
A Greedy Algorithm for Capacity-Constrained
Surrogate Placement in CDNs

Yifeng Chen1,2,3, Yanxiang He2, Jiannong Cao3, Jie Wu4

1 State Key Laboratory of Water Resources and Hydropower Engineering Science,
Wuhan University, Wuhan 430072, Hubei, China

2 School of Computer, Wuhan University, Wuhan 430072, Hubei, China
{Csyfchen, Yxhe}@whu.edu.cn

3 Department of Computing, Hong Kong Polytechnic University,
Hung Hom, Kowloon, Hong Kong, China

Csjcao@comp.polyu.edu.hk
4 Department of Computer Science & Engineering, Florida Atlantic University,

Boca Raton, FL 33431, USA
Jie@cse.fau.edu

Abstract. One major factor that heavily affects the performance of a content
distribution network (CDN) is placement of the surrogates. Previous works take
a network-centric approach and consider only the network traffic. In this paper,
we propose solutions to optimal surrogate placement, taking into consideration
both network latency and capacity constraints on the surrogates. For CDNs with
a tree topology, an efficient and effective greedy algorithm is proposed which
minimizes network traffic while at the same time maximizing system
throughput. Simulation results show that the greedy algorithm is far better than
the existing optimal placement scheme that makes decisions based solely on
network traffic. This suggests that capacity constraints on surrogates or server
bottlenecks should be considered when determining surrogate placement,
especially when the capacities of CDN servers are limited.

1 Introduction

A content distribution network (CDN) is a network optimized to deliver specific con-
tent such as static Web pages, streaming media, or real-time video or audio. The de-
sign of a CDN aims at quickly providing users with the most current content in a
highly available fashion [1]. This is achieved by pushing hosted content from the ori-
gin server(s) to a set of surrogates located at the edge of the Internet closer to clients.
For any client request, an appropriate surrogate is selected to deliver the requested
content to the client on behalf of the origin server(s) [2]. Besides speeding up content
delivery, CDNs can also reduce server workload and alleviate network congestion.
 The performance of a CDN can be significantly affected by the decisions on 1)
how many surrogates are needed, and 2) where they should be placed. Previous stud-
ies typically formulate this decision problem as the minimum k-median problem [3,4],

the facility location problem [3], the minimum k-center problem [5], or for simple net-
work topologies (e.g., line, ring, or tree), the dynamic programming problem [3,6-9].

 All of these previous works [3-9], however, take a network-centric view of the
issue of surrogate placement, assuming that a client’s requests can always be directed
to the surrogates closest to the client. Consequently, they consider only the network
latency factor and the resultant placement scheme may very likely lead to an undesir-
able load concentration on some surrogates. In this paper, we argue that load balanc-
ing among surrogates should also be integrated into surrogate placement decision. The
goal is to minimize the network traffic while maximizing the system throughput. We
call this problem the capacity constrained surrogate placement problem (CCSP).

In this paper, we focus on a simplified version of the CCSP problem in the con-
text of transparent data replication [8-10], in which the access paths to a Web site are
arranged as a tree with the origin server at the root. The aim of transparent data repli-
cation is to reduce the management overhead incurred by client redirection and to
simplify the design of surrogate cooperation and load balancing. Fig. 1 illustrates a
surrogate hierarchy for transparent data replication. A collection of surrogates, to-
gether with the origin server, is placed on {1, 6, 10, 15, 20}. The request issued from
node 11 is forwarded toward the origin server along the unique path from 11 to 1.
Normally, the surrogate placed on node 10 will intercept the request and immediately
satisfy the request on behalf of the origin server. However, if the surrogate is over-
loaded, the request will be forwarded up the tree, until another available surrogate,
say node 6, is able to serve the request. For any update activity, the update message
will first be propagated from root 1 (i.e., the origin server) to its immediate descen-
dant surrogate, node 6 and 20. Then the update message will continue to be propa-
gated down the surrogate hierarchy from node 6 to node 10 and 15.

We employ queuing theory [11] to model server throughput and achieve load
balancing among surrogates by redirecting part of the client requests initially assigned
to the heavily loaded surrogates to other lightly loaded ones according to transparent
data replication. We propose an efficient greedy algorithm to address the CCSP prob-
lem. The performance of the proposed algorithm is evaluated in terms of communica-
tion cost and throughput of the system. We compare our algorithm with an existing
optimal placement scheme for solely minimizing the communication cost and a ran-
dom placement scheme that uniformly chooses sites to place surrogates. The simu-
lation results show that our proposed CCSP approach significantly outperforms these
two benchmarks.

1

93

62

7

4 85

10

2221

2019

18

17

16

15

14

131211

23

origin server

client

surrogate

surrogate

surrogate

surrogate

retrieval
request

update
request

Fig. 1. Request-routing and consistency maintenance under transparent data replication

2 Problem Formulation

In this section, we will first develop a queuing model of the throughput of CDN serv-
ers, and then formulate in detail the CCSP problem for tree networks.

We model each CDN server as an M/G/1/K*PS queuing system [11]. The arrival
process of HTTP requests is assumed to be Poissonian with rate (λ+µ) (λ is the read
rate, µ the write rate), whereas the service time requirements have a general distribu-
tion with mean

_
x . The service discipline is processor sharing. The total number of

requests that can be processed at one time is limited to K (
_
x and K represent the

processing power of each CDN server). Denote the blocking probability by Pb′, then

)1(
)1('

1+−
−= K

K
bP ρ

ρρ (1)

where ρ=(λ+µ)
_
x . Thus, the rate of blocked requests is given by (λ+µ)Pb′. A CDN

increases the throughput of the whole system by enabling the surrogates to cooperate
for redirecting the overloaded amount of requests (i.e., (λ+µ)Pb′) that have routed to
one surrogate to other lightly loaded ones. Note that update requests should always be
serviced locally and only retrieval requests can be redirected. Thus, if we define Pb=
(1+µ/λ)Pb′, the request blocking rate could be represented as λPb. This transformation
is reasonable, since the CDN servers are typically dominated by retrieval requests.

The network is modeled as a tree Tr(V,E), where V is a set of nodes, E⊆V×V is a
set of edges and r∈V is the root where the origin server is located. Each node repre-
sents an autonomous system (AS) and each edge corresponds to a physical link con-
necting two AS’s. For any node v∈Tr, we denote by Tv the subtree of Tr rooted at v.

Assume that the origin server holds N objects. The size of each object i is de-
noted by si(1≤i≤N). For each object i, every node v is associated with a nonnegative
retrieval rate λv,i. The origin server is responsible for propagating update information
down the surrogate hierarchy and is additionally associated with a nonnegative update
rate µi for object i. Any link (u,v) in E is associated with a distance metric d(u,v),
which could be interpreted as bandwidth, hop counts, link cost, etc. Assume that πx,y is
a path between node x and y, then the distance associated with path πx,y could be rep-
resented as d(x,y)=∑ ∈ yxvu vud

,),(),(π . We denote by f(si,d(u,v)) the data transmission
cost when object i traverses link (u,v) or path πu,v, which measures the resource utili-
zation on that link or path for transferring object i from node u to v.

Suppose M surrogates are to be placed on a set of domains P(P⊆V, r∈P and
|P|=M). For any node v∈Tr, we say a node is the parent surrogate of v, denoted by
C(v,P), if it is the first node in P\{v} that is seen while going up from v to the root r,
i.e., the lowest ancestor of v which is contained in P\{v}. Also, for any v, we define
the immediate descendant surrogates of v, denoted by D(v), as D(v)={u: u∈P ∧ u∈Tv
∧ C(u,P)=C(v,P)} if v∉P; otherwise, if v∈P, then D(v) = {u: u∈P ∧ C(u,P)=v}.

Now, suppose a set of surrogates P are placed on the network, the reduction of
data transfer cost, denoted by Cost(Tr,P), is ready to be obtained by:

∑ ∑
= ∈

−−=
N

i rPv
iii

t
iv

b
vr PvCvdsfurvdsfPPTCost

1 }\{
,)))),(,(,()),(,()1((),(λ (2)

where the first term corresponds to the total decrease of retrieval cost and the second

term represents the total increase of update cost due to the placement of surrogates. λv,i
denotes the access rate to object i issued from node v. λv,i

t denotes the total retrieval
requests for object i that traverse node v:

∑ ∈+=
vBu

t
iu

b
uiv

t
iv P ,,, λλλ (3)

where Bv is the children of node v, and Pv
b is the blocking probability of node v. Here

we extend the concept of blocking probability: If v is a surrogate node (i.e., v∈P), Pv
b

would be derived via a queuing model; otherwise, Pv
b is set to one, which implies all

the incoming requests will be forwarded to their parent nodes for the nodes where no
surrogates are located. We define λv

t=∑=
N
i

t
iv1 ,λ and µt=∑ =

N
i i1µ to compute Pv

b.
Under the given request-routing mechanism, the drop of requests occurs only if

the origin server is overloaded. The total requests blocked in the CDN therefore is
t
r

b
rr PPTBlock λ=),((4)

where λr
t denotes the total retrieval request rate directed to r after placing a set of

surrogates P. By defining an objective function as follows,

)),(),((),(,|,| PTBlockPTCostMaxPTObj rrrr PMPVP γ−=
∈=⊆ (5)

we are ready to describe the CCSP problem in tree topologies: Given Tr(V,E), traffic
pattern, and surrogate capacity constraints, find a set of M surrogates P(P⊆V, r∈P,
|P|=M) such that the objective function (5) is satisfied. γ in (5) is a penalty coefficient
to make a tradeoff between traffic reduction and load balancing among surrogates.

3 A Greedy Algorithm

From the computation of Pv

b, it’s easy to verify that the CCSP problem for tree to-
pologies could not be addressed via a dynamic programming approach similar to [8].
Therefore, to deal with this problem, we develop an efficient greedy algorithm.

The greedy algorithm is illustrated in Algorithm 1. Initially, we set P={r} and the
network cost reduction to zero. The objective is determined by the dropped requests.
Then we iterate the algorithm and choose one surrogate in each step until M surro-
gates are chosen. In each iteration, for ∀v∈V\P, we compute the objective increment
supposing v is added to P. The node that yields the maximum objective increment is
chosen and added to P. The objective increment of candidate node v, besides the con-
tribution of v itself, includes modifying the retrieval cost reduction of ancestor surro-
gates of v since the request rates directed to and the blocking probabilities of these
surrogates will change when a surrogate is placed on v, and modifying the update cost
of immediate descendant surrogates whose parent surrogate is C(v,P), since their par-
ent surrogate has changed from C(v,P) to v.

 The objective increment can be computed in the following fashion. Suppose a set
of surrogates P(P⊂V, |P|<M, r∈P) has been placed over the network, and a candidate
node v(v∈V\P) is intended to join P. Define by A(v) the ordered ancestor nodes of v,
v∉A(v), i.e., the elements in A(v) are the nodes ordered as seen while going up from v
to the root r. Obviously, the first element in A(v) is the parent of v, and for any succes-
sive node u and w in A(v), w is the parent of u. After the candidate v joins in P, the in-

crement of data transfer cost reduction ∆Cost(Tr,P∪{v}) and that of objective ∆Obj(Tr,
P∪{v}) can be obtained by the following steps.
Step 1: compute the contribution of v itself

∆Cost(Tr,P∪{v})=∑i=1
N((1-Pv

b)λv,i
tf(si,d(v,r))-µif(si,d(v,C(v,P)))

Step 2: modify the retrieval cost reduction of ancestor surrogates of v
Let ∆λ=-(1-Pv

b)λv
t, ∆λi=-(1-Pv

b)λv,i
t

Then obtain a node u from A(v) in order until all the elements are traversed. Note that
the variable with a superscript of new corresponds to the case where v has joined in P.

If u∉P, set λu
t,new=λu

t+∆λ, λu,i
t,new=λu,i

t+∆λi
Otherwise if u∈P, set λu

t,new=λu
t+∆λ, λu,i

t,new=λu,i
t+∆λi, compute Pu

b,new by λu
t,new

∆λ=∆λ-(1-Pu
b,new) λu

t,new+(1-Pu
b)λu

t
∆λi=∆λi-(1-Pu

b,new) λu,i
t,new+(1-Pu

b)λu,i
t

∆Cost(Tr,P∪{v})=∆Cost(Tr,P∪{v})+∑i=1
N(((1-Pu

b,new)λu,i
t,new-(1-Pu

b)λu,i
t)f(si,d(u,r)))

Step 3: modify the update cost of the immediate descendant surrogates of v
∆Cost(Tr,P∪{v})=∆Cost(Tr,P∪{v})+|D(v)|∑i=1

Nµif(si,d(v,C(v,P)))
Step 4: compute Block(Tr,P∪{v}) and ∆Obj(Tr,P∪{v})

Block(Tr,P∪{v})=Pr
b,newλr

t,new
∆Obj(Tr,P∪{v})=∆Cost(Tr,P∪{v})-γ(Block(Tr,P∪{v})-Block(Tr,P))

Algorithm 1. The greedy algorithm for surrogate placement

set P={r}, set λv,i
t=∑ ∈ vTu iu ,λ , λv

t=∑ =
N
i

t
iv1 ,λ , for ∀v∈Tr, ∀i (1≤i≤N),

set Cost(Tr,P)=0, compute Block(Tr,P), Obj(Tr,P);
while(|P|≤M){
 for ∀v∈ V\P, compute ∆Cost(Tr,P∪{v}), Block(Tr,P∪{v}) and ∆Obj(Tr,P∪{v});
 find v∈ V\P such that ∆Obj(Tr,P∪{v}) is maximized;

P←P∪{v}, Cost(Tr,P)←Cost(Tr,P)+∆Cost(Tr,P),
Obj(Tr,P)←Obj(Tr,P)+∆Obj(Tr,P);

 for ∀u∈A(v), update λu
t, λu,i

t in order;
 for ∀u∈D(v), C(u,P) ←v; }

4 Performance Evaluation

We have evaluated the proposed surrogate placement algorithm through simulations.
To do a comparative performance study, we take as baselines a random algorithm and
a throughput-oblivious dynamic programming (DP) algorithm.

We use synthetic tree topologies and traffic pattern to evaluate the algorithms, as
is done in [8]. Tree topologies are created randomly in a breadth-first manner by feed-
ing two controlling parameters: the total number of nodes (treeSize) and the maxi-
mum degree of a tree node (treeDegree). Each tree edge is associated with a distance
randomly distributed in (0,1). Every node v is associated with a retrieval rate λv and
another two values,

_
x and K, uniformly distributed in (minSvTime, maxSvTime) and

in (minJobLimit, maxJobLimit), respectively. The root r is further associated with an
update rate of µ uniformly distributed in (minWtRate, maxWtRate).

The origin server holds a collection of N Web objects. The access popularity of
the objects follows a Zipf-like distribution [12,13] with a parameter of θr for retrieval

and θw for update. Each object i is assigned an object size of si, whose distribution has
been found to be heavy-tailed [13]. The cumulative distribution function is given by

F(s)=1-(s0/s) β β, s0>0, s≥ s0 (6)

where β is known as the tail index, and s0 represents the smallest possible value of the
random object size in the heavy-tailed distribution. For simplicity, we set f(si,d(u,v))=
si*d(u,v). Default parameter settings are summarized in Table 1.

We evaluate the performance of the proposed surrogate placement scheme on
trees with nodes varying from 60 to 1000 and examine the impacts on surrogate
placement decision of the penalty coefficient, traffic volume, and server capacity. Fig.
2 shows a typical simulation result on a 600-node tree with M=0.3*treeSize.

The following observations can be made from the above simulations: (1) The
greedy placement scheme significantly outperforms the benchmarks in both network
cost reduction and dropped request rate; (2) The greedy algorithm is not very sensitive
to the penalty coefficient. A larger γ, however, will lead to a decrease in blocked re-
quests at slight cost of network traffic; (3) When the traffic is relatively small, adding
one more surrogate can absorb a significant amount of traffic and remarkably improve
the performance of the system. As traffic increases, more surrogates are needed to
achieve the same normalized performance; (4) When candidate surrogates are config-
ured powerful (i.e., set

_
x close to zero), the greedy algorithm can offer a perform-

ance close to optimal. Otherwise, the network cost reduction has to be traded off
against the system throughput; (5) Heterogeneity in CDN servers and skewness in
traffic pattern do not hurt the performance of the proposed greedy algorithm.

Table 1. Default simulation parameter settings

Parameter Setting Parameter Setting Parameter Setting
minRdRate 1 minSvTime 0.0001 θr 0.8
maxRdRate 80 maxSvTime 0.01 θw 0.4
minWtRate 1 minJobLimit 50 β 1.2
maxWtRate 80 maxJobLimit 300 s0 4
treeDegree 6 N 1000 γ 10

0 60 120 180
0.0

0.2

0.4

0.6

0.8

1.0

Num ber of S urrogates

N
or

m
al

iz
ed

 C
os

t R
ed

uc
tio

n

O pt im al
G reedy
DP
Random

0 60 120 180
0.0

0.2

0.4

0.6

0.8

1.0

Num ber of S urrogates

N
or

m
al

iz
ed

 D
ro

pp
ed

 R
at

e

G reedy
DP
Random

Fig. 2. Normalized traffic reduction and blocked request rate. The network cost reduction is
normalized by the “optimal” measure of placing a maximum of M surrogates and the blocked
request rate normalized by that of placing only a single surrogate at the root of the tree

5 Conclusion

In this paper, we have investigated the capacity constrained surrogate placement prob-
lem (CCSP), which is formulated as an optimization decision such that the network
traffic is minimized while the throughput of a CDN is maximized. An efficient and
effective greedy algorithm is developed to solve the problem under the context of
transparent data replication. In the simulations, the performance of the proposed
placement algorithm is compared with a random solution and the optimal solution de-
rived by the dynamic programming algorithm, which makes decisions based only on
data transmission cost. Also examined are the impacts on the surrogate placement de-
cision of the penalty coefficient, traffic volume, and server processing power.

The simulation results demonstrate the greedy algorithm has a performance close
to optimal and can find the placement scheme that remarkably increases the through-
put of the whole system. Therefore, the factor of capacity constraints on surrogates or
server bottlenecks should be integrated into the surrogate placement decision. This is
especially the case when the power of CDN servers is for some reasons limited. If the
traffic volume increases roughly in proportion in the domains, an incremental or am-
ortized surrogate placement scheme will be appropriate, just as the proposed greedy
algorithm does.

In summary, the original contributions of this paper are: (1) A formulation of the
CDN surrogate placement problem to take into consideration server processing ca-
pacities in making decisions on surrogate placement; (2) A solution to achieve not
only the reduction in network traffic but also the enhancement in system throughput;
(3) A simulation study to evaluate the performance of the proposed approach, in
which not only the popularity of the Web content objects but also the heavy-tailed dis-
tribution of their sizes is considered.

References

1. Lazar, I., Terrill, W.: Exploring Content Delivery Networking. IEEE IT Pro. (2001) 47-49
2. Day, M., Cain, B., Tomlinson, G., Rzewski, P.: A Model for Content Internetworking. RFC

3466. Network Working Group (2003)
3. Qiu, L., Padmanabhan, V.N., Voelker, G.M.: On the Placement of Web Server Replicas.

Proc. IEEE INFOCOM’01, Vol. 3 (2001) 1587-1596
4. Li, Y., Liu, M.T.: Optimization of Performance Gain in Content Distribution Networks with

Server Replicas. Proc. 2003 Symp. Applications and the Internet (2003)
5. Cronin, E., Jamin, S., Jin, C., Kurc, A.R., Raz, D., Shavitt, Y.: Constrained Mirror Place-

ment on the Internet. IEEE J. Select. Areas Commun., Vol. 20. 7 (2002) 1369-1381
6. Li, B., Golin, M.J., Italiano, G.F., Deng, X., Sohraby, K.: On the Optimal Placement of Web

Proxies in the Internet. Proc. IEEE INFOCOM’99 (1999) 1282-1290
7. Jia, X., Li, D., Hu, X., Du, D.: Placement of Read-Write Web Proxies on the Internet. Proc.

IEEE ICDCS’01 (2001) 687-690
8. Xu, J., Li, B., Lee, D.L.: Placement Problems for Transparent Data Replication Proxy Ser-

vices. IEEE J. Select. Areas Commun., Vol. 20. 7 (2002) 1383-1398
9. Krishnan, P., Raz, D., Shavitt, Y.: The Cache Location Problem. IEEE/ACM Trans. Net-

working, Vol.8. 5 (2002) 568-582
10. Heddaya, A., Mirdad, A.: WebWave: Globally Load Balanced Fully Distributed Caching of

Hot Published Documents. Proc. IEEE ICDCS’97 (1997) 160-168
11. Cao, I., Andersson, M., Nyberg, C., Kihl, M.: Web Server Performance Modeling Using an

M/G/1/K*PS Queue. Proc. 10th Int’l Conf. Telecommunications, Vol. 2. (2003) 1501-1506
12. Breslau, L., Cao, P., Fan, L., Phillips, G., Shenker, S.: Web Caching and Zipf-like Distribu-

tions: Evidence and Implications. Proc. IEEE INFOCOM’99, New York (1999) 126-134
13. Mahanti, A., Williamson, C., Eager, D.: Traffic Analysis of a Web Proxy Caching Hierar-

chy. IEEE Network (2000) 16-23

Appendix: Correctness Proof for Algorithm 1

Theorem 1. Algorithm 1 is correct, and can be computed in O(ML) time. L is the path
length of Tr, which is defined as the sum over Tr of the number of ancestors of each node.
Proof: The time complexity of the algorithm is straightforward. The proof for the cor-
rectness can be reduced to proving that for ∀u∈A(v), the computation of λu

t,new (and
similarly λu,i

t,new for ∀i(1≤i≤N)) is correct. We first prove the following Lemma.
Lemma 1. For any surrogate placement scheme P in tree topologies, there holds

λv
t=λv

t,0-Σu∈D(v) λu
t,0+Σu∈D(v)Pu

bλu
t , for ∀v∈Tr (7)

where λv
t,0 is the corresponding result after execution of the first step in Algorithm 1.

Proof: The proof is done by induction.
(1) Basis: when P={r}, we have D(v)=∅, λv

t=λv
t,0 for ∀v∈Tr. Thus (7) trivially holds.

(2) Induction: Suppose (7) holds when a set of surrogates P(P⊂V, |P|<M, r∈P) is
placed over the network. Now we prove that (7) still holds after any node v(v∈V\P) is
added to P.

First, according to the request-routing mechanism, placing a surrogate on v can
only affect the retrieval requests of its ancestor nodes A(v). Therefore, based on the in-
duction hypothesis, (7) holds for ∀u∈Tr\A(v), and λu

t,new=λu
t. For A(v), we first con-

sider the first element u in A(v), i.e., the parent of v. Obviously, D(v)⊆D(u). Now due
to the join of v, Dnew(u)=(D(u)-D(v))∪{v}. According to the algorithm, λu

t,new=λu
t+∆λ

=λu
t-(1-Pv

b)λv
t. By λu

t=λu
t,0-Σw∈D(u) λw

t,0+Σw∈D(u)Pw
bλw

t (induction hypothesis)
λu

t,new=λu
t,0-Σw∈D(u)-D(v)λw

t,0+Σw∈D(u)-D(v)Pw
bλw

t+(λv
t,0-Σw∈D(v)λw

t,0+Σw∈D(v)Pw
bλw

t-λv
t,0)-(1-Pv

b)λv
t

=λu
t,0-Σw∈Dnew(u)λw

t,0+Σw∈Dnew(u) Pw
bλw

t
=λu

t,0-Σw∈Dnew(u)λw
t,0+Σw∈Dnew(u) Pw

b,newλw
t,new

(7) holds. Then for the successive element x of u in A(v), if u∉P, it is completely the
same as u. Otherwise, if u∈P, there is evidently u∈D(x), but D(u)⊄D(x). Therefore,
Dnew(x)=D(x). According to the algorithm, λx

t,new=λx
t+∆λ=λx

t-(1-Pv
b)λv

t-(1-Pu
b,new)

λu
t,new+(1-Pu

b)λu
t. By λx

t=λx
t,0-Σw∈D(x)λw

t,0+Σw∈D(x) Pw
bλw

t (induction hypothesis)
λx

t,new=λx
t,0-Σw∈D(x)λw

t,0+Σw∈D(x)-uPw
bλw

t+Pu
bλu

t-(1-Pv
b)λv

t- (1-Pu
b,new) λu

t,new+(1-Pu
b)λu

t
=λx

t,0-Σw∈Dnew(x)λw
t,0+Σw∈Dnew(x)Pw

b,newλw
t,new+λu

t-(1-Pv
b)λv

t-λu
t,new

=λx
t,0-Σw∈Dnew(x)λw

t,0+Σw∈Dnew(x)Pw
b,newλw

t,new
(7) holds. Based on this approach, we can prove one by one that (7) holds for all the
elements in A(v). Thus Lemma 1 is true. Noticing that (7) is equivalent to λv

t=∑=
N
i

t
iv1 ,λ ,

where λv,i
t is computed by (3), it can be trivially inferred that Theorem 1 is true.

