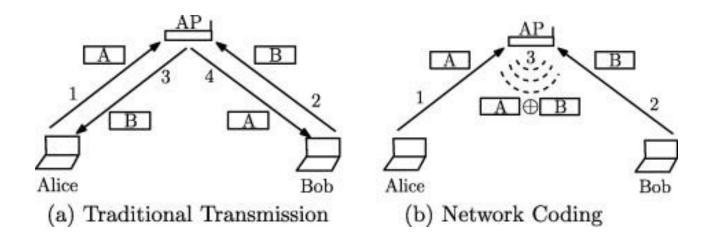


MuCAR: A Greedy Multi-flow-based Coding-Aware Routing in Wireless Networks

Jing Chen¹, Quan Yuan², Ruiying Du¹, and Jie Wu³

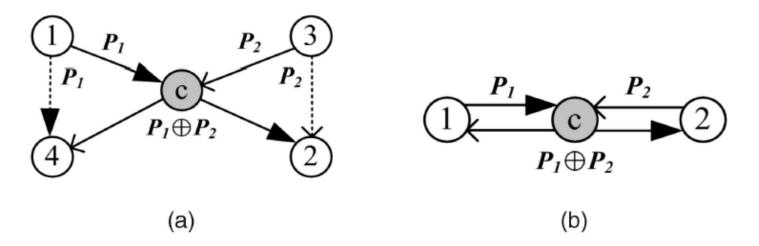
Wuhan University¹ University of Texas-Permian Basin² Temple University³


Outline

- Background & Motivation
- Decoding policy & Coding condition
- Implementation
- Simulation
- Conclusion

Background

Network Coding


- leverages the broadcast feature to augment a network's capacity
- Inter-flow coding: encode the packets from different flows into one for transmission

Background

- Deterministic Code-aware Routing
 - Route determined before packet delivery
 - Code-aware
 - Evaluate coding opportunities
 - Use routes with more coding opportunities
 - Two options
 - Proactive
 - Reactive

Motivation

Existing work on 2-flow coding

- How about multi-flow coding?
 - Benefits
 - Challenges

Motivation

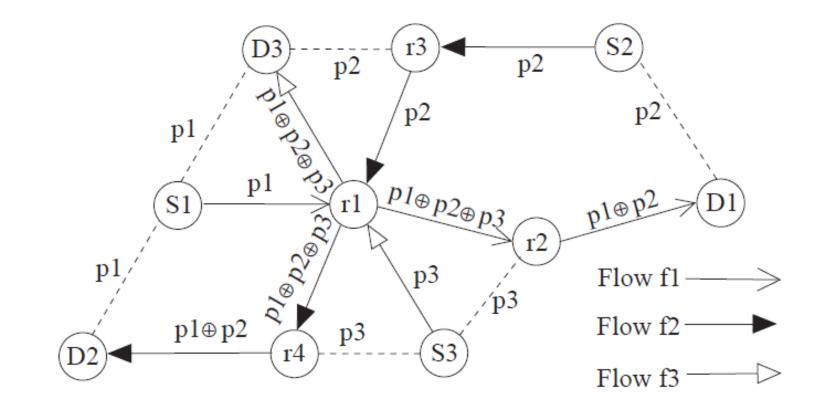


Fig. 1. Decoding at intermediate nodes example in a multi-flow network

Motivation

System Model

- Multi-hop wireless network
- Multiple flows with flow rate varying
- Nodes can encode multiple flows at once
- Nodes decode packets cooperatively
- Link quality changes unpredictably
- Key challenges
 - Coding condition and decoding policy
 - Multi-flow interference
 - Backward compatibility to 2-flow coding
 - Influence of flow rate difference

Greedy Decoding Policy

- 2-flow coding only focus on finding a single node for decoding to define coding conditions,
- In the multi-flow coding, early decoding is encouraged.

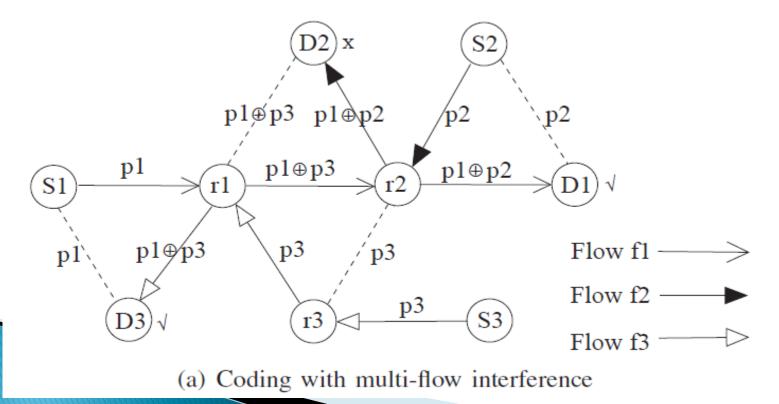
Definition 1. (Greedy decoding policy). For the *n* native packets $p_1, p_2, ..., p_n$ which respectively come from the flows $f_1, f_2, ..., f_n$, node *c* generates the coded packet $p_1 \oplus p_2 ... \oplus p_n$. If $r_k \in F(c, f_i)$ $(1 \le i \le n)$ can be aware of the native packet p_j of flow $f_j(1 \le j \le n, j \ne i)$, r_k partially decodes the coded packet by removing p_j from it.

- *F(a, f)* denotes the forward nodes set of node *a* on the route of flow *f*
- *r_k*(k > 0) represent the intermediate nodes on the route

Coding Condition

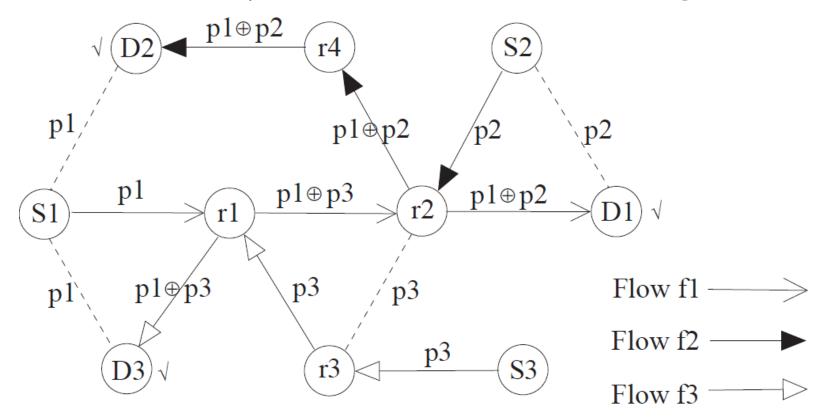
Identify potential coding nodes based on our greedy decoding

Definition 2. (Coding condition). For n flows f_1 , f_2 , ..., f_n intersecting at node c, if any two flows f_i and f_j satisfy the following condition, the node c can be a potential coding node:


• There exists node $q \in B(c, f_i)$ and node $t \in F(c, f_j)$, such that q = t or $q \in N(t)$ or $t \in N(q)$, $(1 \le i, j \le n, i \ne j)$

Theorem III.1. The coding condition in Definition 2 is only a necessary condition of greedy coding awareness.

- *N(a)* is the single-hop neighbor set of node *a*.
- *B(a, f)* indicates the backward nodes set of node *a* on the route of flow *f*


Multi-flow Interference

Definition 3. (Multi-flow interference). For n flows f_1 , f_2 , ..., f_n intersecting at node c, a new flow f_{n+1} initiates. If the coding behavior of flow f_{n+1} eliminates the transmission of the native packet p_i at nodes in $B(c, f_i)(1 \le i \le n)$, some packets may not get decoded successfully.

Multi-flow Interference

- Multi-flow interference does not exist all the time
- Need to identify in advance to confirm coding nodes.

(b) Coding without multi-flow interference

Routing Metric

Path Evaluation

- Coding benefit
- link quality
- path length
- Coding Benefit $\beta(P_i)$ of path P_i

$$\beta(\theta_j) = \frac{\gamma_{min}(\theta_j)}{\sum_{1 \le k \le n(\theta_j)} \gamma(f_k)} (n(\theta_j) - 1)$$
(4)

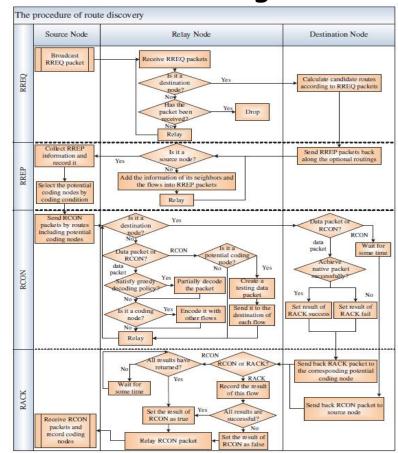
Accordingly, the benefit of route P_i is,

$$\beta(P_i) = \sum_{1 \le j \le m} \beta(\theta_j) \tag{5}$$

Routing Metric

Influence of link quality

$$Ex(P_i) = \sum_{1 \le x \le h(P_i)} \left(\frac{1}{q(l_x)} - 1\right) = \sum_{1 \le x \le h(P_i)} \frac{1}{q(l_x)} - h(P_i)$$
(8)


- $h(P_i)$ is the number of hops of path P_i

Routing metric definition

$$MuCAR(P_i) = h(P_i) - \beta(P_i) + Ex(P_i)$$
$$= \sum_{1 \le x \le h(P_i)} \frac{1}{q(l_x)} - \frac{\gamma_{min}(\theta_j)}{\sum_{1 \le k \le n(\theta_j)} \gamma(f_k)} (n(\theta_j) - 1)$$
(9)

Implementation: route discovery

- Implementation includes
 - Route discovery: find all possible routes/paths
 - Route selection: select the best one for routing
- Route Discovery
 - RREQ (Routing REQuest)
 - RREP (Routing REPly)
 - RCON (Routing CONfirm)
 - RACK (Routing ACKnowledge)

Implementation: route selection

- Route Selection
 - 1. route with the smallest MuCAR metric value for data delivery
 - 2. link quality is used for route selection, if two routes have the same MuCAR metric value
 - route with the smaller path length is used, if two routes have the same MuCAR metric value and link quality

Implementation: greedy aggregation

- There may only exist m (m < n) flows satisfying our coding condition for coding
- Instead of evaluating the coding opportunity of n intersection flows just once, we repeat the evaluation by decreasing n progressively when the evaluation test result is false, until n is equal to 2.
- It can maximally code multiple flows together.

Implementation: data transmission

Encoding

 XOR packets from different flows based on the smallest rate of flows.

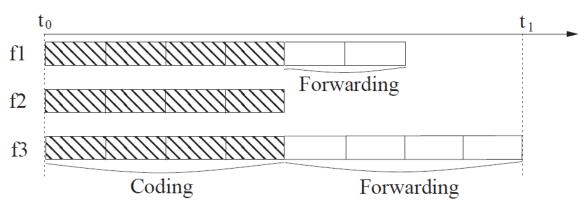
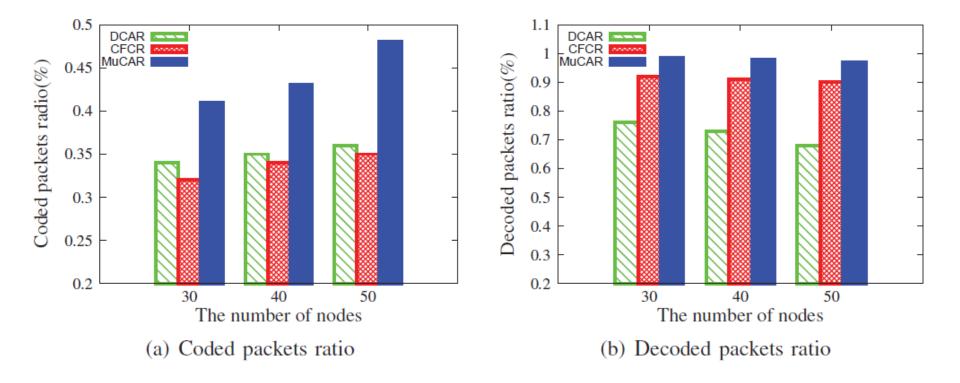
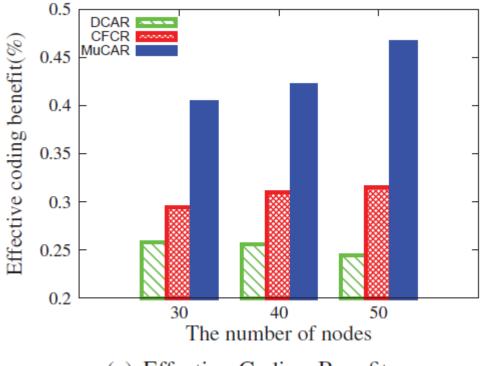


Fig. 4. Coding on flows with different rates at coding node c


 Packets of the slowest flow will be fully encoded, and part of the packets from the other faster flows are relayed directly.

- Algorithm in comparison
 - DCAR [TMC2010]
 - CFCR [TPDS2014]
 - On ns2 simulator
- Metrics
 - Effective Coding Benefit
 - Throughput
 - Delay


THE PARAMETERS OF SIMULATION

Simulation Parameter	Value
MAC protocol	IEEE802.11
Data flow type	UDP/CBR
Packets size	1000B
Flow rate	100kbps
Packet loss ratio	2%
Number of nodes	30
Number of flows	8
Transmission range	250m
Area	1500m * 1500m

Results - Effective Coding Benefit

Results - Effective Coding Benefit

(c) Effective Coding Benefit

Coding benefit = coded packets ratio * decoded packets ratio.

Results - Throughput

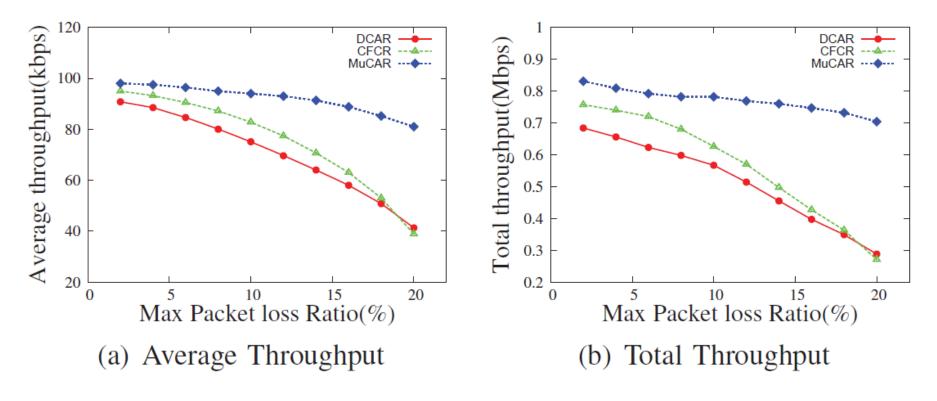


Fig. 6. Throughput Evaluation under Different MPLR

Results - Throughput

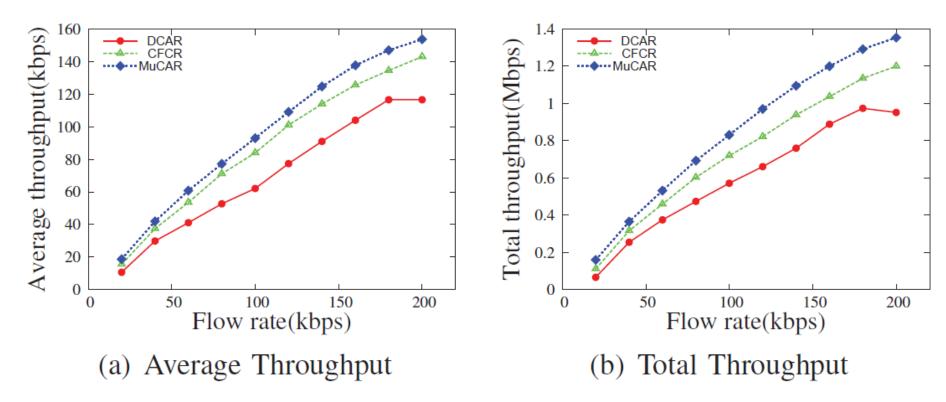


Fig. 7. Throughput Evaluation under Different Flow Rate



Fig. 8. Delay Evaluation under Different MPLR

Conclusion

- MuCAR can directly encode multiple flows to increase coding opportunities in routing.
- MuCAR can avoid multi-flow interference in multiple flow coding situation.
- MuCAR has better throughput and delay in wireless network with link quality varies.

