/systems in the cloud.

RSA accumulator works as follows:
---For a set E={y1, y2, ..., yn} with

yi∈{0,1}λ,
---For each yi, Alice chooses a prime

xi∈{0,1}3λ
randomly.
Let prime(yi) denote such a prime xi.
xi= prime(yi)
--- Alice computes accumulated

value of set E as
Acc(E) = g x1 x2 … xn mod N and sends
Acc(E) to Bob.

RSA Accumulator
Later, Alice proves that yj∈E to
Bob as follows：
--- She computes
πj = g x1 x2 … xj-1 xj+1 … xnmod N
 xj = prime(yi)
and sends πj and xj to Bob

--- Bob verifies that
Acc(E) = πj

xjmod

Main Idea C

Main Idea
The search information in I:
build a ranked inverted index I from a collection of files to
facilitate top-K searches.

The rank information in V :
build a verifiable matrix V for verifiable updates and searches.

Specifically, I contains multiple inverted lists, each linking a set of nodes that
corresponds to one keyword. A list of nodes is chained according to their ranks for
a specific keyword . The node’s prior/following neighbor will be recorded in V
with the RSA accumulator.

Main Idea (Ranked linked list)

 Lw is composed of #w nodes (N1, . . . , N#w) and defined Nj = ⟨idj ,
addrs(Nj+1)⟩, where idj ∈ ID(w) is the identifier of the rank-j file for
keyword w and addrs(Nj+1) is the address of node Nj+1 in the search
array As. In the special case, N#w = ⟨id#w , 0⟩.

Main Idea(Ranked Inverted Index)
• I= {Ts, As}:
• The ranked inverted index,

where for each word w ∈
W, a list Lw of #w nodes are
randomly stored in the
search array As and the
pointer to the head of Lw is
included in the search table
Ts.

 Main Idea (Verifiable Matrix)
Since a keyword appears in n files at most , the verifiable matrix V is
an m × n matrix, where row i ∈ [1, m] corresponds to a keyword
w ∈ W, and column j ∈ [1, n] corresponds to a rank j ∈ [1, n]. The
relationship between the row i and the keyword w is determined
by the key-value pairs of the search table Ts.

Implementation
Scheme D

Initial
phase

EncIndex
 EncFile
AccGen

Recovery
phase

Verify
DecFile

SrcToken
Search
GenProof

Store
phase

Update
phase

Implementation Scheme

UpdToken
AccUpdate
Update

Setup

Search
phase

Implementation Scheme

• (1) Initial phase
• (2) Store phase
• (3) Search phase
• (4) Recovery phase
• (5) Update phase

Initial phase
• The user randomly chooses four κ-bit

strings k1 , k2 , k3 , k4 as keys of PRFs,
runs SKE.Gen(1κ) to generate ke, and
generates (N = pq, g) . Let P(y) be a
random prime x such that f(x) = y.
We have

 PK = (N, g, f)
SK = (p, q, ke , k1 , k2 , k3 , k4)

Store phase
1:
For each file Di ∈ D, the user runs SKE.Enc(ke , Di) to generate
the ciphertext Ci

2: The user computes:

where AC and AI will be kept locally.

Search phase
1:
Suppose that the user wants to retrieve top-1 files containing keyword
w2 :
She will send Query = {TKw2, 1} to the CSP, where TKw2 = {Fk1(w2),
Gk2(w2), Pk3(w2)} for Fk1(w2)= 3.

 2:
The CSP locates Ts[Fk1(w2)] and recovers the address of the first node
containing keyword w2 in As by computing 4 ← Ts[Fk1(w2)] ⊕ Gk2(w2).

Search phase (GenProof)
3:
The CSP calculates proofs Π = {πC, πI,1, πI,2}:

The message returned to the user is {Cw2,1, Π}

Recovery phase
Verify :
The user computes x = P(H(4, H(C4))) and checks if:

She reconstructs V[3][1] =H(0, 4, 3)⊕Sk4(w2) from Cw2,1,
computes z = P(H(3, V[3][1])), and checks if:

DecFile:
The Verify algorithm is 1, the user runs SKE.Dec(ke ,C4)

Update(I, C, V, T K∗) → (I′, C′, V′) : If the update token T K∗(D)
= TKdel(D) = (i, delete), the CSP replaces the ciphertext Ci with
delete. Otherwise, given TK∗(D) = TKadd(D) = {(n + 1, Cn+1), C,
τv, τa}, the CSP first adds C as the last column of the verifiable
matrix, and then updates C to C′ by adding (n + 1, Cn+1) to C.

Update phase

E Experiment
Results

Experiment Results

Experiment Results

F Conclusion

Conclusion
• A verifiable, ranked, and dynamic SSE scheme in a cloud environment.
• Verify the correctness of the top-K search and the integrity of a set of

dynamic files .

• However, our VRSSE scheme supports only single-keyword searches.
As part of our future work, we will try to design a multi-keyword
VRSSE scheme to achieve conjunctive keyword searches.

THANKS

