
Meta-IDS: A Multi-stage Deep Intrusion Detection
System with Optimal CPU Usage

Nadia Niknami, Vahid Mahzoon, and Jie Wu
Center for Networked Computing, Temple University, USA

Emails: {nadia.niknami, vahid.mahzoon, jiewu}@temple.edu

Abstract—The exponential growth in network traffic coupled
with the intricacies of neural network methodologies has pre-
sented formidable challenges for conventional single-machine
architecture Network Intrusion Detection Systems (NIDS). In
this paper, we propose a novel approach to address these
challenges drawing inspiration from meta-computing principles.
Meta-computing, characterized by dynamic resource allocation,
offers a promising solution for optimizing NIDS performance in
the face of escalating network traffic. We introduce a hierar-
chical NIDS that employs varying levels of model complexity
to efficiently process different scales of network traffic. In
designing the proposed lightweight IDS, our efforts focus on
selecting the optimal set of features for each level. By integrating
dynamic resource allocation techniques, our Meta-IDS is able
to adapt proactively to fluctuations in network activity, thus
mitigating the risk of resource depletion while preserving its
efficacy in detecting intrusions. Through experiments conducted
on a benchmark dataset, we demonstrate the effectiveness of our
proposed Meta-IDS in enhancing network intrusion detection in
high-performance environments. Our approach not only ensures
efficient resource management but also enhances the accuracy
and timeliness of intrusion detection, thereby providing a robust
solution for modern network security challenges.

Index Terms—Accuracy, CPU time, Network Intrusion Detec-
tion System(NIDS), Lightweight IDS, Meta-computing.

I. INTRODUCTION

The crucial function of Network Intrusion Detection Sys-
tems (NIDS) [1] in safeguarding network perimeters by dili-
gently monitoring and swiftly identifying security breaches
remains of essential importance. NIDS employs two pri-
mary detection methodologies: signature-based and anomaly-
based [2] [3]. Signature-based NIDS establishes a knowledge
base through state modeling or string matching beforehand,
detecting aberrant behavior by comparing data flow against
existing signatures. While signature-based NIDS demonstrates
robust performance against known attacks, it may falter in
addressing attacks absent from the knowledge base. Con-
versely, anomaly-based NIDS possesses the capability to
discern unknown attacks by evaluating deviations between
detected activity and normal patterns, a domain currently un-
dergoing vigorous development. Detecting malicious network
traffic is a critical element of network intrusion detection,
with the goal of the timely and precise identification of
hidden malicious attacks within network traffic. Consequently,
accurately identifying malicious traffic stands as a pivotal
area of research focus. With the advent of Deep Learning
(DL), a multitude of DL-based intrusion detection models have
emerged, significantly enhancing the accuracy and resilience

Fig. 1: Different structures for IDS in a network.

of intrusion detection. However, despite the commendable
accuracy attained by these models, researchers have struggled
to implement them on resource-constrained devices due to
their high computational overhead and large model size. The
dynamic nature of large-scale networks introduces unique
challenges for effective network intrusion detection. Moreover,
the traditional single-machine architecture of NIDS has trouble
with the continual growth in traffic volume. Despite consid-
erable efforts from researchers, NIDS continues to encounter
hurdles in deployment on resource-constrained devices. Var-
ious approaches have been suggested to alleviate the model
size burden for NIDS. However, reducing network complexity
often entails disregarding channel correlations, resulting in
diminished detection accuracy.

Furthermore, the dynamics of large-scale networks intro-
duce additional complexities. The varied traffic patterns ob-
served in such environments, characterized by diverse appli-
cation mixes and temporal fluctuations, significantly influence
NIDS performance . Notably, the depth of analysis required
for different application protocols varies, necessitating adap-
tive strategies. Moreover, the prevalence of heavy-tailed data
transfers leads to sudden peaks in traffic volume, present-
ing a considerable challenge for NIDS operations. In high-
performance environments, the efficacy of a NIDS depends not
only on its capability to handle average traffic loads but also on
its resilience in the face of frequent traffic bursts. Therefore,
robust mechanisms must be in place to ensure the NIDS’s
effectiveness under dynamic and demanding conditions.

The time it takes to detect an intrusion in cybersecurity,
referred to as the “Time To Detect” (TTD), is a crucial metric
for organizations to gauge their ability to swiftly identify and
respond to security incidents. Several factors influence TTD,
including the complexity of the security infrastructure, the
effectiveness of security monitoring systems, and the level of



(a) Different IDS models (b) Accuracy/CPU time trade-off.

Fig. 2: Different IDS models and their efficiency.

training and expertise of the security team.
For some datasets, a simpler model might suffice and even

surpass a more complex model because of its superior gener-
alization capability. However, for large and complex datasets,
the simplicity of the model may prove inadequate in achieving
desired outcomes. In such cases, the utilization of complex
models becomes necessary to ensure acceptable efficiency.
Complex models can achieve higher accuracy but they demand
greater computational resources for both training and infer-
ence. This encompasses memory, computing power, and time.
Utilizing a complex model may not be viable in situations
where resources are constrained. To tackle these challenges,
we advocate for implementing a multi-level approach to NIDS
instances. This approach inherently offers scalability, allowing
for a linear expansion of hardware resources to accommodate
increasing system loads while maintaining consistent service
levels. This incremental scalability proves particularly advan-
tageous in large-scale environments, where capacity planning
is complicated by numerous unknown variables.

Meta-computing arises as an enticing methodology for ac-
quiring resources to efficiently handle extensive computational
tasks. Expanding on this notion, we introduce a hierarchical
architecture for NIDS deployment. This architecture dynam-
ically allocates analysis tasks, reducing communication and
processing overheads while enhancing the system’s flexibility,
scalability, and fault tolerance. Through the adoption of this
innovative approach, our goal is to augment the effectiveness
of network intrusion detection in high-performance environ-
ments, thereby paving the way for more robust and adaptable
security solutions.

In the network depicted in Fig. 1, various users are con-
nected to a server, which forwards their traffic to a firewall
and NIDS for monitoring purposes. These IDSs analyze the
passing traffic and generate alert messages if anomalies are
detected. This figure illustrates three potential strategies for
IDS deployment: 1) Simple Model, 2) Complex Model, and
3) Mixture Model. Each of these IDS frameworks varies in
structure and complexity, resulting in divergent requirements
for accuracy and CPU time. Depending on factors such as
the scale of traffic and the sensitivity of attack detection,
organizations can select the most suitable framework from
these options to effectively monitor and protect their network
infrastructure. Fig. 2(a) delineates the distinct configurations
for Simple Model, Shallow Model, and Complex Model, with
complexity determined by neural network architecture and fea-

ture count. Fig. 2(b) illustrates the trade-off between accuracy
and processing time across different IDS models.

Most of the models that have been proposed so far suffer
from various issues, including large model parameters, high
complexity, and lengthy computing times. Additionally, these
models require continuous training after deployment. The
primary goal of malicious traffic detection and identification
is to detect the intrusion of malicious traffic, which plays a
key role in ensuring security. Deep learning has shown great
success in this field. However, due to resource limitations such
as computational weaknesses and low-edge network node stor-
age capacity, deploying and applying high-complexity deep
learning models becomes challenging. In this paper, we delve
into the complexities of network intrusion detection in high-
performance environments, exploring innovative approaches
and strategies to overcome inherent challenges and enhance
the efficacy of NIDS deployments. Through empirical analysis
and practical insights, we aim to contribute to the advancement
of NIDS technology, enabling more robust and resilient secu-
rity solutions for modern network infrastructures. This paper
makes the key contributions to address the existing issues
above as follows:

• We proposed a lightweight intrusion detection system to
reduce model complexity while maintaining acceptable
attack detection accuracy.

• We introduce a hierarchical intrusion detection system
with multiple stages, each tailored to balance CPU time
and accuracy. This framework incorporates the concept
of meta-computing, adjusting parameters and features to
mitigate performance declines in lightweight IDS imple-
mentations.

• We use different feature selection methods to select the
most informative features from CICFlowMeter features
to design a lightweight intrusion detection system.

• Extensive experiments demonstrate that our Meta-IDS
achieves significant advantages in accuracy and efficiency
on a challenging dataset in different scenarios with vary-
ing sensitivities and complexities.

II. BACKGROUND AND RELATED WORKS

A. Network Intrusion Detection

A NIDS detects potential security breaches and alerts are
communicated through various means such as textual alerts,
log files, or a graphical user interface. Alerts are then either
analyzed by human analysts or automatic postprocessing fa-
cilities. Correctly identified intrusions are true positives, while
false alarms are false positives. Failure to recognize an ongoing
intrusion results in a false negative, while correctly remaining
inactive when no breach occurs is a true negative. DL ap-
proaches have shown promise in enhancing the performance of
IDS, particularly in terms of accuracy and load balancing [2],
[4], [5]. Complex DL models provide high detection accuracy
for IDS but bring challenges to deployment with resource-
constrained devices.

Yazdinejadna et al. [6] introduced a zone-based architecture
for intrusion detection to enhance scalability and anomaly



detection in NIDS. Niknami et al. [7] proposed an approach
deploying a chain of IDSs in the data plane interconnected
with switches for efficient data flow grouping and therefore
balancing the load on the controller. Zhao et al. [8] proposed
a light IDS model, albeit with reduced detection rates. Wang et
al. [9] proposed a knowledge distillation model to reduce
model complexity, although designing appropriate teacher and
student models remains challenging. Verkerken et al. [10]
introduced a multistage and scalable IDS capable of detecting
unknown and zero-day attacks.

Yang et al. [11] proposed a lightweight intrusion detection
method achieving a balance between accuracy and efficiency
through self-knowledge distillation. Hocine et al. [12] pre-
sented a collaborative NIDS based on a multi-agent frame-
work, utilizing dynamic load balancing of traffic analysis to
enhance intrusion detection, particularly against DDoS attacks,
while minimizing excessive communication. Ge et al. [13]
introduced MetaCluster, a versatile classification framework
for cybersecurity. MetaCluster filters and combines classi-
fication semantics through feature prototypes and dynamic
graph learning layers, offering a comprehensive solution for
interpretable classification tasks.

To address the challenge of balancing detection accuracy
with model complexity, which often leads to increased CPU
consumption, this paper introduces a lightweight multistage
NIDS. Leveraging meta-computing, we propose dynamic re-
source allocation for each level of the NIDS. Additionally, we
present a novel method for feature selection aimed at reducing
model complexity.

B. Meta-computing

Meta-computing involves managing and orchestrating com-
puting resources in a dynamic and adaptive manner to optimize
performance, efficiency, and resource utilization [14]. Dynam-
ically allocating resources based on workload demands and
system conditions is a key aspect of meta-computing because
it allows for the efficient utilization of available resources
and adaptation to changing computational requirements. Meta-
computing involves the utilization of computing resources in a
dynamic, adaptive, and efficient manner to solve computational
problems effectively. When integrated with few-shot learning,
meta-computing techniques can help optimize resource allo-
cation, enhance parallel processing capabilities, and improve
overall computational efficiency.

C. Feature Selection

Feature selection plays a pivotal role in machine learning
and data analysis, aiming to identify a subset of relevant
features from the original. This process not only enhances
model performance but also helps mitigate overfitting while
improving interpretability. By prioritizing informative features,
model simplification, reduced computational complexity, and
potential accuracy enhancement can be achieved. The advan-
tages of feature selection are as follows:

• Improved Model Performance: By eliminating irrelevant
or redundant features, feature selection can enhance the

performance of machine learning models, leading to
better predictive accuracy and generalization on unseen
data.

• Reduced Overfitting: Including only the most relevant
features helps in reducing overfitting, where the model
learns noise present in the data rather than capturing the
underlying patterns. This leads to better generalization on
new data.

• Enhanced Interpretability: Simplifying the model by se-
lecting only the most important features makes it easier to
interpret and understand the relationships between input
variables and the target variable.

• Faster Training and Inference: By reducing the dimen-
sionality of the feature space, feature selection can sig-
nificantly decrease the computational cost associated with
training and evaluating machine learning models.

There are different methods of feature selection and extrac-
tion [15]–[17]. We list out the famous ones as follows:

• Mutual Information: Mutual information [18] measures
the amount of information obtained about one variable
through the other variable revealing a non-linear rela-
tionship. In feature selection, it quantifies the dependency
between the feature and the target variable, and features
with high mutual information are considered more infor-
mative.

• Sparse Sensor Placement Optimization for Reconstruc-
tion (SSPOR): SSPOR [19] involves selecting a subset
of features from a larger feature set in such a way that
the selected features provide the most informative repre-
sentation of the data while minimizing redundancy and
computational costs. Similar to its application in sensor
placement, SSPOR for feature selection aims to achieve
sparsity by identifying a minimal set of features that are
most relevant for accurately describing the underlying
patterns in the data. This optimizer arranges features in
descending order of significance using the QR with a
column pivoting algorithm.

• Lasso (Least Absolute Shrinkage and Selection Opera-
tor): Lasso [20] is a regularization technique that penal-
izes the absolute value of the regression coefficients. It
tends to shrink regression coefficients of less informa-
tive features towards zero, effectively performing feature
selection.

• Random Feature Selection: Random feature selection
involves randomly selecting a subset of features from
the original feature set. This method is often used as a
baseline for comparing the performance of other feature
selection algorithms.

• Minimum Redundancy Maximum Relevance (MRMR):
MRMR [21] aims to select features that are highly
relevant to the target variable while being minimally
redundant with each other. It evaluates both the relevance
and redundancy of features and selects the subset that
maximizes the relevance and minimizes redundancy.

• Gini Importance: Gini importance measures the impor-
tance of a feature by calculating the total decrease in



node impurity (e.g., Gini impurity) caused by splitting
the data based on that feature in a decision tree and
random forest. Features with higher Gini importance are
considered more important for classification tasks.

• Principal Component Analysis (PCA): PCA [22] is a
dimensionality reduction and feature extraction technique
that transforms the original features into a new set of
orthogonal features called principal components. These
components are ordered by the amount of variance they
explain in the data. By selecting a subset of principal
components that capture most of the variance, PCA
effectively performs feature selection while preserving
the most important information in the data.

III. METHODOLOGY

In this section, we present a detailed discussion of the
proposed lightweight Meta-IDS. If an IDS fails to process the
incoming packet stream at full wire speed, it risks encountering
buffer overflows or packet loss, potentially leading to system
crashes. Given the detrimental impact of packet loss on attack
detection, it is imperative to prevent such occurrences. From
another angle, for malicious network traffic detection and
identification it is very important to design a model with
fewer parameters, low complexity, and high performance.
We propose a deep learning model, called the lightweight
intrusion detection approach. In our hierarchical approach,
we dynamically distribute analysis tasks across the multi-
level NIDS, thereby reducing communication and processing
overheads. This dynamic allocation enhances the flexibility
and scalability of the system while bolstering its fault tolerance
capabilities.

Fig. 3 presents the hierarchical architecture of our intru-
sion detection framework, strategically designed to overcome
server capacity limitations and bolster detection efficiency
by harnessing powerful CPU systems. Inspired by meta-
computing principles, our framework divides the intrusion
detection process into three stages, each equipped with unique
capabilities and resource allocations. In the initial stage, a
simple neural network (without hidden layers) is utilized to
identify straightforward attacks based on predefined thresholds
and probabilities. If the model confidently predicts a traffic
flow as benign, it requires no further processing. If a sample’s
probability of belonging to a class falls below a threshold τ1
or the model predicts the sample as an attack, it advances to
the next stage as suspicious traffic. The next stage involves a
simple multi-class neural network with more features.

In the event that the classification probability falls be-
low τ1, the sample is forwarded to the second stage, where
a classifier determines whether it corresponds to any known
attack class (ATKi) or the benign class. This stage employs
distinct thresholds and an advanced anomaly detector capable
of identifying more intricate attacks across various types.
Should the attack classifier fail to categorize the sample into
a known attack class with a level of certainty exceeding
threshold τ2, the sample proceeds to the third and final stage.
Here, traffic with probabilities falling below τ2 in the second

Algorithm 1 Meta-IDS Algorithm

1: Input (X,Y ) = {(x1, y1), . . . , (xN , yN )}, F1, F2, τ1, τ2
2: Output Ŷ = {ŷ1, . . . , ŷN}: Predicted Labels
3: for each data point xi in X do
4: p1, c1 ← BINARYMODEL(xi,F1)
5: if p1 < τ1 or c1 == malicious then
6: p2, c2 ← SIMPLEMULTICLASSMODEL(xi,F2)
7: if p2 < τ2 then
8: ŷi ← COMPLEXMULTICLASSMODEL(xi)
9: else

10: ŷi ← c2
11: end if
12: else
13: ŷi ← c1
14: end if
15: end for

stage undergoes further analysis. Equipped with substantial
allocations of storage and CPU resources, this stage plays
a pivotal role in detecting unseen or complex attacks. By
adopting this hierarchical approach, our framework ensures
comprehensive intrusion detection while optimizing resource
utilization for efficient and effective threat mitigation.

The Meta-IDS algorithm, outlined in Algorithm 1, is de-
signed to predict labels for incoming data points based on a
cascading decision-making process. Given a dataset (X,Y )
consisting of input features X and corresponding labels Y ,
along with two sets of feature representations F1 for the
number of features in Stage 1 and F2 for the number of
features in Stage 2, and two threshold values τ1 and τ2
for Stage 1 and Stage 2 respectively. In Stage 1, for each
data point xi in X , it first employs a binary classification
model (BinaryModel) using F1 to determine if the data
point is potentially malicious. If the probability of being
malicious or benign is below the threshold τ1 or the pre-
dicted class is explicitly marked as malicious, the algorithm
proceeds to Stage 2 which is a simple multi-class classification
model (SimpleMultiClassModel).

In Stage 2 with F2 features, if the probability (p2) of
belonging to any class is below the threshold τ2, the algorithm
predicts the class using a complex multi-class classification
model (ComplexMultiClassModel) in Stage 3; other-
wise, it assigns the class predicted by the simple multi-
class model. If the initial binary classification indicates non-
malicious behavior with high confidence (p1 ≥ τ1), the algo-
rithm directly assigns the class predicted by this model without
further evaluation. Through this sequential decision-making
process, the Meta-IDS algorithm aims to provide robust and
accurate predictions for network intrusion detection.

A. Stage 1: First Level IDS

The first stage of our methodology involves assessing the
potential maliciousness of each data point within the dataset.
In this initial stage, denoted as Stage 1, we employ a bi-
nary classification model referred to as BinaryModel. This



Fig. 3: The proposed architecture of the multi-stage hierarchical intrusion detection system.

model is specifically trained on a very small portion of the
dataset, which comprises two distinct classes: benign and an
attack label that encompasses all types of attacks. This training
aims to discern and understand the normal behavior patterns
within the monitored network. By analyzing the behavior of
each data point using some features, F1, the binary model
determines whether it aligns with the learned normal and
malicious patterns. If the probability of a data point being
malicious or benign falls below a predefined threshold τ1, or
if the predicted class is explicitly flagged as malicious, the
algorithm progresses to Stage 2. For this level, we use a simple
logistic regression model.

B. Stage 2: Middel-level IDS

In the second stage, data samples identified as potentially
malicious during the anomaly detection phase undergo multi-
class classification. This classifier is exclusively trained on
data comprising a benign label and multiple attack types. It
demonstrates proficiency in accurately categorizing samples
into the known attack classes present within the training
dataset, as well as identifying benign cases. During this stage,
a straightforward multi-class classification model, denoted as
SimpleMultiClassModel, is utilized for further evalu-
ation. This sequential decision-making process is designed
to efficiently detect potential malicious data points while
optimizing computational resources. The classifier generates
probabilities for each known attack class as well as the benign
class, and the class with the highest probability is assigned
as the predicted class. Samples with probabilities falling
below a predefined threshold τ2 are classified as unknown
and forwarded to the subsequent stage. This threshold is
carefully determined to achieve the highest level of accuracy in
classification. At this level, a feedforward neural network with
no hidden layers has been applied. This model takes input,
applies a linear transformation (through weights and biases),
and then uses a softmax function to output probabilities for
each of the classes.

C. Stage 3: Full-detection
The last stage involves the utilization of a complex neural

network, encompassing all available features, to conduct com-
prehensive detection on data samples that were not satisfacto-
rily classified during Stage 2. The main aim of this stage is
to address false positives, particularly instances where benign
network activity is incorrectly identified as malicious. False
positives represent a significant challenge for anomaly-based
IDS. Furthermore, since only a subset of data is forwarded to
Stage 3, the computational workload is significantly reduced
compared to analyzing the entire dataset. This approach helps
optimize CPU time consumption while maintaining robust
detection capabilities. For the complex model, a feedforward
neural network with three hidden layers and a ReLU activation
function is utilized.

IV. EVALUATION

In this section, we begin by assessing various feature se-
lection techniques across different numbers of features within
our dataset. This evaluation aims to determine the correlation
between the quantity of features and the accuracy of models
used in the initial two stages of our methodology, and to find
the best feature selection method for k number of features.
Then, we proceed to examining a simpler application of our
methodology, where we combine a simple and a complex
binary model (comprising only two stages) to demonstrate the
efficiency of our approach in the binary classification prob-
lem. Following this, we delve into multi-class classification.
We explore three distinct scenarios, each characterized by a
different number of features in the first two stages. These
variations result in differing levels of model accuracy and
inference time in the initial stages, closely mimicking real-
world conditions. In each case, we determine the optimal
thresholds using a proposed utility function, and subsequently
illustrate how our methodology not only reduces processing
time but also maintains accuracy within acceptable limits when
compared to a complex model. The outcomes of these three
scenarios are then analyzed and compared to underscore the
effectiveness of our approach.



A. Experimental Settings
We conducted our experiments on a system equipped with

an Intel(R) Xeon(R) W-2225 CPU @ 4.10GHz, featuring an
x86 64 architecture with 8 CPUs, each with 2 threads per
core and 4 cores per socket, reaching a maximum frequency
of 4.6 GHz. We conduct each experiment multiple times and
then calculate the average to present the results.

B. Dataset and evaluation metrics
In order to evaluate our method, experiments were carried

out on CICIDS2017. This dataset was generated from real
network recordings. It contains benign samples along with the
samples of most up-to-date common attacks. The generation
of the dataset spanned a period of 5 days using 14 machines.
The benign traffic is simulated from the benign behavior
of a group of 25 humans using statistical techniques and
machine learning. On the other hand, the malicious traffic
is generated by executing existing attack tools at specific
time windows. In order to preprocess the data for dataset
CICIDS2017, several preprocessing steps were undertaken.
Firstly, data samples containing NaN values were eliminated.
Secondly, data samples featuring negative values for attributes
that necessitate non-negative values were discarded. Next, one-
hot encoding was applied to the Protocol column, resulting
in three new features. Subsequently, columns representing
Source IP, Source Port, Destination IP, and Destination Port
were removed, leaving us with 79 features and one column
designated for labeling. Finally, the features were standardized,
a process involving centering them around zero by subtracting
the mean and scaling them to unit variance. Additionally,
we excluded the dataset pertaining to infiltration attacks from
our analysis due to the exceedingly small number of samples
available for this type of attack.

After the preprocessing stage, our dataset was categorized
into six attack types along with benign instances, as detailed
in Table I. For our binary model, we trained on 10% of this
data, while the multi-class models were trained on just 2%.
Utilizing such a limited dataset significantly reduced our
model training times and CPU usage. For testing purposes,
we selected 1 million records, not included in the training set,
comprising 500, 000 benign instances and 500, 000 attacks.
In our experiments, to simulate larger traffic volumes, we
repeatedly utilized this 1 million test dataset multiple times
to process a total of 8 million samples.

In order to evaluate the proposed method, we considered
measurements of Accuracy and Inference time. Inference time
in deep learning refers to the time it takes for a trained model
to make predictions on new, unseen data. During inference,
the model processes input data and produces an output, such
as a classification or a regression prediction. Inference time
is an important consideration for deploying deep learning
models in real-world applications, as it impacts the speed and
responsiveness of the system.

C. Feature Selection Results
We implemented our feature selection techniques on a

small subset of the data for different numbers of features

TABLE I: Categorizing labels in datasets after pre-processing.

Label Category in CICIDS2017 Number of Samples
Benign Benign 1982759

DoS

DoS Hulk 230123
DoS Slowloris 5796
DoS Slowhttp 5499

DoS GoldenEye 10293
Heartbleed 11

Web Attack
Brute Force - XSS 2159
Brute Force - Web 1507

SQL Injection 21
DDoS DDoS 128025

Brute-Force FTP-Patator 7935
SSH-Patator 5897

Bot Bot 1956
PortScan PortScan 158804

F = {1, 5, 10, . . . , 70}. For the supervised feature selection
methods, we categorized the labels into two groups: “Benign”
and “Attack”, to form a binary classification framework.
Subsequently, we trained our binary and simple multi-class
models using the selected features on corresponding training
data. These models were then tested on our designated testing
set. According to the results depicted in Fig. 4, it is evident
that PCA as a feature extraction algorithm exhibits the highest
accuracy compared to different feature selection methods,
particularly for both binary and multi-class classification tasks.
Fig. 4 not only showcases the superior accuracy of PCA
but also underscores the importance of feature selection on
detection accuracy. Increasing the number of features generally
enhances detection accuracy. However, despite its superior
performance, PCA was not considered for our experiment due
to its significant time overhead, as illustrated in Fig. 5. Unlike
other methods where the chosen features can be readily applied
through straightforward slicing operations, PCA necessitates
transforming the original data into a new coordinate system
via matrix multiplication. This process, inherently more com-
putationally demanding, leads to increased processing time
when applied to new data, as shown in Fig. 5 for extracting
10 features. Consequently, while PCA can effectively reduce
complexity and retain important information, its slower com-
putational speed compared to feature selection methods led us
to exclude it from our experiment.

In addition, the quality of features is equally crucial in
influencing detection accuracy. For instance, approximately 35
features are adequate to achieving satisfactory accuracy in
binary classification, while a minimum of 50 features is
necessary for acceptable accuracy in multi-class classification.
This discrepancy highlights the greater complexity and the
challenge associated with multi-class classification compared
to binary classification. In the subsequent sections of the paper,
we adopt the feature selection method that yields the highest
accuracy for a given F = k.

D. Binary Classification

Our approach is focused on multi-class classification, but
we also aimed to assess Meta-IDS in a simpler case which is
a binary classification with only two stages. For this purpose,
we employed a logistic regression model with 10 features as a



(a) Binary Classification (b) Multi-Class Classification

Fig. 4: Comparing methods of feature selection for Binary and
Multi-class Classification.

Fig. 5: Calculating CPU time for PCA.

basic binary classifier, and a neural network with three hidden
layers served as the more complex binary model. In this setup,
if the probability predicted by the simpler model is below 0.8,
those samples are then forwarded to the next stage for further
evaluation by the complex binary model utilizing the full set
of features. We define three models for comparison of the
performance in binary classification as follows:

• Simple Model: A simple binary classification model
with 10 features

• Complex Model: A complex binary classification with 79
features

• Meta-IDS: It starts with a binary classification with 10
features. Then suspicious traffic is forwarded to a com-
plex binary classification with 79 features

Fig. 6 illustrates the comparison of three different models on
different scales of traffic, ranging from 1 million to 8 million
instances. It shows the performance of models in the case of
CPU time and accuracy in the context of binary classification.
It is obvious that the proposed approach outperforms the
Simple Model in terms of accuracy and the Complex Model
in CPU time. This establishes an optimal balance, offering
a desirable trade-off between accuracy and computational
resource utilization.

E. Multi-class Classification

To evaluate our model, we consider three scenarios with
different numbers of features in the first stage and second
stage of our proposed method. These scenarios were selected

(a) CPU Time (b) Accuracy

Fig. 6: Comparing three models for binary classification.

based on the varying levels of accuracy depicted in Fig. 4(b).
Recognizing that simple models can exhibit varying degrees
of accuracy in real-world applications, our approach adapts
accordingly, selecting different thresholds to suit each model’s
accuracy level. The scenarios were:

• Weak-Feature Scenario: the number of features in Stage 1
is F1 = 5 and the number of features in Stage 2 is
F2 = 10.

• Moderate-Feature Scenario: the number of features in
Stage 1 is F1 = 10 and the number of features in Stage 2
is F2 = 30.

• Heavy-Feature Scenario: the number of features in
Stage 1 is F1 = 40 and the number of features in Stage 2
is F2 = 50.

Given these scenarios, we select different values of τ1 and
τ2 and obtain accuracy and CPU time on 8 million of testing
data points for each case. With these results, we employ an
optimization technique to determine the optimal values for
thresholds τ1 and τ2, considering both CPU time and accuracy.
We provide a formulation in Equation 1 to find the best τ1 and
τ2 based on the expectation for CPU time and accuracy.

Utility(τ1, τ2) =

{
Score(τ1, τ2), if Accuracy(τ1, τ2) > 0.8

0 otherwise

where

Score(τ1, τ2) =(WACC ×Accuracy(τ1, τ2))

−(WT × Time(τ1, τ2)).
(1)

Here, WACC represents the weight of accuracy, and WT

denotes the weight of CPU time. These two parameters assign
importance to the accuracy and CPU time in the utility calcu-
lation, respectively. The Utility function essentially measures
the effectiveness of the threshold values in terms of achieving
high accuracy and low computational costs. A higher utility
score indicates a more desirable balance between accuracy and
CPU time, guiding the selection of τ1 and τ2. Let us consider
a scenario where an admin proposes that if we can enhance ac-
curacy by 0.01, they are prepared to tolerate an additional 0.3
seconds of CPU time. Under such circumstances, we may set
weights as follows: WACC = 30 and WT = 1. After obtaining
optimal thresholds for each scenario, we conduct a thorough
comparison of the performance among three distinct methods
the Simple multi-class model with F2 features, the proposed
model (Meta-IDS), and the Complex model with 79 features.



(a) Weak-Feature Scenario (b) Moderate-Feature Scenario (c) Heavy-Feature Scenario

Fig. 7: CPU time (sec) for different scenarios Weak-Feature Scenario:(F1 = 5, F2 = 10), Moderate-Feature Scenario:(F1 = 10,
F2 = 30), and Heavy-Feature Scenario:(F1 = 40, F2 = 50) on varying thresholds τ1 and τ2.

(a) Weak-Feature Scenario (b) Moderate-Feature Scenario (c) Heavy-Feature Scenario

Fig. 8: Accuracy for different scenarios Weak-Feature Scenario:(F1 = 5, F2 = 10), Moderate-Feature Scenario:(F1 = 10,
F2 = 30), and Heavy-Feature Scenario:(F1 = 40, F2 = 50) on varying thresholds τ1 and τ2.

Impact of Different Values for τ1 and τ2 on Accuracy
and CPU Time: As detailed in Section III, samples remaining
after the first stage, with a classification probability lower
than the threshold τ1, are forwarded to the next stage. In
Stage 2, the classification probability is compared with τ2.
Therefore, carefully selecting these thresholds is crucial, as
highlighted in Figs. 7 and 8, to ensure accurate results. If the
threshold τ1 is set too high, numerous samples are forwarded
to the next stage, resulting in increased computational resource
consumption. Conversely, setting τ1 too low may lead the
first stage to classify actual intrusions as benign, if the binary
model is not very accurate. The threshold τ2 determines the
confidence level of predictions by the attack classifier in the
second stage. If set to a small value, only a few samples are
forwarded to the third stage leading to low accuracy, if the
model in Stage 2 is not accurate enough. On the contrary, a
higher τ2 permits more samples to have further analysis in
Stage 3, enhancing accuracy but at the cost of increased CPU
time. Thus, the thresholds τ1 and τ2 balance computational
efficiency and final classification performance. Setting them
too high will lead to high CPU consumption while setting
them too low may have unacceptable accuracy.

Comparison of Thresholds’ Impact on Different Scenar-
ios: In the previous section, we delved into the general impact

of various thresholds on our methodology across all scenarios.
In this section, our attention shifts to a detailed analysis
of how these thresholds distinctly influence each individual
scenario. It is noteworthy that we have designed the number
of features in the first two stages so that the accuracy of the
simple binary and multi-class models will be considered low
for the Weak-Feature Scenario, moderate for the Moderate-
Feature Scenario, and high for the Heavy-Feature Scenario.
This design has significant implications, particularly evident
when τ2 > 0.5. For τ2 > 0.5, the CPU time for Heavy-Feature
Scenario is notably lower compared to the other scenarios.
This efficiency stems from the increased confidence of the
models in the first two stages (owing to their higher accuracy),
resulting in fewer traffic flows progressing to Stage 3.

An intriguing observation in the Heavy-Feature Scenario is
that a low threshold already yields high accuracy, unlike other
scenarios. This outcome is attributed to the presence of more
accurate models in the first two stages, which significantly
enhances the overall performance. In the Heavy-Feature Sce-
nario, an intriguing pattern emerges with small values of τ2.
For τ2 < 0.7, when τ1 increases, there is a noticeable de-
crease in accuracy. Initially, this might seem counterintuitive.
However, the underlying reason is that certain samples, while
correctly predicted by the binary model, have a confidence



(a) Weak-Feature Scenario (b) Moderate-Feature Scenario (c) Heavy-Feature Scenario

Fig. 9: Accuracy and Utility for the best thresholds in different scenarios Weak-Feature Scenario:(F1 = 5, F2 = 10), Moderate-
Feature Scenario:(F1 = 10, F2 = 30), and Heavy-Feature Scenario:(F1 = 40, F2 = 50) in Figs. 7 and 8. Part (a) shows
accuracy for Weak-Feature Scenario when τ1 = 0.7 and τ2 = 0.5. Part (b) shows accuracy for Moderate-Feature Scenario
when τ1 = 0.9 and τ2 = 0.5. Part (c) shows accuracy for Heavy-Feature Scenario when τ1 = 0.5 and τ2 = 0.15. We considered
WACC = 30.

(a) Weak-Feature Scenario (b) Moderate-Feature Scenario (c) Heavy-Feature Scenario

Fig. 10: CPU time for the best thresholds in different scenarios Weak-Feature Scenario:(F1 = 5, F2 = 10), Moderate-Feature
Scenario:(F1 = 10, F2 = 30), and Heavy-Feature Scenario:(F1 = 40, F2 = 50) in Figs. 7 and 8. Part (a) shows CPU time for
Weak-Feature Scenario when τ1 = 0.7 and τ2 = 0.5. Part (b) shows CPU time for Moderate-Feature Scenario when τ1 = 0.9
and τ2 = 0.5. Part (c) shows CPU time for Weak-Feature Scenario when τ1 = 0.5 and τ2 = 0.15. We considered WACC = 30.

level lower than τ1. Consequently, these samples are forwarded
to the simple multi-class model, which misclassifies them.
This misclassification can be attributed to the inherently more
challenging nature of multi-class classification compared to
binary classification as shown in Fig. 4. Nonetheless, as τ2
increases, these same samples are routed to the complex
model which compensates for this accuracy shortfall. This
observation underscores the significance of each component
in our three-stage methodology, particularly highlighting the
crucial role played by the binary stage in enhancing the overall
effectiveness of the process in this scenario.

Optimal Threshold for Each Scenario: For each scenario,
the optimal threshold values were identified using the proposed
utility function, as detailed in Table II for different values
of WACC . In the Heavy-Feature Scenario, the notably high
accuracy of the models in the first two stages contributed to
achieving a superior utility value for each case. Additionally,
with threshold values such as (τ1 = 0.5, τ2 = 0.15) in this
scenario with WACC = 30, all samples identified as benign

in the first stage were not passed to the second stage, and no
sample was analyzed with the Stage 3 which is highly efficient.
It is evident that as we increase the value of WACC , indicating
a greater emphasis on accuracy, our optimizer consistently
selects higher (or equal) thresholds in each scenario.

The CPU time, Accuracy, and Utility for the optimal case in
each scenario for WACC = 30 is illustrated in Figs. 9 and 10.
Notably, we expand our dataset by duplicating the 1 million
testing data points to create datasets ranging from 2 to 8
million instances. As a result, the accuracy remains consistent
across all considered scales of traffic flows. According to the
results in each scenario, although the Simple model, which
utilizes a minimal number of features, exhibits the lowest
CPU time consumption, it performs the poorest in terms
of accuracy. Moreover, the high accuracy achieved by the
Complex model comes at the cost of substantial CPU time con-
sumption. This highlights the necessity of carefully balancing
model complexity and efficiency to ensure the effectiveness
of intrusion detection systems. It becomes evident that our



TABLE II: Threshold and Utility Values for Different WACC

Values and Scenarios when WT = 1

WACC Scenario τ1 τ2 Utility

6
Weak-Feature 0.5 0.5 0.39

Moderate-Feature 0.7 0.15 4.49
Heavy-Feature 0.5 0.15 4.98

30
Weak-Feature 0.7 0.5 19.85

Moderate-Feature 0.9 0.5 25.29
Heavy-Feature 0.5 0.15 27.88

60
Weak-Feature 0.9 0.9 46.67

Moderate-Feature 0.9 0.7 52.53
Heavy-Feature 0.5 0.7 56.63

proposed methodology adeptly navigates the intricate trade-off
between CPU time and accuracy, offering a balanced approach
to intrusion detection across diverse traffic scales. In this paper,
we have formulated this trade-off in terms of Utility.

As illustrated in Figure 9, Meta-IDS demonstrates supe-
riority in Utility across various scenarios. It is important
to highlight that even a small improvement of 2 units in
Utility holds significance. This is attributed to the specific
relationship between accuracy and Utility in our context,
where a 1% increase in accuracy equates to a 0.3 increment
in Utility. Through this comparative analysis, we not only
identify the strengths and weaknesses of each method but also
highlight the efficacy of our proposed approach in optimizing
resource utilization while maintaining high levels of accuracy
in detecting network intrusions.

V. CONCLUSION

In conclusion, our hierarchical framework for intrusion
detection, inspired by meta-computing principles, offers a
promising approach to address the challenges in network secu-
rity. Through three distinct stages equipped with unique capa-
bilities and resource allocations, our framework effectively bal-
ances accuracy and computational efficiency. Through a series
of experiments, we demonstrate the superior performance of
our approach concerning CPU utilization and accuracy metrics
in the binary and multi-class classification of traffic flows. Key
to the success of our methodology is the careful selection of
thresholds (τ1 and τ2) governing the transition between stages.
Our analysis highlights the critical role of these thresholds in
optimizing resource utilization while maintaining high levels
of accuracy. Moreover, our comparative analysis across differ-
ent scenarios demonstrates the versatility and effectiveness of
our approach in diverse traffic environments. By leveraging
a utility function to identify optimal threshold values, we
achieve a desirable balance between accuracy and CPU time
consumption.

Overall, our framework showcases promise in enhancing
intrusion detection by efficiently utilizing computational re-
sources while maintaining robust detection capabilities. Future
research may focus on further optimizing threshold selection
and exploring additional stages to enhance the framework’s
effectiveness in real-world network security applications.

REFERENCES

[1] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,”
ACM computing surveys (CSUR), vol. 41, no. 3, pp. 1–58, 2009.

[2] Z. Ahmad, A. Shahid Khan, C. Wai Shiang, J. Abdullah, and F. Ahmad,
“Network intrusion detection system: A systematic study of machine
learning and deep learning approaches,” Transactions on Emerging
Telecommunications Technologies, vol. 32, no. 1, p. e4150, 2021.

[3] A. A. Ahmad, S. Boukari, A. M. Bello, and M. A. Muhammad, “A sur-
vey of intrusion detection techniques on software-defined networking,”
Intl. Journal of Innovative Science and Research Technology, 2021.

[4] A. Chen, Y. Fu, X. Zheng, and G. Lu, “An efficient network behavior
anomaly detection using a hybrid dbn-lstm network,” Computers &
Security, vol. 114, p. 102600, 2022.

[5] W. Wei, H. Gu, W. Deng, Z. Xiao, and X. Ren, “Abl-tc: A lightweight
design for network traffic classification empowered by deep learning,”
Neurocomputing, vol. 489, pp. 333–344, 2022.

[6] A. Yazdinejadna, R. M. Parizi, A. Dehghantanha, and M. S. Khan,
“A kangaroo-based intrusion detection system on software-defined net-
works,” Computer Networks, vol. 184, p. 107688, 2021.

[7] N. Niknami and J. Wu, “Enhancing load balancing by intrusion detection
system chain on sdn data plane,” in Proc. of the IEEE Conf. on
Communications and Network Security (CNS), 2022, pp. 264–272.

[8] R. Zhao, G. Gui, Z. Xue, J. Yin, T. Ohtsuki, B. Adebisi, and H. Gacanin,
“A novel intrusion detection method based on lightweight neural network
for internet of things,” IEEE Internet of Things Journal, vol. 9, no. 12,
pp. 9960–9972, 2021.

[9] Z. Wang, Z. Li, D. He, and S. Chan, “A lightweight approach for
network intrusion detection in industrial cyber-physical systems based
on knowledge distillation and deep metric learning,” Expert Systems with
Applications, vol. 206, p. 117671, 2022.

[10] M. Verkerken, L. D’hooge, D. Sudyana, Y.-D. Lin, T. Wauters, B. Vol-
ckaert, and F. De Turck, “A novel multi-stage approach for hierarchical
intrusion detection,” IEEE Transactions on Network and Service Man-
agement, 2023.

[11] S. Yang, X. Zheng, Z. Xu, and X. Wang, “A lightweight approach for
network intrusion detection based on self-knowledge distillation,” in
Proceeding of the IEEE International Conference on Communications
(ICC), 2023, pp. 3000–3005.

[12] N. Hocine and C. Zitouni, “A multi-agent system based on dynamic load
balancing for collaborative intrusion detection,” in Proceeding of the
IEEE International Conference on Networking and Advanced Systems
(ICNAS), 2023, pp. 1–6.

[13] W. Ge, Z. Cui, J. Wang, B. Tang, and X. Li, “Metacluster: a universal
interpretable classification framework for cybersecurity,” IEEE Transac-
tions on Information Forensics and Security, pp. 1–1, 2024.

[14] X. Cheng, M. Xu, R. Pan, D. Yu, C. Wang, X. Xiao, and W. Lyu, “Meta
computing,” IEEE Network, 2023.

[15] I. Guyon and A. Elisseeff, “An introduction to variable and feature
selection,” Journal of Machine Learning Research, vol. 3, no. Mar, pp.
1157–1182, 2003.

[16] Y. Saeys, I. Inza, and P. Larranaga, “A review of feature selection
techniques in bioinformatics,” Bioinformatics, vol. 23, no. 19, pp. 2507–
2517, 2007.

[17] J. Li, K. Cheng, S. Wang, F. Morstatter, R. P. Trevino, J. Tang, and
H. Liu, “Feature selection: A data perspective,” ACM computing surveys
(CSUR), vol. 50, no. 6, pp. 1–45, 2017.

[18] J. R. Vergara and P. A. Estévez, “A review of feature selection methods
based on mutual information,” Neural Computing and Applications,
vol. 24, pp. 175–186, 2014.

[19] K. Manohar, B. W. Brunton, J. N. Kutz, and S. L. Brunton, “Data-driven
sparse sensor placement for reconstruction: Demonstrating the benefits
of exploiting known patterns,” IEEE Control Systems Magazine, vol. 38,
no. 3, pp. 63–86, 2018.

[20] R. Tibshirani, “Regression shrinkage and selection via the lasso,” Jour-
nal of the Royal Statistical Society Series B: Statistical Methodology,
vol. 58, no. 1, pp. 267–288, 1996.

[21] H. Peng, F. Long, and C. Ding, “Feature selection based on mu-
tual information criteria of max-dependency, max-relevance, and min-
redundancy,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 27, no. 8, pp. 1226–1238, 2005.

[22] I. T. Jolliffe, Principal Component Analysis for Special Types of Data.
Springer, 2002.


	Introduction
	Background and related works
	Network Intrusion Detection
	Meta-computing
	Feature Selection

	Methodology
	Stage 1: First Level IDS
	Stage 2: Middel-level IDS
	Stage 3: Full-detection

	Evaluation
	Experimental Settings
	Dataset and evaluation metrics
	Feature Selection Results
	Binary Classification
	Multi-class Classification

	Conclusion
	References

