A New Framework: Short-Term and Long-Term Returns in Stochastic Multi-Armed Bandit

Abdalaziz Sawwan (Presenter) and Jie Wu
Department of Computer and Information Sciences
Temple University
Outline

• Introduction to Multi-Armed Bandit (MAB) problems
• Challenges in the existing MAB models
• Previous work
• Proposed framework
• Extended UCB-based algorithms
• Regret analysis
• Simulations
• Future work
Outline

- Introduction
- Challenges in the existing MAB models
- Previous work
- Proposed framework
- Extended UCB-based algorithms
- Regret analysis
- Simulations
- Future work
Introduction

• The Multi-Armed Bandit (MAB) Problem is a fundamental paradigm in sequential decision-making
• An agent must choose between multiple options (arms) to maximize the total reward
• Balancing:
 • exploration (trying new options)
 • exploitation (choosing the best-known option)
Introduction

• Attracted significant attention from researchers in various fields
• Rich literature on the theory, algorithms, and applications
• Applications:
 • Online advertising
 • Recommendation systems
 • Clinical trials and more
Outline

• Introduction
• Challenges in the existing MAB models
• Previous work
• Proposed framework
• Extended UCB-based algorithms
• Regret analysis
• Simulations
• Future work
Challenges in the existing MAB models

• **Delayed feedback**: The true reward of an action may not be immediately observable.

• **Missing information**: Information from delayed feedback may be incomplete.

• **Exploration vs. exploitation**: Balancing the trade-off remains a challenge, especially with delayed feedback.
Outline

• Introduction
• Challenges in the existing MAB models
• Previous work
• Proposed framework
• Extended UCB-based algorithms
• Regret analysis
• Simulations
• Future work
Previous work

• Dudik et al. [1] were the first to consider delayed feedback
 • Fixed delay

• Pike-Burke et al. [2] considered:
 • getting the sum of rewards that arrive at the same round
 • assumed that the expected delay is known

• Lancewicki et al. [3]:
 • were the first to consider unrestricted delayed feedback
 • time can be reward-dependent
 • infinite-delay is allowed
 • improved regret bounds

Outline

• Introduction
• Challenges in the existing MAB models
• Previous work
• **Proposed framework**
• Extended UCB-based algorithms
• Regret analysis
• Simulations
• Future work
Proposed framework

• Combines **short-term** (instant) and **long-term** (delayed) rewards

• Pulling an arm i yields:
 • short-term reward drawn from distribution F_i
 • long-term reward drawn from distribution R_i

• Dominance of short-term or long-term rewards is controlled by:
 • tunable parameter κ
 • delay distribution D_i

• Known relationship between short-term and long-term reward distributions
Proposed framework
Proposed framework

- F_i and R_i are related by a linear transformation
- The linear transformation factor is κ
 - $\kappa \in [0, 1]$
- κ is the long-term to short-term scaling factor
- It makes the two rewards observed from an arm reasonably related
Proposed framework

• This makes \(r_t(i) \in [0, 1], \ f_t(i) \in [0, \kappa] \)

• For the delay \(d_t(i) \): its domain is \(\mathbb{N} \cup \{\infty\} \)
 - \(d_t(i) = \infty \rightarrow r_t(i) \) will never be observed

• \(\mu_i \): the mean value of \(R_i \)

• \(\kappa \mu_i \): the mean value of \(F_i \)
Proposed framework
Proposed framework

Relationship between Classic and New Framework:

- **Classic MAB model**: Instantaneous feedback
- **Delayed stochastic MAB model**: Rewards observed after a time delay
- **New framework**: unifies both models with tunable parameter κ
Outline

• Introduction
• Challenges in the existing MAB models
• Previous work
• Proposed framework
 • Extended UCB-based algorithms
• Regret analysis
• Simulations
• Future work
Extended UCB-based algorithms

Algorithm 1 UCB for Short-Term and Long-Term Rewards

Input: T, K. //Number of rounds and number of arms.

Output: The set of pulled arms a_t s.t. $t \in [1, T]$.

Initialization: $t \leftarrow 1$. //Start from the first round.

- Pull each arm $i \in [1, K]$ one time.
- Observe any incoming reward.

Let $t \leftarrow t + K$.

1: While $t < T$ do
2: for $i \in [1, K]$ do
3: $n_t(i) \leftarrow \sum_{\tau: t_{\tau} + d_{\tau} > t} \mathbb{I}\{a_\tau = i\}$.
4: $\hat{\mu}_t(i) \leftarrow \frac{1}{n_t(i)} \sum_{\tau: t_{\tau} + d_{\tau} > t} \mathbb{I}\{a_\tau = i\} (r_\tau + \frac{t_\tau}{K})$.
5: $UCB_t(i) \leftarrow \hat{\mu}_t(i) + \sqrt{\frac{2 \log(T)}{n_t(i)}}$.
6: Pull arm $a_t = \arg\max_i UCB_t(i)$.
7: Observe reward.
8: Let $t \leftarrow t + 1$.

Extended UCB-based algorithms

Algorithm 2 SE for Short-Term and Long-Term Rewards

Input: T, K. //Number of rounds and number of arms.

Output: The set of pulled arms a_t s.t. $t \in [1, T]$.

Initialization: $t \leftarrow 1$, $S \leftarrow [1, K]$. //Start from the first round.

1: While $t < T$ do
2: Pull each arm $i \in S$.
3: Observe all incoming feedback.
4: Set $t \leftarrow t + |S|$.
5: for $i \in [1, K]$ do
6: $n_t(i) \leftarrow \sum_{\tau:t>\tau+d_t} \mathbb{I}\{a_\tau = i\}$.
7: $\hat{\mu}_t(i) \leftarrow \frac{1}{n_t(i)} \sum_{\tau:t>\tau+d_t} \mathbb{I}\{a_\tau = i\} (r_\tau + \frac{f_\tau}{K})$.
8: $UCB_t(i) \leftarrow \hat{\mu}_t(i) + \sqrt{\frac{2 \log(T)}{n_t(i)}}$.
9: $ULB_t(i) \leftarrow \hat{\mu}_t(i) - \sqrt{\frac{2 \log(T)}{n_t(i)}}$.
10: Update S by including all arms except all arms i such that there exists j with $UCB_t(i) < LCB_t(j)$.
Extended UCB-based algorithms
Extended UCB-based algorithms

Algorithm 3 PSE for Short-Term and Long-Term Rewards

Input: T, K. //Number of rounds and number of arms.
Output: The set of pulled arms a_t s.t. $t \in [1, T]$.
Initialization: $t \leftarrow 1$, $S \leftarrow [1, K]$, $\ell \leftarrow 0$.
1: While $t < T$ do
2: Let $S_\ell \leftarrow S$, $\ell \leftarrow \ell + 1$. //Phase counting.
3: While $S_\ell \neq \emptyset$ do
4: Pull each arm $i \in S_\ell$, observe incoming feedback.
5: Set $t \leftarrow t + |S_\ell|$.
6: for $i \in [1, K]$ do
7: $n_t(i) \leftarrow \sum_{\tau:t>\tau+d_\tau} \mathbb{I}\{a_\tau = i\}$.
8: $\hat{\mu}_t(i) \leftarrow \frac{1}{n_t(i)} \sum_{\tau:t>\tau+d_\tau} \mathbb{I}\{a_\tau = i\}(r_\tau + \frac{r_{\ell}}{K})$.
9: $UCB_t(i) \leftarrow \hat{\mu}_t(i) + \sqrt{\frac{2\log(T)}{n_t(i)}}$.
10: $ULB_t(i) \leftarrow \hat{\mu}_t(i) - \sqrt{\frac{2\log(T)}{n_t(i)}}$.
11: Eliminate all arms that were observed at least $\frac{\log(T)}{2^{-2\ell-4}}$ times from S_ℓ.
12: Update S by including all arms except all arms i such that there exists j with $UCB_t(i) < LCB_t(j)$.

Outline

• Introduction
• Challenges in the existing MAB models
• Previous work
• Proposed framework
• Extended UCB-based algorithms
• Regret analysis
• Simulations
• Future work
Regret analysis

• Regret is defined as follows:

\[R_T = \max_i \mathbb{E}[\sum_{t=1}^{T} (r_t(i) + f_t(i))] - \mathbb{E}[\sum_{t=1}^{T} r_t(a_t) + f_t(a_t)] \]

\[= (1 + \kappa) \times (T \mu_{i^*} - \mathbb{E}[\sum_{t=1}^{T} \mu_{a_t}]) = (1 + \kappa) \times \mathbb{E}[\sum_{t=1}^{T} \Delta_{a_t}], \]
Regret analysis

Theorem The regret of the strategy in Algorithm 2 is bounded under our model. The bound is given by

\[
\mathcal{R}_T \leq \min_{\boldsymbol{q} \in (0,1)^K} \sum_{i \neq i^*} 40(\log T / \Delta_i)(1/q_i + 1/q_{i^*}) \\
+ \log(K) \max_{i \neq i^*} \{(d_i(q_i) + d_{i^*}(q_{i^*}))\Delta_i\} + \kappa \sqrt{KT \log T}.
\]

Furthermore, we can get another incomparable different bound for the regret, which is given by

\[
\mathcal{R}_T \leq \min_{q \in (0,1]} \sum_{i \neq i^*} 325 \frac{\log T}{q\Delta_i} + 4 \max_i d_i(q) + \kappa \sqrt{KT \log T}.
\]
Regret analysis

Theorem The regret of the strategy in Algorithm 3 is bounded under our model. The bound is given by

$$R_T \leq \min_{\tilde{q} \in (0,1)^K} \sum_{i \neq i^*} 290 \log(T) / q_i \Delta_i$$

$$+ \log(T) \log(K) \max_{i \neq i^*} d_i(q_i) \Delta_i + \kappa \sqrt{KT \log T}.$$
Outline

• Introduction
• Challenges in the existing MAB models
• Previous work
• Proposed framework
• Extended UCB-based algorithms
• Regret analysis
 • Simulations
• Future work
Simulations

• Synthetic data:
 • Generated to test the algorithms under controlled conditions

• Real-world data:
 • Collected from a real application to demonstrate practical performance
 • Application of sparse learning of incomplete traffic speed data

• Performance metric: Total regret
Simulations
Simulations
Outline

• Introduction
• Challenges in the existing MAB models
• Previous work
• Proposed framework
• Extended UCB-based algorithms
• Regret analysis
• Simulations
• Future work
Future Work

• **Explore** potential framework extensions, such as incorporating partial feedback
• **Investigate** other algorithms to be adapted to the new framework
• **Relax** the condition of having a linear transformation between the two reward distributions
• **Make** κ an unknown random variable
• **Include** multiple long-term rewards for pulling an arm
• **Apply** the framework to additional real-world problems
Conclusion

- General framework for MAB with short-term and long-term rewards
- Near-optimal Extended UCB-based algorithms
- Regret analysis of the proposed algorithms
- Evaluation on synthetic and real-world data to demonstrate the effectiveness of the proposed algorithms
Q&A

Abdalaziz Sawwan (Presenter) and Jie Wu
Department of Computer and Information Sciences
Temple University