Mobility in Wireless Networks: Friend or Foe?

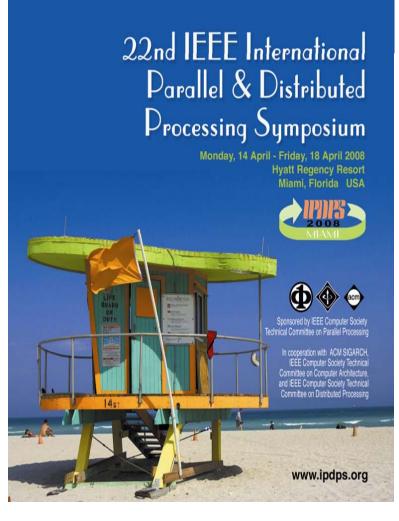
Jie Wu Dept. of Computer and Information Sciences Temple University

Overview

- 1. Introduction
 - Professional Activities
 - Current State
- 2. Mobility as a Foe
 - Recovery Scheme
 - Tolerant Scheme
- 3. Mobility as a Friend
 - Random Movement
 - Controlled Movement
- 4. Future of Networking
 - Network Science: Hype or Reality?

Professional Activities

MANETs/Sensor Nets

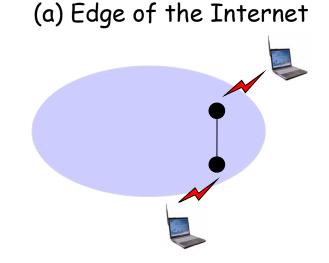

- Edtior: IEEE TMC
- General Chair: MASS and DCOSS
- Program Chair: INFOCOM and MASS
- Panel Chair: INFOCOM and MobiCom
- Committee: INFOCOM, MobiHoc, and ICNP

Distributed Systems

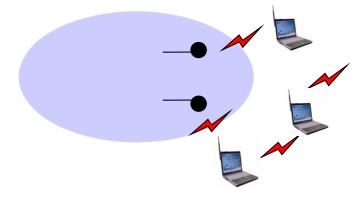
- Chairman: IEEE TC on Distributed Processing (TCDP)
- Executive Program Vice Chair: ICDCS
- Committee: ICDCS, HPCA, and SRDS

Parallel Processing

- Former Editor: IEEE TPDS
- General Chair: IPDPS
- Committee: IPDPS and ICPP

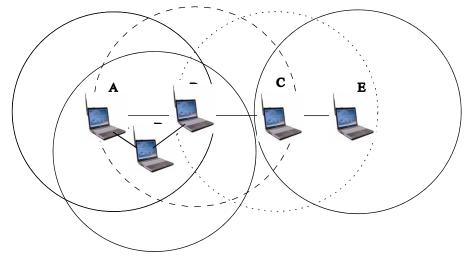

Current State: Wireless and Mobile

Current


- Different types: PDA, BlackBerry, Laptop
- Internet connections: more and more wireless
- Node mobility

• (Near) future

- 1 billion vehicles
- 5 billion RFID
- 10-15 billion sensor/embedded devices
- Future: anytime, anywhere



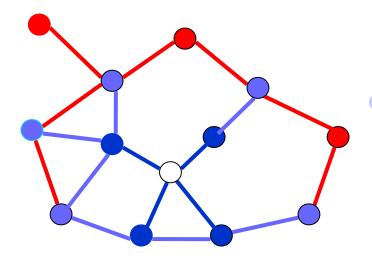
(b) General way of data transmission

2. Mobility as a Foe

- Node mobility is considered to be undesirable in MANETs using a connection-based model
- Recovers from and tolerates "bad" effects caused by mobility
- Nodes are assumed to be relatively stable

Two Schemes

Recovery Scheme

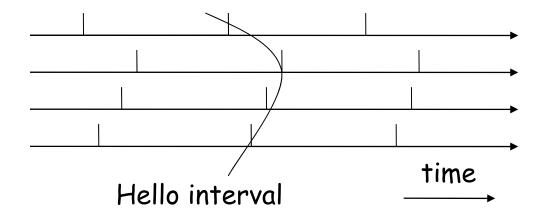

- If a routing path is disrupted by node mobility, it can be repaired quickly
- E.g., route discovery and route repair
- Tolerant Scheme
 - Masks the bad effects caused by node mobility
 - E.g., transmission buffer zone and view consistency

Mobility as a Serious Threat

- Mobility threatens localized protocols that use local information to achieve certain global objectives
- "Bad" decisions occur because of
 - Asynchronous sampling of local information
 - Delays at various stages of handshake
 - Mobile node movement

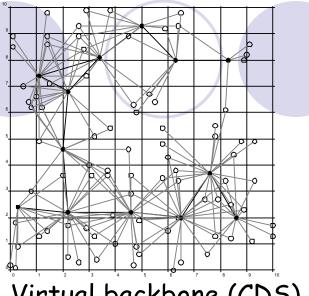
Local Information

- 1-hop information
- 2-hop information
- 3-hop information

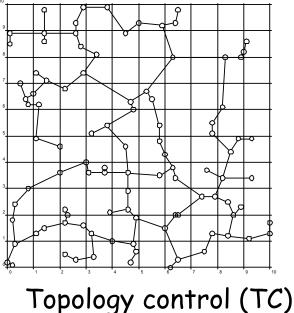


- *k*-hop information
 - Discovered via k rounds
 of Hello exchanges
 - Usually *k* = 1, 2, or 3

Neighborhood vs. location information

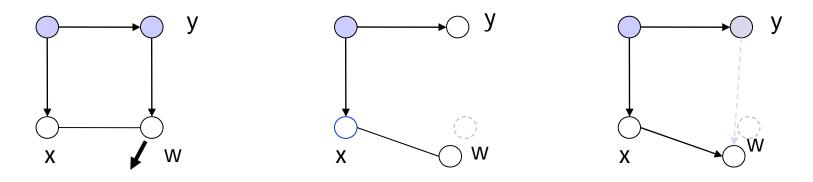

Time-Space View

Snapshot: a global state in time-space view



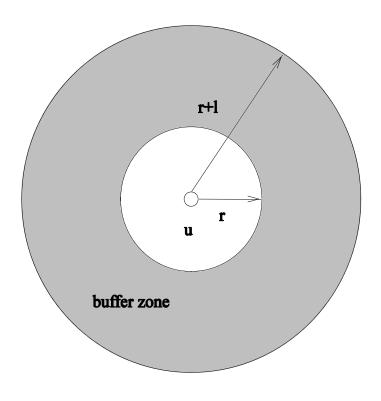
Applications

- Energy saving:
 - Sleep mode
 - Connected dominating set (CDS)
 - Wu and Li's 2-hop neighborhood solution
 - Adjustable transmission range
 - Topology control (TC)
 - Li, Hou, Sha's 1-hop location solution

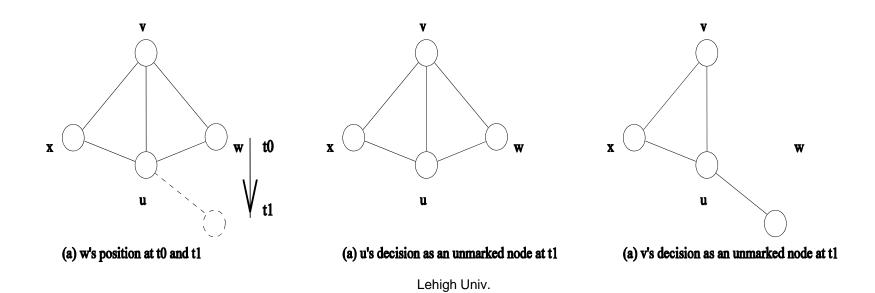

Virtual backbone (CDS)

Two Technical Issues

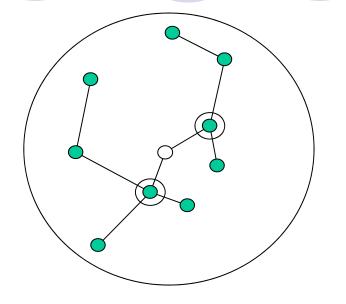
Link Availability

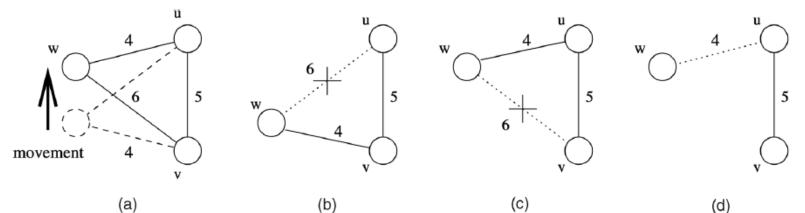

- How protocols deal with imprecise neighborhood information caused by node mobility and delays
- Inconsistent Local Views
 - How each node collects and uses local information in a consistent way

Lehigh Univ.


Tolerant Scheme I (link availability)

• A buffer zone is used in existing protocols without having to redesign them.


Sample I (inconsistent local view)


- Wu and Li's marking process (for CDS construction)
 - Node u is marked if there are two unconnected neighbors
 - Node u is unmarked if its neighbor set is covered by several connected marked nodes with higher IDs

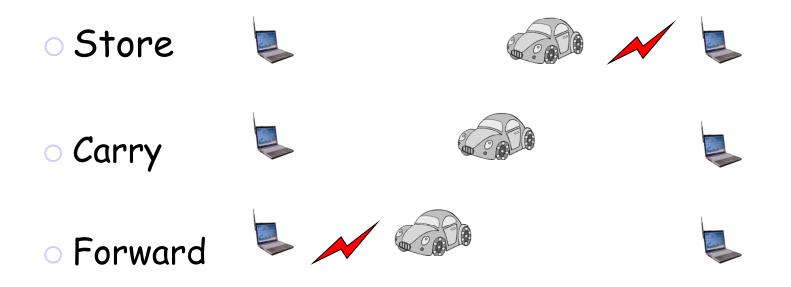
Sample II (inconsistent local view)

 Topology Control (Li, Hou, and Sha, INFOCOM 2003)
 Network connectivity: if each node connects to its neighbors in the local MST (LMST)

Tolerant Scheme II (inconsistent local view)

 Consistent Local View

 Each view keeps a version by using a timestamp


 Conservative Local View

 Maintaining a window of multiple views
 New-view(i)= F(view(i), view(i-1), ...view(i-k)) where F: {union, max, min, ...}

(More information on tolerant schemes: Wu and Dai, IEEE IPDPS 2004, IEEE INFOCOM 2004, IEEE TMC 2005, IEEE TPDS 2006)

- 3. Mobility as a Friend
 - Movement-Assisted Routing

Views node movement as a desirable feature

Challenged Networks

- Assumptions in the TCP/IP Model are Violated
 - Limited End-to-End Connectivity
 - Due to mobility, power saving, or unreliable networks
 - O DTN
 - Delay-Tolerant Networks
 - Disruption-Tolerant Networks
 - Activities
 - IRTF's DTRNRG (Delay Tolerant Net. Research Group)
 - EU's Haggle project

Two Paradigms

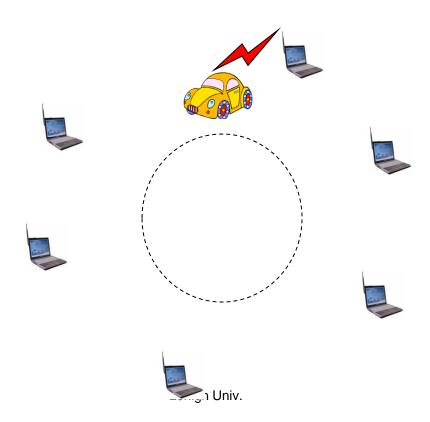
Random Mobility

- E.g., epidemic routing
- Sightseeing cars (random movement)
- Controlled Mobility
 - E.g., message ferrying
 - Taxi (destination-oriented)
 - Public transportation (fixed route)

Mobility pattern affects the spread of information

Epidemic Routing (Vahdat & Becker 00)

- Nodes store data and exchange them when they meet
- Data is replicated throughout the network through a random talk



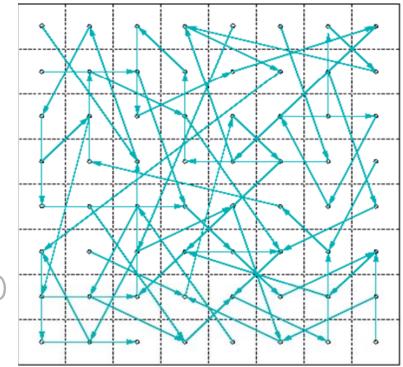
Message Ferrying (Zhao & Ammar 03)

• Special nodes (ferries) have completely predictable routes through the geographic area

Mobility-Assisted Routing

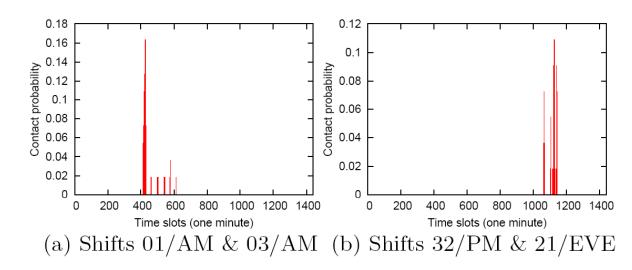
- Replication
 - Single copy vs. multiple copy
 - E.g., spray-and-wait and spray-and-focus
- Knowledge
 - Global vs. local information
 - Deterministic vs. probabilistic information
 - E.g., MaxProp

(Predict-and-relay: Quan, Cardei, and Wu, ACM MobiHoc 2009)

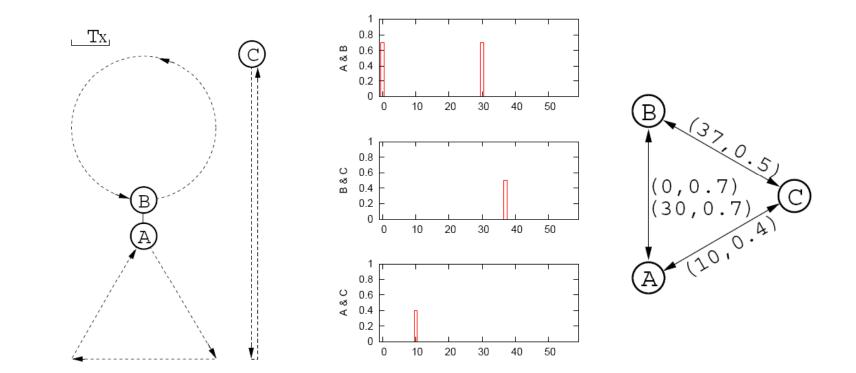

Mobility-Assisted Routing (cont'd)

- Closeness (to dest.)
 - Location information (of contacts and dest.)
 - Similarity (between intermediate nodes and dest.)

Lehigh Univ.

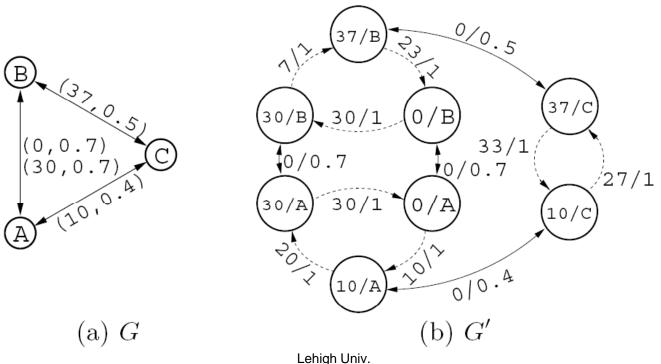

- E.g., logarithmic (and polylogarithmic) contacts
- Mobility
 - Random vs. control
 - Predictable
 - E.g., cyclic MobiSpace

(More information: Wu and Yang: IEEE MASS 2007 and IEEE TPDS 2007; Liu and Wu: ACM MobiHoc 2007 and 2008)


Routing in a Cyclic MobiSpace

- Challenges
 - How to perform efficient routing in probabilistic time-space graphs
- Definition (t_i,p)
 - p is the contact probability of two nodes in t_i .

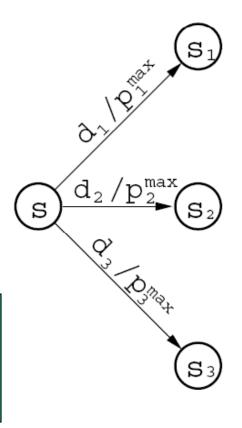
Probabilistic Time-Space Graph


• A common motion cycle T (=60)

ACNLeWigthiHubreiv2008

Probabilistic state-space graph

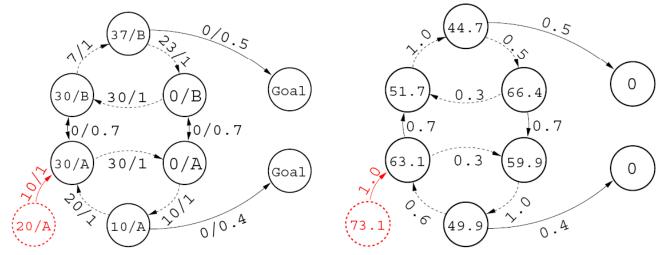
- Remove time dimension
- Links are labeled: d / p^{max} (delay/max transition probability)



Iterative Process

Iterative steps
 Step t+1 based on step t
 Ordering of neighbors

$$\mathbf{p}_{i \leq} \mathbf{p}_{i}^{\max}$$
 and $\sum_{i} \mathbf{p}_{i} = \mathbf{1}$


$$v_{s}^{t+1} \leftarrow \min_{p_{1}, p_{2}, p_{3}...} \{p_{1} \times (d_{1} + v_{s_{1}}^{t}) + p_{2} \times (d_{2} + v_{s_{2}}^{t}) + p_{3} \times (d_{3} + v_{s_{3}}^{t}) + ... \}$$

2008-5-29

Expected Minimum Delay (EMD)

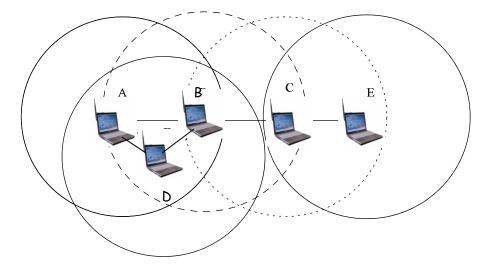
- Using EMD as the delivery probability metrics
 - Optimal single-copy forwarding: Liu and Wu MobiHoc 2008


- Optimal prob. forwarding with hop constraints
 - Single copy: Liu and Wu MobiHoc 2009

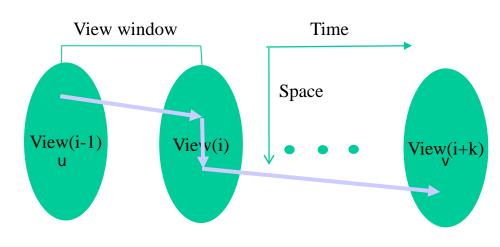
• Multiple copy: Liu and Wu MASS 2009

Simulation

Real traces


- NUS student contact trace
- UMassDieselNet trace (sub-shift based)

Other Challenges


- Mobility
- Connectivity
- Complexity
- Bandwidth
- Latency
- Robustness
- Storage
- Security

- Intermittent connectivity
 - Node mobility
 - Unstable wireless links
 - Scheduled on/off sensor nodes

Connectivity

- (u,v) connectivity under time-space view
 - Exist i, (u(i), v(i))
 - All i, (u(i), v(i))
 - Exist i, j, (u(i), v(j))
 - All i, j, (u(i), v(j))

Complexity

Managing complexity of time-space graphs

- Lossless translation method
 - Time-space to state-space (state explosion issue)
- Lossy comprehension method
 - Removing time using averaging in hierarchical routing
 - E.g. contact information compression

(Liu & Wu: Scalable Routing in Delay Tolerant Networks, ACM MobiHoc 2007)

Opportunities

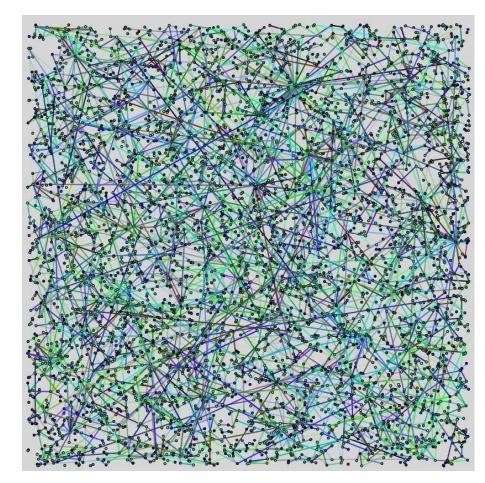
Increasing system performance

- Routing capability
- Network capacity
- Security
- Sensor coverage
- Information dissemination (mobile pub/sub)
- Reducing uncertainty in reputation systems (Li and Wu, IEEE INFOCOM 2007)

4. Future of Networking

Data Management

- In-network processing
- Tradeoffs among communication, computation, and storage


Theory

- Rigorous model and scaling properties
- Swarm intelligence

Social Networks

- Small-world (six degrees of separation)
- Scale-free networks (power-law)

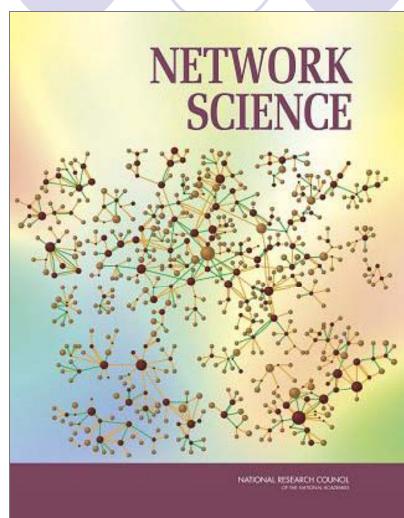
Multi-disciplinary

Network Science: Hype or Reality?

- Moderator at ACM MobiCom'09
 - Jie Wu (Temple U., USA)
- Panelists
 - Anthony Ephremides (U. of Maryland, College Park, USA)
 Chuanxiong Guo (Microsoft Research-Asia, China)
 Peter Steenkiste (Carnegie Mellon U., USA)
 Taieb Znati (NSF, USA)

Network Science (NS)

A brief history


- Graph theory (Euler) and prob. theory (Erdos): random graph
- Social networks: exponential random graph, small-world
- DOD initiative: Network Science (2005)
- NSF NetSE program (2008)

NS: the study of network representations of physical, biological, and social phenomena leading to predictive models

Scope: technological (electronic data), natural (biological, cognitive), and social (social networks)

DoD Network Science Report

- Society depends on a diversity of complex networks
- Global communication and transportation networks
 - provide advanced technological implementations, however
 - behavior under stress still cannot be predicted reliably
- Biological and social networks
 - We do not fully understand these networks, nor the manner with which they operate

NSF NetSE Program

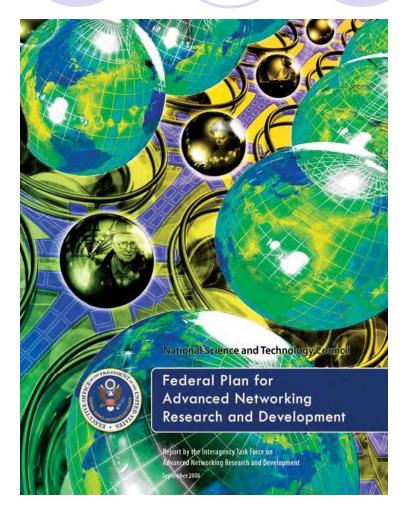
- Network Science and Engineering (NetSE)
 - Develop the science and engineering of global sociotechnical networks
 - Yield new scientific understanding about network complexity and inform future network design

Extending

- Future INternet Design (FIND)
- Science for the Internet Next Generation (SING)
- Next-Generation Information Systems (NGNI)

More NetSE-related Activities

• GENI


- NetSE council
- NetSE research agenda (Sept. 2009)
- Calling for "theory of networked computing"

NCO NITRD

- NITRD workshop on research challenges for 2015 global network (May 2009 report)
- NetSE recommendations

NCO NITRD Report (Aug. 2008)

- Provide secure network services anytime, anywhere.
- Make secure global federated networks possible.
- Manage network complexity and heterogeneity.
- Foster innovation among the federal, research, commercial, and other sectors through development of advanced network systems and technologies.

Questions to Panelists

- Network science (NS): hype or reality?
- What should be the appropriate funding model/level for NS?
- What should be the right scope for NS research?
- What have we done right and wrong?

Questions to Panelists (cont'd)

- Which communities should be involved and how?
- What role can the wireless network and mobile computing community play?
- How does the future of NS stand and what are the remaining challenges?

Questions

