## Collaborative Mobile Charging and Coverage in WSNs

Jie Wu

Computer and Information Sciences Temple University



### Road Map

- 1. Introduction
- 2. Mobile Chargers
- 3. State of the Arts
- 4. Challenges
- 5. Collaborative Coverage & Charging
- 6. Conclusions

### 1. Introduction

Need for basic research

#### John F. Kennedy

 ... progress in technology depends on progress in theory...
 The vitality of a scientific community springs from its passion to answer science's most fundamental questions.

#### Ronald Reagan

 ... although basic research does not begin with a particular practical goal ..., it ends up being one of most practical things government does.

## My Two Cents

How to select a research problem

- O Simple definition
- O Elegant solution
- O Room for imagination



Blue Nude II

## Picasso & Matisse

- Know how to make
  appropriate abstractions ask the right questions
- Many CS students use excessive amounts of math to explain simple things

#### Le Rêve (the Dream)



The Art of Living, Time, Sept. 23, 2012 Senior people can be creative without worry the "utility" of their work

## ENERGY: A Special Utility

Limited lifetime of battery-powered WSNs

Possible solutions

OEnergy conservation

Cannot compensate for energy depletion

OEnergy harvesting (or scavenging)

• Unstable, unpredictable, uncontrollable ...

O Sensor reclamation

Costly, impractical (deep ocean, bridge surface ...)

## 2. Mobile Chargers

- The enabling technology
  - Wireless energy transfer (Kurs '07)
  - O Wireless Power Consortium
- Mobile chargers (MC)



- O MC moves from one location to another for wireless charging
- Extended from mobile sink in WSNs and ferry in DTNs
- Energy consumption
  - The movement of MC
  - The energy charging process

### 3. State of the Art

#### Traveling-Salesmen Problem (TSP)

- A minimum cost tour of n cities: the salesman travels from an origin city, visits each city exactly one time, then returns to the origin
- Covering Salesman Problem (CSP, Ohio State '89)
  - The least cost tour of a subset of cities such that every city not on the tour is within some predetermined covering distance

#### Extended CSP

Connected dominating set (FAU '99)

• Qi-ferry (UDelaware '13)



## Charging Efficiency

Location of charging



Bundle and rotation (Kurs '10)

• Charging multiple devices that are clustered together

### Mobile Sinks and Chargers

#### Local trees

- Data collections at all roots
- Periodic charging to all sensors
- Base station (BS)
- Objectives
  - $\odot$  Long vocation at BS (VT '11-13)
  - Energy efficiency with deadline (Stony Brook '13)



## 4. Challenges

### Most existing methods

○ An MC is fast enough to charge all sensors in a cycle

 An MC has sufficient energy to replenish an entire WSN (and return to BS)

### Collaborative approach using multiple MCs

- Problem 1: MCs with unrestricted capacity but limitations on speed
- Problem 2: MCs with limited capacity and speed, and have to return to BS

### 5. Collaborative Coverage & Charging

Problem 1: Determine the minimum number of MCs (unrestricted capacity but limitations on speed) to cover a line/ring of sensors with uniform/non-uniform recharge frequencies

#### A toy example

- A circle track with circumference 3.75 densely covered with
  - sensors with frequency f=1 for recharge
- A sensor with f=2 at 0 and 0.5
- A sensor with f=4 at 0.25
  (MC's max speed is 1)
- What is the trajectory planning of these MCs?



### Possible Solutions

Assigning cars for sensors with f>1 (a) fixed and (b) moving



Combining odd and even car circulations (c)



### **Optimal Solution (uniform frequency)**

- $M_1$ : There are  $C_1$  MCs moving continuously around the circle
- $M_2$ : There are  $C_2$  MCs moving inside the fixed interval of length  $\frac{1}{2}$  so that all sensors are covered
- Combined method: It is either  $M_1$  or  $M_2$ , so  $C = \min \{C_1, C_2\}$



### Properties

Theorem 1: The combined method is optimal in terms of the minimum number of MCs used

- Scheduling
  - $\bigcirc$  Find an appropriate breakpoint to convert a circle to a line;  $M_2$  in the optimal solution is then followed
  - A linear solution is used to determine the breakpoint

## Linear Solution

#### Directed Interval Graph

- Each directed link points from the start to the end of an interval (i.e., the first sensor beyond distance 0.5)
- The number of intervals in two solutions differ by one
- Each sensor has one outgoing and multiple incoming links
- The process stops when a path with fewer or more intervals is found or all sensors (with their outgoing links) are examined



### Solution to the Toy Example

▶ 5 cars only, including a stop at 0.25 for 15 seconds



Challenges: time-space scheduling, plus speed selection

### Greedy Solution (non-uniform frequency)

Coverage of sensors with non-uniform frequencies

 $\begin{array}{l} \textbf{serve}(x_{1},...,x_{n};\ f_{1},...,f_{n}) \\ & \text{When n} \neq 0, \text{ generate an MC that goes back and forth} \\ & \text{as} \\ & \text{far as possible at full speed (covering $x_{1}, ..., $x_{i-1}$);} \\ & \textbf{serve}(x_{i},...,x_{n};\ f_{i},...,f_{n}) \end{array}$ 

Theorem 2: The greedy solution is within a factor of 2 of the optimal solution

### The Ant Problem: An Inspiration

• Ant Problem, Comm. of ACM, March 2013

- Ant Alice and her friends always march at 1 cm/sec in whichever direction they are facing, and reverse directions when they collide
- Alice stays in the middle of 25 ants on a 1 meter-long stick
- O How long must we wait before we are sure Alice has fallen off the stick?



Exchange "hats" when two ants collide



Two cars never meet or pass each other

- Partition the line into 2k-1 sub-regions based on different car coverage (k is the optimal number of cars)
- C Each sub-region can be served by one car at full speed
- $\bigcirc$  One extra car is used when a circle is broken to a line



### Imagination

- Hilbert curve for k-D
  - Mapping from 2-D to 1-D for preserving locality fairly well





- Charging time: converting to distance
- Limited capacity: using cooperative charging
  - $\bigcirc$  BS to MC
  - MC to MC

### Bananas and a Hungry Camel

 A farmer grows 3,000 bananas to sell at market 1,000 miles away. He can get there only by means of a camel. This camel can carry a maximum of 1,000 bananas at a time, but needs to eat a banana to refuel for every mile that he walks

What is the maximum number of bananas that the farmer can get to market?





### Charging a Line (with limited capacity)

 Charge battery capacity: 80J; charger cost: 3J per unit traveling distance; sensor battery capacity: 2J



- One MC cannot charge more than 10 sensors
- Even a dedicated MC cannot charge the 14<sup>th</sup> sensor, since 14 \* 3 + 2 + 14 \* 3 = 86 > 80

## Problem Description

Problem 2 (IEEE MASS'12): Given k MCs with limited capacity, determine the furthest sensor they can recharge while still being able to go back to the BS

#### **WSN**

○ N sensors, unit distance apart, along a line

Battery capacity for each sensor : b

○ Energy consumption rate for each sensor: r

#### MC

Battery capacity: B

O Energy consumption rate due to travelling: c



### Motivation Example (1)

B=80J, b=2J, c=3J/m, K=3 MCs



- Scheme I: (equal-charge) each MC charges a sensor b/M J
- Conclusion: covers 12 sensors, and max distance is < B/2c (as each MC needs a round-trip traveling cost)

### Motivational Example (2)

B=80J, b=2J, c=3J/m, K=3 MCs



- Scheme II: (one-to-one) each sensor is charged by one MC
- Conclusion: covers 13 sensors, and max distance is still < B/2c</li>
  (as the last MC still needs a round-trip traveling cost)

### Motivational Example (3)

B = 80J, b=2J, c=3J/m, K=3 MCs



- Scheme III: (collaborative-one-to-one-charge) same as Scheme II, except each MC transfers some energy to other MCs at rendezvous points (A and B in the example)
- Conclusion: covers 17 sensors, and max distance is < B/c (Last MC still needs a return trip without any charge)

# Details on Scheme III

- MC<sub>i</sub> charges battery to all sensors between L<sub>i+1</sub> and L<sub>i</sub>
- $MC_i$  (1  $\leq$  i  $\leq$  K) transfers energy to  $MC_{i-1}$ ,  $MC_{i-2}$ , ...  $MC_1$  to their full capacity at  $L_i$
- Each MC<sub>i</sub> has just enough energy to return to the BS



### Motivational Example (4): GlobalCoverage

B = 80J, b=2J, c=3J/m, K=3 MCs



"Push": limit as few chargers as possible to go forward

- "Wait": efficient use of battery "room" through two charges
- Conclusion: covers 19 sensors, and max distance is  $\infty$



## Details on GlobalCoverage

- MC<sub>i</sub> charges battery to all sensors between L<sub>i+1</sub> and L<sub>i</sub>
- MC\_i (1  $\leqslant$  i  $\leqslant$  K) transfers energy to MC\_{i-1}, ... MC\_1 to their full capacity at L\_i
- MC<sub>i</sub> waits at L<sub>i</sub>, while all other MCs keep moving forward
- After MC<sub>i</sub>, MC<sub>i-1</sub>, ... MC<sub>1</sub> return to L<sub>i</sub>, MC<sub>i</sub> evenly balances energy among them (including itself)
- Each  $Mc_{i}$ ,  $MC_{i-1}$ , ...  $MC_1$  has just enough energy to return to  $L_{i+1}$



- Each MC moves and charges (is charged) between two adjacent rendezvous points
- Imagination: MC<sub>i</sub> of LocalCoverage "simulates" MC<sub>i</sub>, MC<sub>i-1</sub>, ..., MC<sub>1</sub> of GlobalCoverage

### Properties

Theorem 3 (Optimality): GlobalCoverage has the maximum ratio of payload energy to overhead energy

Theorem 4 (Infinite Coverage): GlobalCoverage can cover an infinite line

 $\bigcirc$  Summation of segment length (L<sub>i</sub> - L<sub>i+1</sub>)

$$\sum_{i=1}^{K} \frac{B}{2 \cdot c \cdot i + b} > \sum_{i=i_0}^{K} \frac{B}{2 \cdot c \cdot i + b} (\text{let } 2 \cdot c \cdot i_0 \ge b)$$
$$> \sum_{i=i_0}^{K} \frac{B}{4 \cdot c \cdot i} = \frac{B}{4 \cdot c} \sum_{i=i_0}^{K} \frac{1}{i} (\text{harmonic series})$$

### Imagination: extensions

Simple extensions (while keeping optimality)

ONon-uniform distance between adjacent sensors

Same algorithm

Smaller recharge cycle (than MC round-trip time)

Pipeline extension

Complex extensions

ONon-uniform frequency for recharging

O Two- or higher-dimensional space

# Imagination: applications

### Robotics

• Flying robots

○Google WiFi Balloon



• WSNs

OMobile sensor repairs with spares

Passive RFID

Energy transfer through readers



## 6. Conclusions

Wireless energy transfer

Collaborative mobile charging & coverage:

Unlimited capacity vs. limited capacity (with BS)

○ Charging type: BS-to-MC, MC-to-MC, and MC-to-Sensor

Other extensions

○ Charging efficiency, MCs as mobile sinks for BS...

Simplicity + Elegance + Imagination = Beauty

## Acknowledgements

Richard Beigel

Sheng Zhang

Huanyang Zheng

