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 Traditional graph spectral clustering
algorithm is based on recursive bisection.
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* Recursive bisection: 4/2/2 nodes
 Optimal partition: 3/3/2 nodes



e Can we cut the graph into multisections
directly?

* Yes, but former approaches on graph
multusection have a high time complexity
and a low partition accuracy.

e We propose a multisection algorithm with
a low time complexity and a competitive
partition accuracy.



 Spectral bisection algorithm by Dr.
Newman
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 Modularity is the partition metric, if node 7
and / belong to the same community,
then the modularity gain is 5jj.

 So the total modularity (or quality) is

Q—4mZB (sisj +1) = 4mZB 555

* Since ", B;; =0



* Relaxthe constrain s; € {(-1,+1} t Zs =n
if there are 7 nodes in total.

 This is a classic optimization (maximize
the modularity under the above
constraint), which can be solved by
Lagl““‘ il
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e Then (use a vector sto denote [sZ s2...

.2, Bijsj = [3si, or in matrix notation, Bs = j3s.
 This implies that the vector s should be
an eigenvector of 5.

* Recall 0= L Tps= L Tpe ™5
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* To maximize Q, the vector s should be the
eigenvector corresponding to the largest
eigenvalue of the modularity matrix.

 Each element in this eigenvector stands
for the group allocation of the
corresponding node.

e Roundeach element in the eigenvector to
{-1,+1}, then we obtain the partition result.



 Basic idea: use a vector to present the
group allocation, ins =1 d of (we use
more than one bit to present group

allocation).
[ hy if node i belongs to group 1.
ha if node i belongs to group 2.
5; = 4 i
e Our algorithm: | hi if node i belongs to group K.

R if node i belongs to group 1.
=121 if node 7 belongs to group 2.

 (Classic approach:
[ [ T — ~ T Y



These vectors are mutually orthogonalto
each other, which are produce by
Hadamard matrix (//is the i-th row of it):

A b I

o1
Our approach 55 = {é vs classi E(sis; +1) = {é

For example, s.=[+1 +1] ands =[+1 —1]



Basic idea: use a self-defined operation,
matrix inflation, to present the modularity.

. R =
Our approach: @ =55 Bxks
Classic approach: Q=_—s'Bs:

Then the following process is the same as
the classic approach, but now we can do
multisection directly.



 Self-defined operation: matrix inflation

 Definition: the Kronecker product of the
matrix M and a K*K identity matrix.

e Example
1 0 2 0
1 2 — |01 0 2
ﬂ«f—[g 4] and ﬂ12—3040
0 3 0 4




e Additional issue: we use a randomized
matrix inflation to keep relaxation
effective.

* Time complexity (the graph has 77 nodes):

@ Our method: O(A4n2), where A'is the
estimated number of communities.

@ Recursive bisection algorithm:
—||||ﬂ|@2 / Og I7) . 0



 Our evaluations are based on the LFR
benchmark, where the node degree and
the community size follow power-law,
with expoi3nts "Yand , respectively.

* Links between nodes in the same
(different) community are called internal
(external) links. A mixing parameter, u, is
the ratio of the external node degree to
the total degree.



e Algorithms in comparison:

@ The recursive bisection algorithm
(denoted as RBS) by Dr. Newman.

@ The Markov Cluster algorithm (MCL).
@ Proposed algorithm is denoted as PMS.



e LFR benchmark with N=128 nodes
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e LFR benchmark with N=256 nodes
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 Simulation summetry:

 Our algorithm outperforms recursive
bisection algorithm. This is because our
algorithm has “global” view of the partition,
and recursive bisection is based on the
“local” view.

 Our algorithm has a competitive
performance with a low time complexity.



e Real data evaluation.
* Tests in large-scale networks.






