Collaborative Mobile Charging and Coverage in WSNs

Jie Wu
Computer and Information Sciences
Temple University
IT

Road Map

1. Introduction
2. Mobile Chargers
3. State of the Arts
4. Challenges
5. Collaborative Coverage \& Charging
6. Conclusions

1. Introduction

Need for basic research

John F. Kennedy

... progress in technology depends on progress in theory .. The vitality of a scientific community springs from its passion to answer science's most fundamental questions.

Ronald Reagan

- ... although basic research does not begin with a particular practical goal ..., it ends up being one of most practical things government does.

My Two Cents

How to select a research problem

- Simple definition
- Elegant solution
- Room for imagination

Blue Nude IT

Picasso \& Matisse

Know how to make appropriate abstractions ask the right questions

Many CS students use excessive amounts of math to explain simple things

Le Rêve (the Dream)

The Art of Living, Time, Sept. 23, 2012

Senior people can be creative without worry the "utility" of their work

ENERGY: A Special Utility

- Limited lifetime of battery-powered WSNs
- Possible solutions

Energy conservation

- Cannot compensate for energy depletion

Energy harvesting (or scavenging)

- Unstable, unpredictable, uncontrollable ...

Sensor reclamation

- Costly, impractical (deep ocean, bridge surface ...)

2. Mobile Chargers

- The enabling technology
- Wireless energy transfer (Kurs '07)

Wireless Power Consortium

- Mobile chargers (MC)

MC moves from one location to another for wireless charging
Extended from mobile sink in WSNs and ferry in DTNs
Energy consumption

- The movement of MC

The energy charging process

3. State of the Art

- Traveling-Salesmen Problem (TSP)

A minimum cost tour of n cities: the salesman travels from an origin city, visits each city exactly one time, then returns to the origin

- Covering Salesman Problem (CSP, Ohio State '89)

The least cost tour of a subset of cities such that every city not on the tour is within some predetermined covering distance

- Extended CSP
- Connected dominating set (FAU '99)

Qi-ferry (UDelaware '13)

Charging Efficiency

- Location of charging

- Bundle and rotation (Kurs '10)

Charging multiple devices that are clustered together

Mobile Sinks and Chargers

- Local trees
- Data collections at all roots
- Periodic charging to all sensors
- Base station (BS)
- Objectives

- Long vocation at BS (VT'11-13)

Energy efficiency with deadline (Stony Brook '13)

4. Challenges

- Most existing methods

An MC is fast enough to charge all sensors in a cycle
An MC has sufficient energy to replenish an entire WSN (and return to BS)

- Collaborative approach using multiple MCs
- Problem 1: MCs with unrestricted capacity but limitations on speed
- Problem 2: MCs with limited capacity and speed, and have to return to BS

5. Collaborative Coverage \& Charging

Problem 1: Determine the minimum number of MCs (unrestricted capacity but limitations on speed) to cover a line/ring of sensors with uniform/non-uniform recharge frequencies

A toy example

A circle track with circumference 3.75 densely covered with sensors with frequency $f=1$ for recharge
A sensor with $f=2$ at 0 and 0.5
A sensor with $f=4$ at 0.25
(MC's max speed is 1)

- What is the trajectory planning of these MCs?

Possible Solutions

Assigning cars for sensors with $f>1$ (a) fixed and (b) moving

- Combining odd and even car circulations (c)

Optimal Solution (uniform frequency)

M_{1} : There are C_{1} MCs moving continuously around the circle
M_{2} : There are C_{2} MCs moving inside the fixed interval of length $\frac{1}{2}$ so that all sensors are covered

Combined method: It is either M_{1} or M_{2}, so $C=\min \left\{C_{1}, C_{2}\right\}$

Properties

Theorem 1: The combined method is optimal in terms of the minimum number of MCs used

- Scheduling
- Find an appropriate breakpoint to convert a circle to a line: M_{2} in the optimal solution is then followed

A linear solution is used to determine the breakpoint

Linear Solution

- Directed Interval Graph

Each directed link points from the start to the end of an interval (i.e., the first sensor beyond distance 0.5)

- The number of intervals in two solutions differ by one
- Each sensor has one outgoing and multiple incoming links
- The process stops when a path with fewer or more intervals is
 found or all sensors (with their outgoing links) are examined

Solution to the Toy Example

- 5 cars only, including a stop at 0.25 for 15 seconds

- Challenges: time-space scheduling, plus speed selection

Greedy Solution (non-uniform frequency)

- Coverage of sensors with non-uniform frequencies
serve $\left(x_{1}, \ldots, x_{n} ; f_{1}, \ldots, f_{n}\right)$:
When $n \neq 0$, generate an MC that goes back and forth as far as possible at full speed (covering x_{1}, \ldots, x_{i-1}); $\operatorname{serve}\left(x_{i}, \ldots, x_{n} ; f_{i}, \ldots, f_{n}\right)$

Theorem 2: The greedy solution is within a factor of 2 of the optimal solution

The Ant Problem: An Inspiration

- Ant Problem, Comm. of ACM, March 2013

Ant Alice and her friends always march at $1 \mathrm{~cm} / \mathrm{sec}$ in whichever direction they are facing, and reverse directions when they collide
Alice stays in the middle of 25 ants on a 1 meter-long stick
How long must we wait before we are sure Alice has fallen off the stick?

Exchange "hats" when two ants collide

Proof of Theorem 2

Car 2

Two cars never meet or pass each other
Partition the line into $2 k-1$ sub-regions based on different car coverage (k is the optimal number of cars)
Each sub-region can be served by one car at full speed
One extra car is used when a circle is broken to a line

Imagination

- Hilbert curve for $k-D$

Mapping from 2-D to 1-D for preserving locality fairly well

- Charging time: converting to distance
- Limited capacity: using cooperative charging

BS to MC

- MC to MC

Bananas and a Hungry Camel

- A farmer grows 3,000 bananas to sell at market 1,000 miles away. He can get there only by means of a camel. This camel can carry a maximum of 1,000 bananas at a time, but needs to eat a banana to refuel for every mile that he walks

What is the maximum number of bananas that the farmer can get to market?

Charging a Line (with limited capacity)

- Charge battery capacity: 80J; charger cost: 3J per unit traveling distance; sensor battery capacity: 2 J

- One MC cannot charge more than 10 sensors
- Even a dedicated MC cannot charge the $14^{\text {th }}$ sensor, since 14 * $3+2+14$ * $3=86>80$

Problem Description

Problem 2 (IEEE MASS'12): Given k MCs with limited capacity, determine the furthest sensor they can recharge while still being able to go back to the BS

- WSN

N sensors, unit distance apart, along a line
Battery capacity for each sensor : b
Energy consumption rate for each sensor: r

- MC

Battery capacity: B
Energy consumption rate due to travelling: c

Motivation Example (1)

$B=80 \mathrm{~J}, \mathrm{~b}=2 \mathrm{~J}, \mathrm{c}=3 \mathrm{~J} / \mathrm{m}, \mathrm{K}=3 \mathrm{MCs}$

- Scheme I: (equal-charge) each MC charges a sensor b/M J
- Conclusion: covers 12 sensors, and max distance is < $B / 2 c$ (as each MC needs a round-trip traveling cost)

Motivational Example (2)

$B=80 \mathrm{~J}, \mathrm{~b}=2 \mathrm{~J}, \mathrm{c}=3 \mathrm{~J} / \mathrm{m}, \mathrm{K}=3 \mathrm{MCs}$

- Scheme II: (one-to-one) each sensor is charged by one MC
- Conclusion: covers 13 sensors, and max distance is still < $B / 2 c$ (as the last MC still needs a round-trip traveling cost)

Motivational Example (3)

Scheme III: (collaborative-one-to-one-charge) same as Scheme II, except each MC transfers some energy to other MCs at rendezvous points (A and B in the example)

- Conclusion: covers 17 sensors, and max distance is < B / C (Last MC still needs a return trip without any charge)

Details on Scheme III

- $M C_{i}$ charges battery to all sensors between L_{i+1} and L_{i}
- $M C_{i}(1 \leqslant \mathrm{i} \leqslant \mathrm{K})$ transfers energy to $M C_{i-1}, M C_{i-2}, \ldots M C_{1}$ to their full capacity at L_{i}
- Each $M C_{i}$ has just enough energy to return to the BS

Motivational Example (4): GlobalCoverage
 $B=80 \mathrm{~J}, \mathrm{~b}=2 \mathrm{~J}, \mathrm{c}=3 \mathrm{~J} / \mathrm{m}, \mathrm{K}=3 \mathrm{MCs}$

- "Push": limit as few chargers as possible to go forward
- "Wait": efficient use of battery "room" through two charges
- Conclusion: covers 19 sensors, and max distance is ∞

Details on GlobalCoverage

- $M C_{i}$ charges battery to all sensors between L_{i+1} and L_{i}
- $M C_{i}(1 \leqslant i \leqslant K)$ transfers energy to $M C_{i-1}, \ldots M C_{1}$ to their full capacity at L_{i}
- $M C_{i}$ waits at L_{i}, while all other MCs keep moving forward
- After $M C_{i}, M C_{i-1}, \ldots M C_{1}$ return to $L_{i}, M C_{i}$ evenly balances energy among them (including itself)
- Each $M c_{i}, M C_{i-1}, \ldots M C_{1}$ has just enough energy to return to L_{i+1}

LocalCoverage

- Each MC moves and charges (is charged) between two adjacent rendezvous points
- Imagination: $M C_{i}$ of LocalCoverage "simulates" $M C_{i}, M C_{i-1}, \ldots$, $M C_{1}$ of GlobalCoverage

Properties

- Theorem 3 (Optimality): GlobalCoverage has the maximum ratio of payload energy to overhead energy

Theorem 4 (Infinite Coverage): GlobalCoverage can cover an infinite line

Summation of segment length $\left(L_{i}-L_{i+1}\right)$

$$
\begin{aligned}
& \sum_{i=1}^{K} \frac{B}{2 \cdot c \cdot i+b}>\sum_{i=i_{0}}^{K} \frac{B}{2 \cdot c \cdot i+b}\left(\text { let } 2 \cdot c \cdot i_{0} \geq b\right) \\
& >\sum_{i=i_{0}}^{K} \frac{B}{4 \cdot c \cdot i}=\frac{B}{4 \cdot c} \sum_{i=i_{0}}^{K} \frac{1}{i} \text { (harmonic series) }
\end{aligned}
$$

Imagination: extensions

- Simple extensions (while keeping optimality)

Non-uniform distance between adjacent sensors

- Same algorithm

Smaller recharge cycle (than MC round-trip time)

- Pipeline extension
- Complex extensions

Non-uniform frequency for recharging
Two- or higher-dimensional space

Imagination: applications

- Robotics

Flying robots
Google WiFi Balloon

- WSNs

Mobile sensor repairs with spares

- Passive RFID

Energy transfer through readers

6. Conclusions

- Wireless energy transfer
- Collaborative mobile charging \& coverage:

Unlimited capacity vs. limited capacity (with BS)
Charging type: BS-to-MC, MC-to-MC, and MC-to-Sensor

- Other extensions

Charging efficiency, MCs as mobile sinks for BS...
Simplicity + Elegance + Imagination = Beauty

Acknowledgements

- Richard Beigel

Sheng Zhang

- Huanyang Zheng

