
Minimizing the Number of Rules to Mitigate Link
Congestion in SDN-based Datacenters

Rajorshi Biswas1 and Jie Wu2

Information Sciences and Technology, Penn State Berks, Reading, PA, USA1

Department of Computer and Information Sciences, Temple University, Philadelphia, PA, USA2

Abstract—Link congestion due to regular traffic and link
flooding attacks (LFA) are two major problems in datacenters.
Recent usage growth of software defined networking (SDN)
in datacenters enables dynamic and convenient configuration
management that makes it easy to reconfigure the network to
mitigate the LFA. The reconfiguration that redirects some of the
traffic can be done in two ways: the shortest alternative path
and the minimum changes in rule path. The SDN switches have
a limited capacity for the rules and the performance dramatically
drops when the number of stored rules is higher. Besides, it takes
some time to adopt the changes by the SDN switches which
causes interruption in flow. In this paper, we aim at minimizing
the number of rule changes while redirecting some of the traffic
from the congested link. We formulate two problems to minimize
the number of rule changes to redirect traffic. The first problem
is the basic and it considers a congested link and a flow to direct.
We provide a Dijkstra-based and a rule merging based solution to
the problems. The second problem considers multiple flows and
we propose flow grouping and rule merging based solutions. We
conduct extensive simulations and experiments in our datacenter
to support our model.

Index Terms—software defined networking, routing rules, link
flooding attack, network security.

I. INTRODUCTION

Congestion in links in a datacenter has become a common
and serious problem nowadays. Link congestion can occur due
to regular traffic or a link flooding attack (LFA). In LFA, an
adversary aims to cut off an edge network from the Internet
by generating traffic that is destined to decoy servers and
the packets travels at least an important links on the paths
to the victim. Nowadays, software defined networking (SDN)
switches are taking place of the regular routers in datacenters.
In the SDN architecture, a centralised software, called the
controller, controls all of the actions of the SDN switches. This
centralised architecture has opened opportunities to defend
against the LFA and regular congestion easily and effectively.

Let us consider the network in Fig. 1(a) which is consist of
four SDN switches (a, b, c, and e), two regular switches/routers
(x and y), three sources (s1, s2, and s3), and two destinations
(d1 and d2). There are three flows f1 = s1 → d1, f2 = s2 →
d2, and f3 = s3 → d1. Link (c, e) is congested by other flows
as the result of extra traffic or link flood attacks which are not
shown in the figure. We need to redirect flow f1 to prevent
link congestion. There are multiple possible redirection points
and ways to redirect f1. A redirection point is the farthest
common SDN switch from the source between the new path
(after redirection) and the old path. For f1, the redirection

This research was supported in part by NSF grants CNS 1824440, CNS
1828363, CNS 1757533, CNS 1651947, CNS 1564128, and CNS 2107014.

s2

d2

d1

s1

s3

f3

f2

f1

(a) Flow redirection. (b) Time vs. rules.

Fig. 1: (a) Flow redirection due to LFA and (b) transmission
time vs. the number of rules.
points can be nodes a and c. If we consider node a as a
redirection point, then we can redirect f1 through the path
{a, b, y, e, d2} and we need new rules at node a and b. The
forward rule of f1 from y to e already exists at y. Therefore, in
this way, we need to add two rules and the number of increased
hop is zero. If we consider node c as a redirection point, then
we can redirect f1 through the path {a, x, c, y, e, d2} and we
need a new rule at node c. Therefore, in this way, we need to
add a rule and the number of increased hops is one.

To observe the importance of the number of rules, we
conduct a small experiment on a Pica8 P-3297 SDN switch
at our datacenter. We observe that when the number of rules
is greater than 4000 (see Fig. 1(b)), the transmission delay
between two machines (2-hops away) jumps up about 1 ms.
This happens when the fast accessible memory of an SDN
switch becomes exhausted. This small experiment shows the
importance of minimizing the number of rules and motivates
us to conduct research on this topic.

In this paper, we focus on mitigating link congestion by
redirecting some flows. To minimize the changes in rules, the
flow may travel a longer path which may increase delay but
overall delay due to no overloaded switches and interruption
is low. We formulate a basic problem to illustrate the basic
solution and the concept of core-tree (CT). This problem
considers one congested link and one flow to redirect. We
provide a Dijkstra-based solution for this problem. We formu-
late another problem for multiple flows redirection considering
one congested link which is NP-hard and we provide a
grouping-based solution. We provide extensive simulations and
experimental results and compare it with existing approaches.

The remainder of this paper is arranged as follows. Section
II presents some related works. In Section III, we present
the system and the attacker model. In Sections IV and V,
we present the problems of redirecting a flows and solutions.
Section VI and Section VII present the simulation and experi-
mental and results. Finally, Section VIII concludes our paper.

II. RELATED WORK

Unlike networks with regular topologies where re-routing
under attacks and failures can be mitigated using inherit
topology redundancy and structure [1], in regular networks
with irregular topologies. There are three types of researches
defending LFA and link congestion in SDN. Firstly, there are
some statistical methods, including correlation, entropy, co-
variance, divergence, cross-correlation, and information gain-
based system to detect attack traffic [2]. Other types of
congestion mitigation systems include [3–6] that are based on
multi-path routing and redirecting. These schemes either do
not consider SDN switches or the number of rules.

Secondly, in [7], authors propose a hybrid and scalable SDN
datacenter using both wireless and wired connections. In [8],
authors propose an approach to ensure traffic reachability if
any single link fails. They redirect traffic on the failed link
to SDN switches via pre-configured IP tunnels. Some other
works, such as [9], considers the problem of minimizing the
number of rules in SDN switches and propose a heuristic
algorithm that creates a reduced representation of rules in the
SDN switches in network. In [10], authors propose a DoS
attack on controller and link by dynamically re-routing poten-
tial malicious traffic, adjusting flow timeouts, and aggregating
flow rules. In [11], the authors proposed an efficient flow
forwarding scheme and an intelligent encoding algorithm to
minimize the number of rules.

Finally, in [12], the authors considers multiple failures of
links and multi-flows re-routing in SDN environment. They
propose a model for communication overhead between con-
troller and switch during flow re-routing to minimize flow
rules. In [13], authors propose a multicast routing model for
multiple multicast requests to minimizes the number rules. In
[14], authors propose an ILP to minimize the total cost. The
solutions of the problems considered in these works are based
on integer linear programming.

We discussed three types of existing defense systems: (1)
attack packet/flow detection at a router followed by packet
drop, rate control, and redirection, (2) re-routing and avoiding
the congested link using statistical and heuristic methods, and
(3) using redirecting some flows using linear programming.
The first type increases the router computation overhead and
the false positive creates great loss to the regular users.
Besides, bots are smart to create traffic similar to users
and are almost unidentifiable using statistical techniques. For
the second type, the heuristically methods performs poorly
in special cases. The linear programming approach is time
consuming if the topology is complex and big. Therefore, a
traffic routing where the number of new rules is minimized
with a low time complexity is necessary.

III. SYSTEM MODEL

A. Network Model

Our network is composed of regular routers, SDN switches,
sources, and destinations. We assume that the controller knows
the congested/attacked links and the routing policy of both

regular routers and SDN switches. A rule in an SDN switch
is simply a packet forwarding policy. The properties of an
incoming packet are matched with the criteria (source address,
destination address, incoming port) of the rules and actions
are taken according to the matched rule. The controller can
add, modify, or delete rules from an SDN switch but not
from a regular switch. If one or multiple links are congested
because of regular traffic or attack traffic, some of the flows
going through those links must be redirected through any non-
congested path. After redirection, none of the links should be
congested. To redirect a flow, the controller needs to add or
modify rules in some of the SDN switches. The number of
rules in an SDN switch is important because of the limited
storage. When the number of rules is above a certain threshold,
the packet forwarding delay increases dramatically. It also
takes some time to add a rule in an SDN switch. If the number
of additions or modifications is large, then the flow will be
interrupted. The order of rule addition to the controller does
not affect the interruption, because the rule are loaded to the
switch only when there is a packet for forwarding at the switch.
Therefore, we aim at minimizing the number of rules needed
to redirect some flows from congested links.

Let a flow f = s → d ∈ F from source s to destination
d travels through path P = {n1, n2, ...}. Here, ni is the ith
node on path and P is an ordered set. Each of the nodes in
P has a rule for forwarding the packets in flow f . Let Rf =
{r1, r2, ...} be the set of rules needed to forward the packets
of f . Rf ∈ R where R is the set of rules for all flows in the
topology. We will use the superscript f when it is necessary,
otherwise we will omit the superscript. Rule r1 resides in SDN
switch n1 and forwards the packets of f to node n2 through the
link (n1, n2). Some of the nodes in P are SDN switches and
some of them are regular routers. We denote SDN(n1) = 1
if n1 is an SDN switch and SDN(n1) = 0 if it is regular
router. After redirection, the flow f travels through a new path
P ′ = {n′1, n′2, ...}. The new set of rules is R′f = {r′1, r′2, ...}
is the set of rules needed to forward the packets in f though
P ′. Therefore, the newly added rules are R′−R and they must
reside in SDN switches. This is because the controller cannot
add any rules in a regular router. The number of newly added
rules is |R′ −R| that we aim to minimize.

Therefore, our system is a four phase system. In the first
phase, the controller detects the congested links. In the second
phase, it selects the flows and new paths to redirect. In the
third phase, it adds/modifies the forwarding rules to the SDN
switches. At the final phase, it removes the flows that are not
necessary from the SDN switches.

IV. REDIRECTING A FLOW

Problem I: Find the route to redirect the flow so that the
number of rules needed is the minimum.

In this problem, we assume that, the controller knows the
flow to redirect. Let P = {n1, n2, ...} be the path of the flow
f = s → d. Let the link (nc, nc+1) on the path P be con-
gested. After redirection, the new path is P ′ = {n′1, n′2, ...}.
R′ denotes the set of rules needed to forward packets of the

flow f through P ′. In this case, the problem can be expressed
as the following optimization problem:

minimize |R′ −R|
subject to |P ′| − |P | ≤ δ0

∀1≤i≤|P ′| (n
′
i, n
′
i+1) 6= (nc, nc+1)

∀ni,ni+1∈P ′ r((ni, ni+1)) ≤ δ1

(1)

Here, R denotes the set of existing rules in the network. The
first constraint means that the new path can be at most δ0
longer than the old path. The second constraint ensures that the
congested link does not appear on the new path. δ1 denotes the
maximum allowable bandwidth through the congested link and
r((ni, ni+1)) denotes the data rate usage of link (ni, ni+1).
The third constraint ensures that none of the links traveled by
redirected flows are congested after redirection.

A. A Dijkstra-based Solution

The problem is the basic part of problem II (discussed in
Section V) and easy to solve. This kind of situation may
appears when a heavy flow congest a link. We illustrate the
solution as a basic of problem II.

To solve the problem, the controller needs to formulate
a CT for the destination of the flow. A CT is a minimum
spanning tree covering a destination and the sources where
distance is the number of new rules. Each node in the CT has
the information of the next hop and the number of rules to
needed to forward the flow through that node. The flow can
be redirected from any upstream SDN switches that remain on
the flow path. If the flow is redirected to any node of the CT, it
is guaranteed to be delivered to the destination. To formulate a
CT, the controller collects all of the rules which are responsible
for forwarding the packets of the flow we are redirecting. The
complete algorithm for creating a CT is shown in Alg. 1. The
complexity of Alg. 1 is same as the Dijkstra algorithm, which
is O(|V |+ |E|log|V |) (|V | and |E| are the number of vertices
and edges, respectively).

B. An Example

Let us consider the example in Fig. 2(a). Let us assume
that link (z, x) is congested and the flow s1 → d2 needs to
redirect. Flow s1 → d2 can be redirected from either node b or
a. To find the best location of redirection we need to formulate
the CT for destination node d2. Fig. 2(c) shows the CT for
destination d2. We first remove the congested link. Then, we
calculate the number of hops and number of rules needed to
deliver any flows to d2. The number of rules gets a higher
priority over number of hops. We use the Dijkstra algorithm
to calculate the smallest rule path from each node. We do not
consider the links that becomes congested if they pass s1 → d2
flow. For regular nodes, we do not update distance if the next
hop is different from the previous next hop. Construction of
CT also considers the data rate of the flow. For example, if we
are constructing a CT for redirecting a flow of 10 MBps, then
links that can forward additional 10 Mbps traffic without being
congested are considered. From the CT, we can see that if we
redirect from node b, it will need 2 new rules. If we redirect
from node a, it will need 1 new rule. Therefore, we add a new

s1

s2

s4 s5

s6

d2

d1

s3

s7

1

2

3

4

1
2

3

4

5

2

2
3

4

1

2

3

4

1
2

1

4

1

2

3

4

5

1

1

3

2

5

1

2

3

3

(a) Network topology.

[2,0][3,0]

[3,0]

[2,1]
[1,0]

[,]

[4,1][5,2]

[4,1]

new rule

existing rule

d1[hops, rules]

(b) CT for d1.

[2,0][3,0]

[3,2]

[2,1]
[1,0]

[,]

[5,2][5,2]

[4,1]

new rule

existing rule

d2

[hops, rules]

(c) CT for d2.

d2

d1

[2,0][3,0]

[3,2]

[2,1]
[1,0]

[,]

[5,2][5,2]

[4,1]

[hops, rules]

new rule

existing rule

(d) CT for d1 and d2.

Fig. 2: An example for Problems I and II.
rule at node a that indicates if the source and destination are
s2 and d2, respectively, then forward the traffic to node f .

V. REDIRECTING MULTIPLE FLOWS

Problem II: Find a set of flows to redirect from all of the
flows through a congested link so that the number of rules
needed to redirect is the minimum.

In this problem, we assume that the controller knows the
congested link. Let F be the set of flows passing through the
congested link (nc, nc+1). We split F into F0 and F1. Flows
in F0 will continue using the congested link. Flows in F1 will
be redirected. Let P ′f be the new path of the flow f (f ∈ F).
In this case, the problem can be expressed as the following
optimization problem:

minimize | ∪f∈F1
R′f −R|

subject to ∀f∈F1
|P ′f | − |P f | ≤ δ0

∀1≥i≥n′ (n′fi , n
′f
i+1) 6= (nc, nc+1)

∀f∈F0
∀ni,ni+1∈P ′f r((ni, ni+1)) ≤ δ1

(2)

Here, ∪f∈F1
R′f is the set of all rules needed to redirect

the flows. If a rule is used to redirect multiple flows, then
it appears on multiple rule sets. Therefore, we need to take
the union of the set of rules of all flows. δ1 denotes the
maximum allowable bandwidth through the congested link.
The first constraint means the new path can be at most δ0
longer than the old paths. The second constraint ensures that
the congested link does not appear on the new path. The third
constraint ensures that none of the links traveled by redirected
flows are congested after redirection.

A. A Flow Grouping Solution

The problem is NP-hard and we provide a heuristic solution
for this problem. The basic idea is to group the flows and
add some rules that can work on the group of flows. The
small number of groups helps to reduce the run-time with
some additional rules. We group the flows based on common
upstream links. We consider the paths of the flows up-to k
hops from the congested link. Flows having the same path
goes to the same group. Therefore, each group has the same
upstream path up-to length k. Each node on the common path

Algorithm 1 Generate CT
Input: G(V,E,R), congested links Lc, destination d.
Output: A CT of G for destination d.
1: Procedure: FIND-CT(G,Lc, d)
2: ∀n∈V C[n] =∞, D[n] =∞, S[n] = ∅
3: Q← {d}, C[d]← 0, E ← E − Lc

4: while Q 6= ∅ do
5: n← vertex in Q with min C[n]
6: REMOVE(Q,n)
7: for n′ ∈ NEIGHBOR(n) do
8: r ← (d, n)
9: if r ∈ R then

10: C[n′]← MIN(C[n′], C[n]) , S[n′]← S[n]
11: D[n]← D[ARGMIN(C[n], C[n′])] + 1
12: else if n′ is SDN then
13: C[n′]← MIN(C[n′], C[n] + 1), S[n′]← S[n] ∪ {r}
14: D[n]← D[ARGMIN(C[n], C[n′])] + 1

15: return Gct(V,E,C, S,D)

Algorithm 2 Combine CTs
Input: G(V,E,R), congested links Lc, destinations set D.
Output: A CT of G for destination d.
1: Procedure: MULT-DEST-CT(G,Lc, D)
2: ∀d∈D CT [d]← FIND-CT(G,Lc, d)
3: ∀n∈V C[n] =∞, D[n] =∞, S[n] = ∅
4: Q← D, E ← E − Lc

5: while Q 6= ∅ do
6: n← vertex in Q with min C[n]
7: REMOVE(Q,n)
8: X ←

⋃
d∈D CT [d].S, C[n]← |X|

9: for n′ ∈ NEIGHBOR(n) do
10: r ← (D,n′)
11: S[n]← d ∈ DCT [d].S[n]
12: if r ∈

⋃
d∈D CT [d].S[n] then

13: C[n]← MIN(C[n], C[n′])
14: D[n]← D[ARGMIN(C[n], C[n′])] + 1
15: else
16: C[n]← MIN(C[n], C[n′] + 1), S[n]← S[n] ∪ {r}
17: D[n]← D[ARGMIN(C[n], C[n′])] + 1

18: return Gct(V,E,C, S,D)

is eligible to be a redirect point. After that, a CT for the
destinations in each group is created. Creating a CT for a group
is basically combining the CTs for the destinations in that
group. To combine multiple CTs, we need compute the number
of rules needed and the hop-counts for the destinations. A node
can forward the packets that belong to the destination group
in two different ways:

1) Separate forwarding: The node forwards the packets
of each flows to separate next hops that offers the least
number of rules. The combined number of rules needed
is the total of the number of unique rules of all CTs.

2) Aggregated forwarding: The node forwards all of the
packets that are destined to any of the destinations in
the group to a next hop. The combined number of rules
needed is one plus the minimum of separate or aggregated
forwarding of all CTs of the next hop nodes.

However, we select the option that provides the minimum
number of rules. The number of CTs are the same as the
number of groups. For each group, we calculate the minimum
number of rules needed to redirect the flows from one of the
redirect points. Then, the group with the minimum number
of rules is taken out for redirection. After that, we update
the CT of the rest of the groups. We need to update the

TABLE I: Flows and bandwidth

Flow Bandwidth Flow Bandwidth
f0 s1 → d2 40 Mbps f4 s4 → d1 10 Mbps
f1 s2 → d2 10 Mbps f5 s5 → d2 10 Mbps
f2 s3 → d1 20 Mbps f6 s7 → d2 20 Mbps
f3 s6 → d1 10 Mbps

CTs because after redirection, the capacity of some links
will change. As a result, the CT for the rest of the groups
may change. This process continues until the congested link
becomes non-congested. Alg. 2 shows the complete procedure
of combining multiple CTs.

The value of k plays an important role in grouping. A small
k produces a small number of large size groups. This reduces
the running time of the algorithm, but a large group of flows
may need more rules to redirect.

B. An Example of Common k Links Grouping

Let us consider the example in Fig. 2(a). Each link has a
maximum capacity of 100 Mbps. Flows and their bandwidths
are shown in Table I. We can observe that flows f1, f2, f3,
and f6 are passing through link (z, x). Their total bandwidth
is 40 + 10 + 20 + 20 = 90 Mbps. We assume that any link
utilization above 70% (70 Mbps) is considered congested.
Therefore, only link (z, x) is congested in our example. We
need to redirect some of the links among f0, f1, f2, and f6
to make link (z, x) usage less than or equal 70 Mbps.

Next, we group the flows according to the Common k Links
policy. Let us consider k = 1 first. The the upstream path of
the flows of length 1 is following:

f0 : {b, z}, f1 : {b, z}, f2 : {b, z}, f6 : {e, z}.
We can observe that f0, f1, and f2 have the same upstream

path {b, z}. Therefore, flows f0, f1, and f2 goes to group 1
and f6 goes to group 2.

Next, we construct the CT for the groups (k = 1). The CT
for group 1 contains routes for destinations d1 and d2. The
total bandwidth of the group is 40+10+20 = 70. Therefore,
any link having existing flows cannot redirect all of the traffic.
As a result, group 1 cannot be redirected. The CT for group
2 contains routes for destination d2 only. Therefore, the CT is
the same as the one in Fig. 2(c). The redirect points of group
1 is e. The number of rules needed to redirect from e is 2.
Therefore, the minimum number of rules to redirect the flows
in group 1 is 2. At this point, we redirect the flows in group
2 and the number of rules needed is 2. After redirection, the
congested link usage becomes 90− 20 = 70 Mbps and is no
longer considered congested.

If we consider k = 2, the upstream paths of the flows of
length 2 are the following:
f0 : {c, b, z}, f1 : {a, b, z}, f2 : {a, b, z}, f6 : {e, z}.
Now we have a different grouping for k = 2 than k = 1.

Therefore, flows f0 goes to group 1, f1, and f2 go to group 2,
and f6 goes to group 3. The CT for group 1 contains routes
for destination d2 only. Therefore, the CT is the same as the
one in Fig. 2(c). The redirect points of group 1 are c and b.
The number of rules needed to redirect from b and c is 2.
The minimum number of rules to redirect the flows in group

Dest IP=10.3.0.2/32
Output: 2

Dest IP=10.3.0.4/32
Output: 2

Dest IP=10.3.0.0/30
Output: 2

Dest IP=10.3.0.2/32
Output: 2

Dest IP=10.3.0.4/32
Output: 2

Dest IP=10.3.0.3/30
Output: 2

Dest IP=10.3.0.3/32
Output: 3

Switch 1 Switch 2

Fig. 3: Merging rules.

1 is 2. The CT for group 2 contains routes for destination d
and d2. Therefore, the CT is the same as in Fig. 2(d). The
redirect points of group 2 are a and b. The number of rules
needed to redirect from a and b is 1 and 2, respectively. So, the
minimum number of rules to redirect the flows in group 2 is
1. The CT for group 3 contains routes for destination d2 only.
Therefore, the CT is the same as in Fig. 2(c). The redirect
point of group 3 is e only. This is because, z is a regular
router and cannot be redirected from there. The number of
rules needed to redirect from e is 2. Therefore, the minimum
number of rules to redirect the flows in group 3 is 2.

Therefore, redirecting group 2 adds the least number of
rules. We redirect the flows f1 and f2 from node a. After
redirection, the link capacity of the congested link comes down
to 90− (10+20) = 60 Mbps, which is below 70% of the link
utilization and the algorithm stops.

Theorem 1. The complexity of Alg. 2 is O(|D|(|V | +
|E|log|V |)).

Proof. To calculate the complexity of Alg. 2, we need to
calculate the complexity of Alg. 1. Alg. 1 is basically the
Dijkstra algorithm. Therefore, the complexity is O(n+mlogn)
where n = |V | and m = |E|. Step 2 in Alg. 2 takes
O(|D| × (|V | + |E|log|V |)). Step 11 takes O(|D|) times
because at any node the number of added rules can be at
most as the number of destination nodes. Therefore, the while
loop in Step 5 takes O(n × |D|) time. So, the total run time
of the Alg. 2 is O(|D| × (|V |+ |E|log|V |)) + O(|V | × |D|)
which is O(|D|(|V |+ |E|log|V |)).

C. Greedy Rule Merging Solution

In this subsection, we consider that two rules can be merged
if it does not conflict with others. We define conflict of rules
for merging if all of the following conditions are satisfied:

1) Forwarding ports of the rules to be merged must be same.
2) Merged rule matching criteria cannot overlap with the

criteria of any other rules except the rules to be merged.
3) Merged rule matching criteria must match all of the

criteria of rules to be merged.
Let us consider the example in Fig. 3 to explain the merging

of rules. Switch 1 has two rules that have the same output ports
so they may be merged (condition 1 satisfied). We combine
the matching criteria to 10.3.0.0/30 that covers both rules
(condition 2 satisfied). As there are no other rules, condition 3
is satisfied. Therefore, we can merge the rules to if destination
IP is 10.3.0.0/30 then output to port 2. In switch 2, we have
three rules. Rule 1 and Rule 2 have same output ports. We
combine their matching criteria to 10.3.0.0/30, which covers

TABLE II: Topology Parameters

Number of Topology I (T1) Topology-II (T2)
Nodes 73 121

Sources/Destinations 13/15 16 /24
SDN switches 45 81

Links 184 296

the matching criteria of rule 3 (violation of condition 3).
Therefore, the rules cannot be merged.

When we add new rules and the new rules can be merged
with any of the existing rules, then the number of rules
does not increase. Using this principle, we design a greedy
algorithm to solve problem II. The greedy algorithm is simple;
we calculate the minimum number of rules for each flow
through alternative possible paths with merging. Then, we
pick the flow with the minimum number of unseen rules and
redirect it through the path. After that, we mark the taken
unseen rules as seen. We continue until the congested link
becomes non-congested.

D. An example

Let us consider the example in Fig. 2(a) again. We first
consider f0 through path {s1, c, a, f, y, x, d2}. There are al-
ready rules to forward packets to d2 at node f , y, and x. We
need to add two new rules at a and c. None of the existing
rules output to port 3 at c and port 5 at a. Therefore, we need
2 rules to redirect f0 through the path. If we consider path
{s1, c, b, e, g, x, d2}, then we need new rules at nodes b, e,
and g to output the packets to ports 4, 4, and 2 ,respectively.
There are no rules at b and g to output to port 4 and 2. The
existing rule at e that outputs to port 4 can be merged with the
new rules. Therefore, we also need 2 new rules to forward f0
through this path. Similarly, considering other paths, we find
that the cost of redirecting f0 is 1 ({s1, c, b, z, f, y, x, d2}).
Similarly, we calculate the cost of redirecting f1, f2, and f6
is 1. Therefore, we can pick any of the flows to redirect. Let us
pick f0 to redirect. After redirection we calculate the cost of
the remaining flows and continue the process until link (z, x)
becomes non-congested.

Theorem 2. The complexity of Greedy Rule Merging Solution
is O(|F ||Rn|(|V |+ |E|)).

Proof. Finding the of cost of redirection needs to traverse
the topology graph once. To find whether a new rule can
be merged or not takes O(|Rn|), where Rn is the set of
existing rules at node n. Therefore, each iteration of the greedy
algorithm takes O(|Rn|(|V |+ |E|)). The iteration can run at
most |F | times. Therefore, the complexity of the algorithm is
O(|F ||Rn|(|V |+ |E|)).

Theorem 3. The complexity of Greedy Rule Merging Solution
has an approximation ratio of η(1− 1

e).

Proof. To find the upper bound of the greedy approximation,
we assume that all rules that output to the same port can
be merged. We denote a rule by rnp where n is the node
and p is the output port. We denote the minimum set of
rules needed to redirect a flow f by Sf . Now, the problem
II can be expressed as finding k elements from the set

(a) Topology T1. (b) CT dest. (side) T1. (c) CT dest. (cent.) T1.

(d) Topology T2 (e) CT dest. (side) T2. (f) CT dest. (cent.) T2.

Fig. 4: CT of a randomly generated topology for different
destinations (green node: source, blue node: destination, red
link: new rules added, black link: existing rule).
S = {S1, S2,S|F |} so that the number of unique elements
is the minimum. Now we convert the problem to a maximum
coverage problem by replacing S with S′ and Sf with S′

f .
Here S′ = {S′

1, S
′
2,S

′
|F |} and S′

f = U − Sf . U is the

universal set (U = ∪|F |
f=1Sf). Therefore, a maximum coverage

solution represents a solution to Problem II. The maximum
coverage greedy solution has an approximation ratio of (1− 1

e).
Let η be the merging ratio of the rules. If there are |Rn|
number of rules before merging and |R′

n| number of rules
that output to an specific port at node n, then |Rn|

η = |R′
n|.

Therefore, the number of rules for the greedy rule merging
solution must be less than η(1 − 1

e) times of the minimum
number of rules.

VI. SIMULATIONS AND EXPERIMENTS

A. Simulation Settings

We conduct the experiments with our custom built java
simulator. We want to count the number of rules needed for
redirecting the flows. We do not need to analyze transmis-
sion time, actual link bandwidth, or packet drop issues. The
network topologies we consider in this simulation contain
70 − 120 SDN switches, sources, and destinations. Using
NS3 or other similar simulators for this kind of simulation
would take a long time to produce results. That is the reason
for building our own java simulator, to get the results fast.
We generate random topologies and set the link capacities
as 100 Mbps. Although in a real network the link capacity
is different for different links (100Mbps/1Gbps/10Gbps), we
keep them the same for simplicity and ease of comparison.
Fig. 4 and Table II show the structures and details properties
of the topologies. Next, we generate the desired number of
flows by randomly selecting a source and a destination with a
random rate from a range. We set the minimum rate to 1 Mbps.
We select different maximum rates for different simulations.

(a) Different # of flows in T1. (b) Different # of flows in T2.

(c) Different flow rate in T1. (d) Different flow rate in T2.

(e) Different threshold in T1. (f) Different threshold in T2.

(g) Grouping vs. Merging in T1. (h) Grouping vs. Merging in T2.

Fig. 5: Number of rules per redirected flow.
We measure the number of rules increased/flow and the

number of hops increased after redirection for different number
of flows, maximum data rate, and congestion threshold. The
congestion threshold is defined by δ1

link capacity . We compare the
performance of our approaches with shortest alternative path
redirection approach. All of the results in the plot are the
average of 200 runs with three different k values.

B. Simulation result

Firstly, we observe the number of increased rules per flows
by changing different parameters. Figs. 5(a) and 5(b) show
the number of increased rules per flow for different number
of flows in T1. We vary the number of flows from 20 to 100
and keep the maximum data rate as 10 Mbps. For all values of
k, the number of rules per flow decreases with the increase of
number of flows. A higher value of k, produces lower number
of rules per flow. When the number of flows are higher, the
network needs a higher number of rules to forward them. As
a result, the existing rules help to forward the packet through
an alternative way and we need fewer number of new rules.
If k is higher, then the number of groups increases and the
selection of flows to redirect is better. When the number of
flows is 20 and k = 1 (or k = 3), the average number of
needed rules to redirect a flow is 1.88 (or 1.54). The number

(a) Difference in #rules/flow in T1. (b) Difference in #rules/flow in T2.

(c) Difference in hops in T1. (d) Difference in hops in T2.

Fig. 6: Comparison with shortest alternative path routing.

of needed rules increased by about 18%. We observe similar
behavior in T2.

Fig. 5(c) shows the number of increased rules per flow for
different maximum data rate of flows in T1. We vary the
maximum data rate of flows from 10 to 20 Mbps and keep
the number of flows as 20. For all values of k the number
of rules per flow increases with the increase of maximum
data rate. Similar to the previous simulation, a higher value of
k produces lower number of rules per flow. This is because
when the max data rate is higher, the network observes more
congested links. Because of a higher number of congested
or soon to be congested links, there are less options for
redirecting a flow. As a result, a higher number of new rules is
needed to forward the flow. When the maximum data rate is
10 and k = 1 (or k = 3), the average number of needed
rules to redirect a flow is 1.81 (or 1.44). The number of
needed rules increased by about 20%. Fig. 5(d) plots the
number of increased rules per flow for different maximum
data rate of flows in T2. We keep the same parameters as
the previous simulation and observe the similar behavior. The
overall number of rules /flow is higher in T2 than T1.

In Figs. 5(e) and 5(f), we show the number of increased
rules per flow for different congestion threshold of links in
T1 and T2. We vary the congestion threshold of links from
0.5 to 0.9 and keep the number of flows at 20. For all
values of k, the number of rules per flow decreases with the
increase of congestion threshold of links. This is because when
the congestion threshold is higher, the network observes less
congested links. Because of the lower number of congested
or soon to be congested links, there are more options for
redirecting a flow. As a result, the number of rules needed to
forward the flow is smaller. When the congestion threshold is
0.5 and k = 1, the average number of needed rules to redirect
a flow is 1.95. When k = 3, the average number of needed
rules to redirect a flow is 1.56. The number of needed rules
decreased by about 20%. We observe similar behavior in T2.

Figs. 5(g) and 5(h) show the comparison between the
grouping and merging based approaches in T1 and T2. We
vary the number of flows from 20 to 100, keep the maximum

data rate as 10 Mbps, and set k = 1. We observe that the
merging based approach needs a smaller number of rules but
a higher number of modifications than the grouping based
approach. When the number of flows is 20 in T1, the average
number of needed rules to redirect a flow by grouping and
merging based approaches are 1.69 and 1.67. The number
of modification is needed in the merging based approach is
2.18 per flow. The merging based approach needs less (or
more) rules when the number of flows is less (higher) than
50. The number of modifications for merging is always higher
than grouping based approach. We observe similar behavior
for T2. Therefore, when we need to save storage on SDN
switch, we need to use the merging based approach. When
we prioritize interruption over SDN storage, then we need to
use the grouping based approach.

Fig. 6 compares the alternate shortest path routing with
redirection with k groups in terms of number of increased
hops/flow and number of increased rules per flow. For these
simulations, we vary the number of flows from 20 to 100 and
keep the maximum data rate as 10 Mbps. Figs. 6(a) to 6(d)
are executed with this settings. Fig. 6(a) shows the number
of increased rules per flow for different number of flows in
T1. When the number of flows is 20 and k = 1, the average
number of needed rules to redirect a flow in our approach
is 0.58 less than the shortest alternate path approach. When
k = 2 and k = 3, the average number of needed rules to
redirect a flow in shortest alternate path approach is 0.62 and
0.57 higher than our approach, respectively. The difference is
similar for all k values. The difference slightly decreases with
the increase of number of flows. In Fig. 6(b), we present the
number of increased rules per flow for different numbers of
flows in T2. The difference slightly increases then decreases
with the increase of number of flows.

Fig. 6(c) shows the number of increased hops/flow for
different numbers of flows in T1. When the number of flows
is 20 and k = 1, the average number of increased hops after
redirecting a flow in our approach is 4.47 higher than the
shortest alternate path approach. When k = 2 and k = 3,
the average number of needed rules to redirect a flow in our
approach is 4.66 and 4.35 higher than the shortest alternate
path approach, respectively. The difference remains unchanged
for all numbers of flows. Fig. 6(d) lists the number of increased
hops/flow for different numbers of flows in T2. We observe
similar behavior as in T1.

Therefore, based on the simulation result, we can conclude
that our redirection approach with k links grouping can
redirect by adding a lower number of rules than the shortest
alternate path approach.

VII. EXPERIMENTS IN DATACENTER

A. Experimental Settings

We conduct experiments to evaluate the effect on a flow
when we change the routing. To conduct the experiments we
use our small datacenter with fifteen SDN switches. We do
not use any regular routers because they only increase hops
without any effect on the changes in rules. The partial topology

of the datacenter is shown in Fig. 7(d). Nodes 2 to 16 are Pica
8 (P-3297) SDN switches. The numbers at the ends of a link
denotes the port number where it is plugged. There are four
servers (101-104) that are connected at the leaf level switches.
We create three flows {101 → 102, 101 → 103, 101 → 104}
and continuously record the ping delays (round trip delay). The
initial flows travel the shortest path and we suddenly change
the route by adding some rules. We compare the delays before,
after, and during the rule change period. We use ONOS (2.2.2)
as the controller and REST api to add/delete rules. We develop
a separate Java program that can monitor the link status and
add/delete rules using REST api.

B. Experimental Results

Fig. 7(a) shows the ping delay of 40 times of flow servers
101 to 102. The flow during time 1 to 16 follows the shortest
path {101, 9, 10, 102} and the average ping delay is 0.84 ms.
After changing the rules by the rule modifier program, the
flow travels the alternative path {101, 9, 5, 10, 102}. The flow
during times 17 to 40 follows the alternative path and the
average ping delay is 0.93 ms. The ping delay increases 0.09
ms for an increase of 1 hop. No other changes are observed
for the addition of three new rules.

Fig. 7(b) depicts the ping delay of 40 times of flow from
101 to 103. The flow during times 1 to 14 follows the shortest
path {101, 9, 12, 103} and the average ping delay is 0.94
ms. After changing the rules, the flow travels the alternative
path {101, 9, 5, 3, 6, 12, 103}. The flow during times 15 to 40
follows the alternative path. During time 15 to 23 we observe
a lift in delay. This lift in delay occurs because of the addition
of 5 new rules. The average ping delay becomes stable during
times 24 to 40 and the average delay is 1.11 ms. The delay
increases 0.17 ms for an increment of 3 hops.

Fig. 7(c) presents the ping delay of 40 times of flow servers
101 to 104. The flow during times 1 to 19 follows the shortest
path {101, 9, 14, 104} and the average ping delay is 0.87 ms.
After changing the rules by the rule modifier program, the flow
travels the alternative path {101, 9, 5, 3, 2, 4, 7, 14, 104}. The
flow during times 20 to 40 follows the alternative path. At time
20 the destination remained unreachable for 1 s. During times
21 to 22 we observe a high lift in delay. This lift in delay
occurs because of an addition of 7 new rules. The average
average ping delay becomes stable during times 22 to 40 and
the average delay is 1.38 ms. The ping delay increases 0.51
ms for an increase of 5 hops.

Therefore, we can conclude that the more the change in
number of rules, the more the interruption in flow. Changes in
up to 5 rules might not cause noticeable interruption to delay
sensitive applications. Changes in 7 or more rules might cause
interruption to delay sensitive applications.

VIII. CONCLUSION

The link flooding attack and link congestion are common
issues in a datacenter. A larger number of rules plays an impor-
tant role in transmission delay. When the number of rules in
an SDN switch is higher than its fast accessible rules storage,

(a) Three rules added. (b) Five rules added.

(c) Seven rules added.

1 1 1 1

1 1 1 1 1 1 1 1

2 3 2 3 2 3 2 3

2 3 2 3

2 31 1

1

1

101

2
2 2

2
34

11

11 11 11

Controller

102 103 104

(d) Datacenter topology (partial).

Fig. 7: Effects on ping delay.
the delay increases dramatically. Besides, changing rules in
a higher number of SDN switches takes a long time, which
causes interruption in flows. We consider this important issue
for mitigating link flooding attack or congestion by redirecting
some flows with less number of new rules. We propose and
evaluate performances of k links flow grouping and merging-
based approaches. Our extensive simulation supports that the
proposed approaches can minimize the number of added rules
by increasing the number of hops.

REFERENCES

[1] J. Wu, “Adaptive fault-tolerant routing in cube-based multicomputers
using safety vectors,” IEEE Transactions on Parallel and Distributed
Systems, vol. 9, no. 4, 1998.

[2] J. Wang and I. C. Paschalidis, “Statistical Traffic Anomaly Detection
in Time-Varying Communication Networks,” IEEE Transactions on
Control of Network Systems, vol. 2, no. 2, Jun 2015.

[3] D. Andersen, H. Balakrishnan, F. Kaashoek, and R. Morris, “Resilient
Overlay Networks,” in Proceedings of the Eighteenth ACM Symposium
on Operating Systems Principles, Oct 2001.

[4] K. Argyraki and D. R. Cheriton, “Loose Source Routing As a Mech-
anism for Traffic Policies,” in Proceedings of the ACM SIGCOMM
Workshop on Future Directions in Network Architecture, Aug 2004.

[5] M. Motiwala, M. Elmore, N. Feamster, and S. Vempala, “Path Splicing,”
in SIGCOMM Comput. Commun. Rev., vol. 38, no. 4. ACM, Aug 2008.

[6] R. Biswas, J. Wu, W. Chang, and P. Ostovari, “Optimal filter assignment
policy against transit-link distributed denial-of-service attack,” in 2019
IEEE Global Communications Conference, 2019, pp. 1–6.

[7] C. Chuang, Y. Yu, A. Pang, and G. Chen, “Minimization of tcam usage
for sdn scalability in wireless data centers,” in Global Communications
Conference, 2016, pp. 1–7.

[8] C. Chu, K. Xi, M. Luo, and H. J. Chao, “Congestion-aware single link
failure recovery in hybrid sdn networks,” in Conference on Computer
Communications, 2015, pp. 1086–1094.

[9] I. S. Petrov, “Algorithm for reducing the number of forwarding rules
created by sdn applications,” Modelirovanie i Analiz Informatsionnykh
Sistem, vol. 26, no. 1, 2019.

[10] L. Dridi and M. F. Zhani, “Sdn-guard: Dos attacks mitigation in sdn
networks,” in 5th International Conference on Cloud Networking, 2016.

[11] Z. Li and Y. Hu, “Pasr: An efficient flow forwarding scheme based on
segment routing in software-defined networking,” IEEE Access, vol. 8,
2020.

[12] M. Sun, K. Shao, and L. Wang, “Minimizing flow rules for rerouting
multi-flows in multi-failure recovery over sdn,” in 8th International
Conference on Software and Computer Applications. Association for
Computing Machinery, 2019, p. 555–559.

[13] S. Kotachi, T. Sato, R. Shinkuma, and E. Oki, “Multicast routing model
to minimize number of flow entries in software-defined network,” in 20th
Asia-Pacific Network Operations and Management Symposium, 2019.

[14] Z. Zhao, W. Yang, and B. Wu, “Flow aggregation through dynamic
routing overlaps in software defined networks,” Computer Networks,
vol. 176, 2020.

