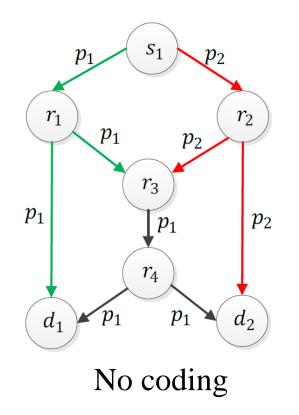
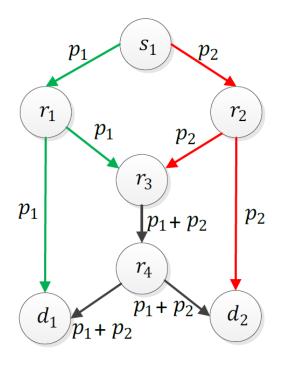
VIDEO STREAMING OVER WIRELESS LAN WITH NETWORK CODING

M. Al-Hami, A. Khreishah, and J. Wu Computer and Information Sciences Temple University

Center for Networked Computing http://www.cnc.temple.edu

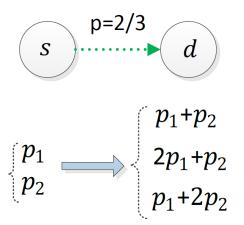



- Network Coding Background
- Priority-Based Network Coding
- Layered video streaming
- □ Simulation results
- □ Conclusions

Network Coding in Wired Networks

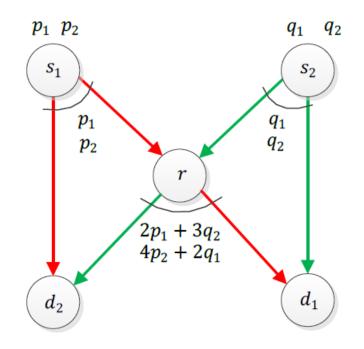
□ Single multicast session

Bottleneck problem (Ahlswede'00)



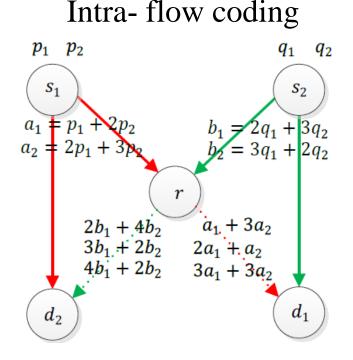
Coding

Network Coding in Wireless Networks

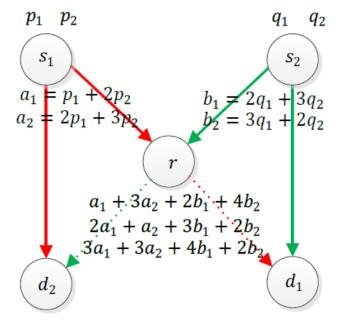

Intra-flow coding

•Reliability=2/3

•3 transmissions

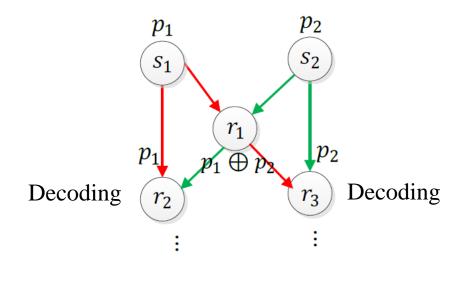

Inter-flow coding

- •Reliable links
- •2 transmissions by the relay


Network Coding in Wireless Networks

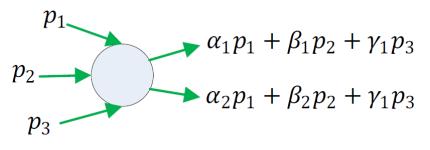
- □ Reliability from *r* to d_1 and d_2 is 2/3
- Other links are reliable

6 transmissions by the relay


Joint inter- and intra-flow coding

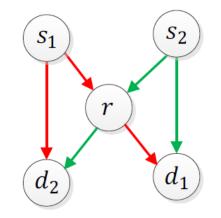
3 transmissions by the relay

Network Coding Classification

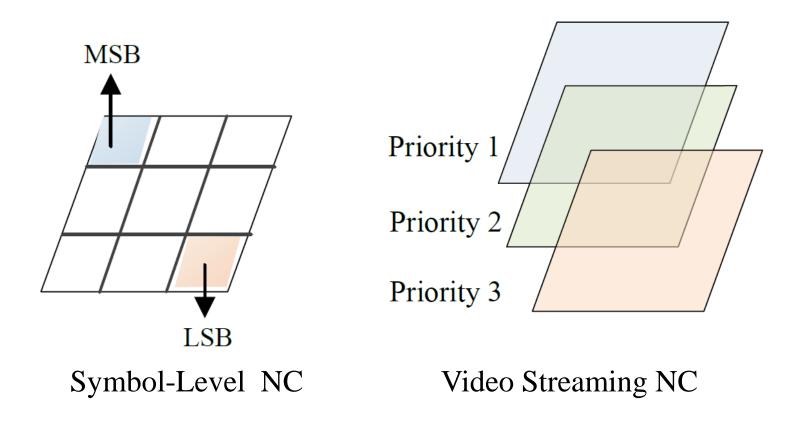

- 🗆 Local
 - Hop-by-hop decoding
 - XOR operation

Global

- Decoding at the destination
- Linear network coding


(on a finite field)

Network Coding Classification


- □ Intra-flow
 - **Within a flow**
 - Robustness enhancement
- □ Inter-flow
 - Between different flows
 - Throughput/capacity enhancement
- □ Joint inter- and intra-flow
 - Within flow and between flows

Priority-Based Approaches

New twist on the classic unequal error protection

Video Streaming

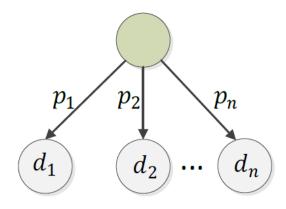
9

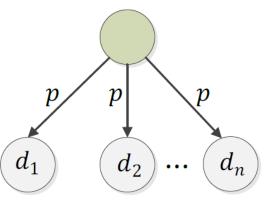
- Delivering video stream using different resolutions to satisfy different client needs/constraints
- Multi-Layer Coding (Multi-resolution)
 - Base layer
 - Enhancement layers

(a) Original

(c) Layer 2

- Multiple Description Coding (MDC)
 - Multiple independent video substreams
 - Receiving more substreams increases the video quality


Substream_1	Resolution_1
Substraam 2	Desolution 2
Substream_2	Resolution _2
Substream_N	Resolution _N


(d) Layer 3

(e) Layers 1 & 2 (f) Layers 2 & 3

Setting and Objective

- 10
- One-hop WiFi networks
- □ Video stream: sequence of packets
- Packet deadline: X transmissions
- \Box Layered streams : *L* layers
- Objective: maximizing throughput in terms of the total number of received layers by the users
- □ Intra-layer coding: linear coding
- □ Inter-layer coding: triangular coding

Lossy Bernoulli channel

Inter-Layer Coding Strategies

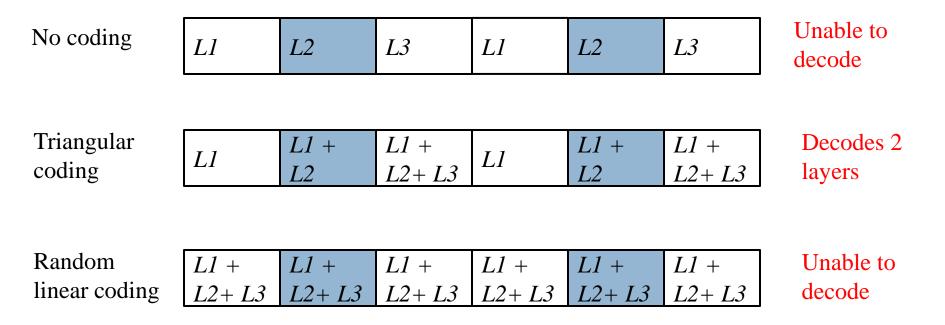
 Random linear network coding (RLNC)

$$\alpha_1 L_1 + \beta_1 L_2 + \gamma_1 L_3$$

$$\alpha_2 L_1 + \beta_2 L_2 + \gamma_2 L_3$$

$$\alpha_3 L_1 + \beta_3 L_2 + \gamma_3 L_3$$

Triangular codingPrefix coding


 $\alpha_1 L_1$ $\alpha_2 L_1 + \beta_2 L_2$ $\alpha_3 L_1 + \beta_3 L_2 + \gamma_3 L_3$

- Packets in lower layers are more important
 - Included in more coded packets
 - More chance to be decoded

Advantage of Triangular Coding

12

- Coefficients are not shown for simplicity
- □ 6 transmissions in round-robin pattern
 - Blue cells are received

Layered Video Decoding

- \Box *xi*: number of transmission of layer *i*
- \Box yi: received packets at layer i

Received packets on each layer

Ideal Case: $yi = P \cdot x_i = N$

Actual Case: $yi > p \cdot x_i, yi$

Χ	Strategy	N	<i>p</i>	Received Packets	Decoded Layers
64	[32,32,0,0]	8	0.25	[8,8,0,0]	2
64	[32,32,0,0]	8	0.25	[7,9,0,0]	2
64	[32,32,0,0]	8	0.25	[9,7,0,0]	1
64	[32,32,0,0]	8	0.25	[7,7,0,0]	0
64	[32,32,0,0]	8	0.25	[9,9,0,0]	2

Consider all possible triangular schemes denoted as $(x_1, ..., x_l)$, where $\sum_{i=1}^{L} x_i = X$

■ Ways of assigning X transmissions into L ways of generating the coded packets: $\begin{pmatrix} X-1+L \\ L-1 \end{pmatrix}$

Expected Throughput

14

- □ For one-layer case (with lossy Bernoulli channel):
 - Probability of receiving at least *N* transmissions out of *X* transmissions:

$$P[N] = \sum_{i=N}^{X} {\binom{X}{i}} \cdot p^{i} \cdot (1-p)^{X-i}$$

■ The expected throughput for each value of *N*:

$$E[N] = P[N] \cdot N = \sum_{i=N}^{X} {\binom{X}{i}} \cdot p^{i} \cdot (1-p)^{X-i} \cdot N$$

□ For multiple layers case (with lossy Bernoulli channel):

■ The number of decoded layers *B*:

$$\sum_{j=B}^{B-k} y_j \ge (k+1) \cdot N, \quad \forall \ k \in [0, B-1]$$

Expected Throughput

15

For multiple layers case:

For any given strategy $\{x_1, ..., x_L\}$, the expected throughput E[N] is the following:

$$\sum_{\substack{y_i \leq x_i \ i=1}} \prod_{i=1}^{L} \binom{x_i}{y_i} \cdot \mathcal{P}^{y_i} (1-\mathcal{P})^{x_i-y_i} \cdot B \cdot N$$

s.t.
$$\sum_{\substack{j=B}}^{B-k} y_j \geq (k+1) \cdot N, \quad \forall \ k \in [0, B-1]$$

Expected throughput for multiple layers cases

B represents the number of decoded layers

Large maximum throughput table based on different *p*, *N*, and *L* (Koutsconikolas et al. 2011)

Regression Techniques

16

□ Applying regression on the maximum throughput table to approximate the relationship between p, N, and L, for X transmissions

	•		p1	p2	р3	p4	р5	Max ET	Best N	x1	x2	х3	x4	Decoded L
			0.1	0.2	0.3	0.4	0.5	13.134	1	4	4	4	4	4
			0.1	0.2	0.3	0.4	0.6	13.556	2	4	8	4	0	3
			0.1	0.2	0.3	0.4	0.7	13.795	2	4	8	4	0	3
			0.1	0.2	0.3	0.4	0.8	13.912	2	4	8	4	0	3
			0.1	0.2	0.3	0.4	0.9	13.959	2	4	8	4	0	3
			0.1	0.2	0.3	0.4	1	16.145	4	4	4	4	4	4
	Dout of the		0.1	0.2	0.3	0.5	0.6	14.543	2	4	8	4	0	3
	Part of the		0.1	0.2	0.3	0.5	0.7	14.781	2	4	8	4	0	3
	generated table		0.1	0.2	0.3	0.5	0.8	15.096	2	4	4	4	4	4
	for 5 receivers,		0.1	0.2	0.3	0.5	0.9	15.174	2	4	4	4	4	4
	· · · · · · · · · · · · · · · · · · ·		0.1	0.2	0.3	0.5	1	16.306	4	4	4	4	4	4
	<i>X</i> =16		0.1	0.2	0.3	0.6	0.7	16.393	2	4	4	4	4	4
			0.1	0.2	0.3	0.6	0.8	16.719	2	4	4	4	4	4
			0.1	0.2	0.3	0.6	0.9	16.797	2	4	4	4	4	4
			0.1	0.2	0.3	0.6	1	16.818	4	8	4	4	0	3
			0.1	0.2	0.3	0.7	0.8	18.119	5	8	8	0	0	2
			0.1	0.2	0.3	0.7	0.9	18.506	5	8	8	0	0	2
			0.1	0.2	0.3	0.7	1	18.825	3	4	4	4	4	4
			0.1	0.2	0.3	0.8	0.9	21.621	3	4	0	8	4	4
			0.1 (0.2	0.3	0.8	1	22.014	3	4	4	4	4	4
			0.1	0.2	0.3	0.9	1	25.226	7	8	8	0	0	2
Regression	Equations					0.5	0.6	16.311	2	4	4	8	0	3
Regression	Equations		0.1 (0.2	0.4	0.5	0.7	16.425	2	4	4	8	0	3
			0.1	0.2	0.4	0.5	0.8	16.726	2	4	4	4	4	4
			0.1	0.2	0.4	0.5	0.9	16.804	2	4	4	4	4	4
N = 1(-1.10)	476 - 2.36363	$* p_1 - 3.24$	24	2 *	no	+	3.1	757 *	$n_2 +$	4.	21	2 *	DA	+0.75

$$\begin{split} N &= \lfloor (-1.10476 - 2.36363 * p_1 - 3.24242 * p_2 + 3.757 * p_3 + 4.212 * p_4 + 0.757 * p_5) \rfloor \\ L &= \lfloor (3.85714 + 1.36363 * p_1 + 0.2121 * p_2 - 1.969 * p_3 - 0.03 * p_4 + 0.333 * p_5) \rfloor \end{split}$$

Regression Techniques

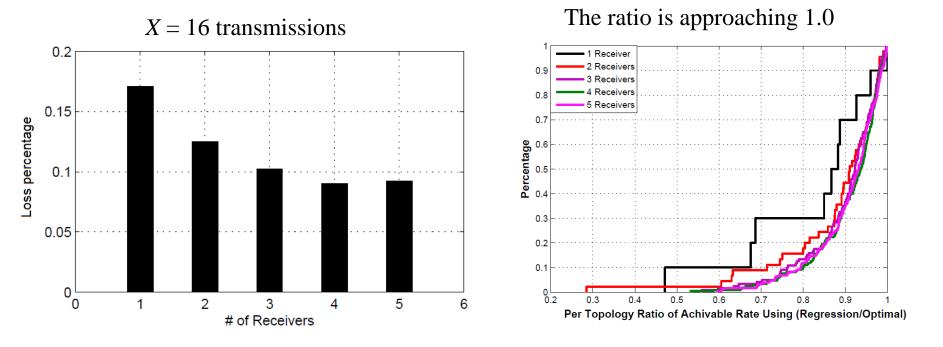
17

Regression equations for different numbers of receivers

No of Receivers	N and L Regression Equations
1	$N = \lfloor (-0.1999999999999999999999999999999999999$
	$L = \lfloor (2.4666666666666667 - 0.12121212121212122 * p_1) \rfloor$
2	$N = \lfloor (-0.66 - 5.333 * p_1 + 9.2727 * p_2) \rfloor$
	$L = \lfloor (3.2 + 0.242 * p_1 - 0.36363 * p_2) \rfloor$
3	$N = \lfloor (-1.052380 - 0.90 * p_1 - 1.83982 * p_2 + 7.229437 * p_3) \rfloor$
1,00	$L = \lfloor (3.63809 + 0.2813 * p_1 - 0.84415 * p_2 - 0.02164 * p_3) \rfloor$
4	$N = \lfloor (-1.42857 - 3.67965 * p_1 + 1.55844 * p_2 + 2.66233 * p_3 + 3.57142 * p_4) \rfloor$
	$L = \lfloor (3.7619 + 0.90 * p_1 - 0.974 * p_2 - 0.99567 * p_3 + 0.47619 * p_4) \rfloor$
5	$N = \left[\left(-1.10476 - 2.36363 * p_1 - 3.24242 * p_2 + 3.757 * p_3 + 4.212 * p_4 + 0.757 * p_5 \right) \right]$
	$L = \lfloor (3.85714 + 1.36363 * p_1 + 0.2121 * p_2 - 1.969 * p_3 - 0.03 * p_4 + 0.333 * p_5) \rfloor$

Strategy Selection

18


- □ Categorizing groups according to the decoded layer
- □ Using majority voting to decide the strategy

p1	p2	р3	p4	р5	Max ET	Best N	x1	x2	х3	x4	Decoded L
0.1	0.2	0.3	0.4	0.5	13.134	1	4	4	4	4	4
0.1	0.2	0.3	0.4	1	16.145	4	4	4	4	4	4
0.1	0.2	0.3	0.5	0.8	15.096	2	4	4	4	4	4
0.1	0.2	0.3	0.5	0.9	15.174	2	4	4	4	4	4
0.1	0.2	0.3	0.5	1	16.306	4	4	4	4	4	4
0.1	0.2	0.3	0.6	0.7	16.393	2	4	4	4	4	4
0.1	0.2	0.3	0.6	0.8	16.719	2	4	4	4	4	4
0.1	0.2	0.3	0.6	0.9	16.797	2	4	4	4	4	4
0.1	0.2	0.3	0.7	1	18.825	3	4	4	4	4	4
0.1	0.2	0.3	0.8	0.9	21.621	3	4	0	8	4	4
0.1	0.2	0.3	0.8	1	22.014	3	4	4	4	4	4
0.1	0.2	0.4	0.5	0.8	16.726	2	4	4	4	4	4
0.1	0.2	0.4	0.5	0.9	16.804	2	4	4	4	4	4
0.1	0.2	0.3	0.4	0.6	13.556	2	4	8	4	0	3
0.1	0.2	0.3	0.4	0.7	13.795	2	4	8	4	0	3
0.1	0.2	0.3	0.4	0.8	13.912	2	4	8	4	0	3
0.1	0.2	0.3	0.4	0.9	13.959	2	4	8	4	0	3
0.1	0.2	0.3	0.5	0.6	14.543	2	4	8	4	0	3
0.1	0.2	0.3	0.5	0.7	14.781	2	4	8	4	0	3
0.1	0.2	0.3	0.6	1	16.818	4	8	4	4	0	3
0.1	0.2	0.4	0.5	0.6	16.311	2	4	4	8	0	3
0.1	0.2	0.4	0.5	0.7	16.425	2	4	4	8	0	3
0.1	0.2	0.3	0.7	0.8	18.119	5	8	8	0	0	2
0.1	0.2	0.3	0.7	0.9	18.506	5	8	8	0	0	2
0.1	0.2	0.3	0.9	1	25.226	7	8	8	0	0	2

Best strategies that maximize throughput

Simulation Results

- 19
 - Loss percentage for different receivers to the optimal approach
- Empirical CDF for different topologies and numbers of receivers
- □ Graph is biased toward the right

20

Questions