

Focus and Shoot: Efficient Identification over RFID Tags in the Specified Area

Yafeng Yin¹, Lei Xie¹, Jie Wu², Athanasios V. Vasilakos³, Sanglu Lu¹

¹State Key Laboratory for Novel Software Technology, Nanjing University, China ²Department of Computer and Information Sciences, Temple University, USA ³University of Western Macedonia, Greece

Motivation and

Observations

Baseline Solutions

Our Solutions

		Tag Identification; Specified area;
		Realistic environments;
target tags	interference ta	gs

 \rightarrow Efficient tag identification in the specified area in the realistic environments.

3D Interrogation region

2D Interrogation region

Antenna is rotatable.

Power is adjustable.

4

Baseline Solutions

• Angle between the antenna and the tag

 \rightarrow 1) As the **angle** between the radiation direction and the surface of the antenna **decrease**,

2) When a tag is located in the **center of the interrogation region**, the reader often has a

good reading performance, no matter how the tag is placed.

7

• Angle between the antenna and the tag

(a) Minimum power needed to activate the tag

 \rightarrow 1) As the **angle** between the radiation direction and the surface of the antenna **decrease**,

2) When a tag is located in the **center of the interrogation region**, the reader often has a

good reading performance, no matter how the tag is placed.

Reader's Power

(d) Distribution of identified tags under different powers

(e) Identified tag IDs under different powers

 \rightarrow 1) The larger the reader's power, the larger the **interrogation region**.

2) As the power increases, the new identified tags may not be located in the boundary.
3) If a tag can be identified with a low power, it must be identified with a larger

power.

Motivation and Problem

• Distance between the tags and the antenna

(f) Coverage ratio at different distances

 \rightarrow 1) As the **distance** of the tags and the antenna **increases**, the reading **performance decreases**.

2) When the distance and the tags are fixed, the maximum **converge ratio has an upper bound**.

Motivation and Problem	Observations	Baseline Solutions	Our Solutions	Evaluation and	10
				Conclusion	10

• Effect of Tag Size

(h) Number of identified tags with different tag sizes

 \rightarrow 1) The tag size can **affect** the effective **interrogation region**.

2) The tag size has little effect on the number of identified tags.

Indication from the realistic environments

When the distance between the tags and the antenna is fixed, the distribution of tags is fixed, the **converge ratio** has an upper bound (Depend on the realistic Environments).

If we want to improve the reading performance, we should make the objects be located **in the center of the interrogation region**.

Since the tag size has little effect on the number of identified tag, we can **find the boundary** of the specified area by identifying some tags around the area.

When we need to focus on a specified area, we need to select an **optimal power**.

Baseline Solutions

• Identification with Maximum Power

In order to identify as many target tags as possible: The solution uses the maximum power to identify the tags.

Identification with the maximum power.

Weakness:

1) More misreading ratio;

2) More execution time.

The effective **interrogation region is too large**.

Baseline Solutions

• Identification with Minimum Power

In order to only focus on the specified area (not identify the interference tags): The solution uses the minimum power to identify the tags.

Identification with the minimum power.

 \rightarrow It needs to rotate the antenna to scan all the target tags.

Weakness:

- 1) Multiple scans;
- 2) Low converge ratio;
- 3) More execution time

The effective interrogation region is too small.

How to make the interrogation region just enough to cover the area ?

The process of PID can be compared to the **picture-taking process** in a camera.

- ------ 2) **Shooting Process**: collect the tag IDs in the interrogation region.

Motivation and Observations Baseline Solutions Our Solutions Evaluation and Problem Conclusion

The process of PID can be compared to the **picture-taking process** in a camera.
1) Focusing Process: focus on the specified area (area A) with a 3D camera;
2) Shooting Process: collect the tag IDs in the interrogation region.

Focusing Process

The distance between the tags and the antenna is fixed.

The distribution of tags is unknown.

 \rightarrow We can only adjust the antenna's **angle** and the reader's **power**.

1) The antenna rotates **towards** the center of the specified **area** *A* with a 3D camera;

- 2) The reader adjusts the power to make its scanning range just enough to cover the area A:
 - —— Establishing the boundary;
 - —— Power Stepping;

Focusing Process

1) Establishing the boundary:

Although the specified area A is appointed by a 3D camera, the reader can hardly find the boundary of the area.

 \rightarrow Outline the specified area.

Fig. 4. Identify the tags in the specified area with a 3D camera

1) Identify a part of interference tags in the boundary: $N_b = \{ID_1, ID_2, \dots, ID_{n_b}\}$

2) Use these tags as reference tags of the boundary.

 $n_b \ge n_{\varepsilon}$, n_{ε} represents the number of tags that should be steadily identified, in order to describe the boundary.

Focusing Process

2) Power Stepping:

Adjust the reader's power to make its scanning range be just enough to cover the area A.

 \rightarrow Find optimal power to just enough cover the area A.

1) Choose the minimum active power P_{wb} ;

2) Update reader's power: $P_w = P_{wb} + k_b \times \Delta P_w, k_b \in \mathbb{Z}^+$

3) Identify n_c tags in the boundary: ——When $\frac{n_c}{n_b} = \delta = \alpha$, optimal power $P_w^* = P_w$

 $n_b \geq n_{arepsilon}$, $n_{arepsilon}$ is related to the realistic environments, while δ can be derived from the value coverage ratio.

Motivation and Problem

Shooting Process

We do not modify any parameter of the commercial reader (Alien-9900+), which conforms

to EPC C1G2 Standard.

Objective: Collecting the tag IDs in the interrogation region.

Approach: —— Identifying one tag ID in each slot.

- Only no tags respond to reader, the process terminates, which

means

each tag has transmitted its tag D to the room

Photography based tag Identification with Angle rotation (PIA)

Identify the target tags without any auxiliary equipment.

Focusing Process

1) Exploring the boundary:

Rotate the antenna to explore the boundary of the specified area.

 \rightarrow Outline the specified area.

Fig. 5. Identify the tags in the specified area without any auxiliary equipment

1) Identify a part of target tags: $N_s = \{ID_1, ID_2, \dots, ID_{n_s}\}$

2) Identify some interference tags N_l (N_r) of the boundary by rotating $\Delta \theta_{r_l}$ ($\Delta \theta_{r_r}$) to left (right);

3) Use the tags identified with smaller angle as the **reference tags** N_b of the boundary.

 $n_s \geq n_{arepsilon}$ and $n_b \geq n_{arepsilon}$.

The remaining process is the same as that in PID.

20

• System Prototypes

Motivation and Problem

We set *d*=1m, *l*=1m, *s*=80, *u*=70 by default.

Coverage Ratio ρ

Fig. 7. $\alpha = 60\%$, Coverage ratio

PID, PIA, and MaxPw can satisfy the requirement of coverage ratio. MinPw can not satisfy the requirement because of its power is too small.

 \rightarrow We ignore MinPw in the following comparisons.

We set *d*=1m, *l*=1m, *s*=80, *u*=70 by default.

Execution Time *T*

Fig. 8. $\alpha = 60\%$, Execution time

PID and PIA have better performances than MaxPw. When *s*=120, PID can reduce *T* by 46% compared to MaxPw. When *u*=270, PID can reduce *T* by 84.5% compared to MaxPw.

Motivation and Problem

We set *d*=1m, *l*=1m, *s*=80, *u*=70 by default.

Misreading Ratio λ

Fig. 9. $\alpha = 60\%$, Misreading ratio

PID and PIA have lower misreading ratios that MaxPw, because PID and PIA only focus

on the specified area and use the optimal power.

Motivation and O Problem

- We investigate the problem of tag identification in the specified area.

— We conduct extensive experiments on the commodity RFID systems.

—— We propose the photography based identification method, which works in a similar way of picture-taking in a camera.

Based on the picture-taking scheme, we propose two solutions PID and PIA.

1) PID works with a 3D camera;

2) PIA works without any auxiliary equipment.

— Realistic environments show that our solutions outperform the baseline solutions.

MobiQuitous 2013

Questions ?

Thank you !

