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Abstract—Routing in Delay-Tolerant Networks (DTNs) re-
mains a challenging problem due to sporadic connectivity and
high delays. To deal with this issue, researchers have investigated
multi-copy schemes with predicting future contacts. However,
most of the previous work has focused on the prediction of
future contacts, without sufficiently considering contact times.
This paper proposes McRTP, a multi-copy routing protocol with
trajectory prediction for social DTNs. Based on estimating the
probability distribution of future contact times, McRTP evaluates
and selects multiple paths with the highest delivery probability
for routing. Also, to control network traffic overhead, we develop
a copy count assignment scheme limiting the number of message
copies in networks. A simulation study shows that, with the
estimation of both contact probability and contact times, and
the path selection scheme, our McRTP outperforms traditional
DTN multi-copy routing schemes, especially in sparse networks.

Index Terms—DTN, multi-copy routing, trajectory prediction.

I. INTRODUCTION

As handheld mobile wireless devices are increasingly de-
veloped, people can cooperate to establish intermittently con-
nected networks for communication in the absence of base
station support. Due to such economic and ad hoc features,
delay tolerant networks (DTNs) [5], [14], [16] have been
applied in many challenging environments (such as the bat-
tlefields, suburban areas, etc.). In DTNs, since wireless links
are short-lived and end-to-end connectivity turns out to be
sporadic, most routing methods utilize the store-carry-and-
forward paradigm in which messages are stored at nodes and
are forwarded only when an opportunity (meeting a relay
node/destination) occurs.

One main category of those routing algorithms is prediction-
based [3], [6], [11], [13], [15], where inter-node contacts and
mobility behaviors are predicted, generally using prior contact
history. The next hop to which a message is forwarded is
determined based on such predictions in order to maximize
a quality of service (QoS) metric (e.g. delay or delivery
ratio). Further, the prediction-based methods can be divided
into two types: single-copy routing and multi-copy routing.
In single-copy routing, there is only a single copy for each
message to forward until that copy reaches its destination.
Even though single-copy routing protocols have the minimum
traffic overhead, due to missing contacts and congestion issues,
their performance in terms of delivery delay and delivery

ratio could be further improved. For that, multi-copy routing
schemes, which generate several copies of the same message
and route them independently, are proposed. However, most
of the existing prediction-based multi-copy routing protocols
mainly focus on the prediction of future contact probability,
without sufficiently considering the contact times which indi-
cate when the future contact occurs. We believe that investigat-
ing the contact timing information can improve the prediction
accuracy, and consequently, enhance routing performance.

Also, in most DTNs, since mobile devices are usually on
humans or animals (like in battlefields, wild fields, etc.), many
studies noted that DTNs have a social network nature [1],
[2], [17], [18]. That is, nodes are grouped into communities
such that the nodes within the same community have similar
behaviors, and the nodes from different communities behave
differently. Such features determine that the movement of
nodes in social DTNs and the contacts between nodes are not
completely random. Instead, nodes follow a semi-deterministic
trajectory, with small deviations. For example, consider a
school network where students are intermittently connected
using different wireless devices (i.e. smartphones). All students
have their own class schedules, and a student’s movement
is conducted based on his or her schedule with some small
deviations, such as sick leaves. Also, students taking the same
class have a larger probability of contacting each other than the
students from other classes. When designing routing protocols
for such networks, such social nature and node mobility
patterns could be utilized to improve the prediction accuracy
of future contacts.

In this paper, we propose a multi-copy routing protocol with
trajectory prediction for social DTNs (McRTP). In McRTP, we
first introduce the prediction model based on the social nature.
With that, McRTP evaluates and selects multiple paths with the
highest probability for delivery before a message expires. Also,
to achieve good scalability, McRTP limits the total number
of copies in the network for each message. In summary, our
contributions in this paper are as follows:

• We refine the prediction model for social DTNs. Based
on that, we design a candidate path selection algorithm to
evaluate possible paths, and to qualify proper forwarders
during delivery.

• A copy count assignment mechanism is proposed to
control the total number of copies in networks, which can
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avoid unaffordable traffic overhead caused by the multi-
copy scheme.

• We validate the performance of McRTP, and compare
the results against several popular DTN routing protocols
through simulation in DTNs with different network sizes.

The reminder is organized as follows. In Section II, we
review the existing methods that inspire our work. Section III
discusses the key components of McRTP. Section IV presents
the simulation results, and the paper is concluded in Section V.

II. RELATED WORK

One option for DTN routing is prediction-based, where
a node’s future mobility is estimated based on historical
observations to determine the optimal forwarding schedule.
A typical example is in terms of utility-routing [9], where
each node maintains a utility value for every other node
based on a timer, indicating the time elapsed since the two
nodes last encountered each other. Nodes forward message
copies only to nodes with a higher utility for the message’s
destination. The utility value is considered as the prediction
of two nodes’ future contacts. Existing prediction-based DTN
routing can be classified into: single-copy routing [3], [7],
[11], [15], and multi-copy routing [4], [8], [10], [13], which
trade off between the consumed network resource and routing
performance. Burgess et al. [3] presented MaxProp, which
mainly relied on the prediction of the path likelihoods to
peers according to historical contact data for the single copy
delivery. [15] proposed a single-copy based passive routing
protocol in DTNs, where a prediction model was employed
to estimate nodes’ contacts. On the other hand, multi-copy
routing schemes can achieve a better delivery ratio, by con-
suming more network resources like channel bandwidth, traffic
overhead, and network storage, which are all limited in DTNs.
In [4], Burns et al. proposed a routing protocol that made use
of past frequencies of contacts, as well as the past contacts,
which allowed two copies of messages for delivery. LeBrun
et al. [8] proposed a routing algorithm for vehicular DTNs
using current position and trajectories of nodes to predict
their future distance to the destination. In [10], Spyropoulos
et al. introduced Spray and Wait, in which a fixed number
of copies of a packet were replicated and routed based on
probability prediction in a random mobility network. However,
most of those multi-copy prediction-based protocols focus on
whether two nodes have future contacts, without sufficiently
considering when those future contacts occur. Our approach
not only utilizes multiple copies to improve delivery ratio, but
also estimates future contact probabilities and contact times to
increase the accuracy of contact prediction for routing.

III. PREDICTION-BASED MULTI-COPY ROUTING

A. System Model and Assumptions

We consider that a social DTN consists of l geo-
communities (L1 to Ll) in the network, and nodes that move
between those geo-communities. Moreover, any two nodes that
are at the same geo-community at the same time can exchange
packets directly. A node arrives at a geo-community and
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Fig. 1. A sample network model of social DTNs with four geo-communities

stays there some time before it leaves towards the next geo-
community. When traveling between two geo-communities, a
node cannot establish contacts with others. A node’s trajectory
is defined by the sequence of the visited geo-communities,
the time spent at each visited geo-community, and the time
moving between geo-communities. A sample network with
four geo-communities is shown in figure 1. We assume the
node trajectory is semi-deterministic, which means that the
node follows a scheduled trajectory. Trajectory is subject to
a few random deviations that affect the selection of the next
geo-community, the travel time between geo-communities, and
the dwell time at a geo-community. This network model can
successfully approximate a real-world social DTN on a school
campus, which is formed by smartphones relying on WiFi
operated in ad-hoc mode. The node mobility is predictable
since it relies on a class schedule, and nodes in the same class
may have the similar mobility schedules.

B. Protocol Overview

As we mentioned, McRTP is a multi-copy DTN routing
protocol, where a node can forward one or more copies of the
same message to different nodes, during successive contacts.
The number of copies for a message m to forward is a message
property mc, called copy counter, and is decremented after
each forwarding. When mc reaches 1, the node stops forward-
ing that message to any other node, except the destination. For
instance, if at node a, mc = 7 and node a decides to forward
3 copies to node b, then a creates message m′ (a copy of
m), and sends it to b with the message property m′

c = 3.
Meanwhile a updates its buffered message’s copy counter:
mc = mc−m′

c = 7−3 = 4. Node b will then have to forward
its m′

c copies on its own. Copy counter mc is initialized at the
message source with a constant C(C ≥ 1), which limits the
total number of transmissions for that message in the entire
network to C. After that, McRTP controls mc based on the
contact prediction. Node a that has mc copies of message m
evaluates the possible paths from a to the destination, picks the
most likely ones to deliver the message, and forwards sufficient
copies during its contacts. Each message has TTL (time-to-
live), represented by mttl. When the age of a message reaches
its mttl, the message is discarded. Our McRTP protocol has
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three main components: 1) candidate paths selection, 2) copy
count assignment, and 3) message forwarding.

C. Contact Prediction

We first model the time evolution of node trajectories
with a Time-Homogeneous Semi-Markov process, as in our
prior work [15], where there are l geo-community states
(indicating a node is staying at a geo-community), and
l2 − l travel states (meaning a node is moving between
two geo-communities). We use LxLx to denote the state
that a node is staying at geo-community Lx (1 ≤ x ≤ l),
and LxLy to present the travel states that a node travels
from geo-community Lx to Ly (1 ≤ x, y ≤ l). A total
order for the set of Markov states M can be defined as
L1L1, L1L2, ..., L1Ll, L2L1, ..., L2Ll, ..., LlL1, ..., LlLl.
Hence, the states in set M are indexed from 1 to l2

accordingly. From now on, when we refer to a state we mean
a state from M . The mobility of a node can be described in
time as a sequence of state transitions in the Markov process.

Let (Xn, Tn) be the discrete Markov process defined by
the random variable Xn ∈ M indicating the state reached
by a node at its nth transition, and random variable Tn ∈ N
specifying the time of that transition. Define pij = P (Xn+1 =
j|Xn = i) as the state transition probability from Markov
state i to j (1 ≤ i, j ≤ l2), and matrix P = |pij |i,j∈M . Note
that the Markov memoryless property applies to this model,
so that pij does not depend on transitions prior to Xn. We
then define Sij(k), the probability that a node will move from
state i to j within k time units, as Sij(k) = P (Tn+1 − Tn ≤
k|Xn+1 = j,Xn = i). Here we call Sij(k) as sojourn time
probability distribution. Also, the probability distribution of
the state residence time Si(k), describing the probability that a
node leaves a state i within k time units, regardless of the next
state, is Si(k) = P (Tn+1 − Tn ≤ k|Xn = i) =

∑l2

j=1 Sij(k).
The homogeneous Semi-Markov kernel Q of this process is:

Qij(k) = P (Xn+1 = j, Tn+1 − Tn ≤ k|X0, ..., Xn;

T0, ..., Tn)

= pijSij(k).

The random variable Zk (k ∈ N) indicates in which state
the node will be at time k. The node trajectory prediction is
given by distributions ϕij(k) = P (Zk = j|Z0 = i), which is
the probability that the node is in state j at time k, provided
it was at state i at time 0. ϕij(k) is computed as follows:

ϕij(k) = P (Zk = j|Z0 = i)

= (1− Si(k))δij +
l2∑

r=1

k∑
τ=0

Q̇ir(τ)ϕrj(k − τ).(1)

δij is the Kronecker symbol, equal to 1 if i = j, and 0
otherwise. Q̇ij(k) is the probability the node transitions from
state i to j at time k:

Q̇ij(k) =

{
Qij(1) for k = 0

Qij(k)−Qij(k − 1) for k > 0,
(2)

Note that distributions Sij(k) and probability matrix P can
be estimated from history information, and ϕij(k) can be
computed iteratively with Eq.1, starting from ϕij(0) = δij .
Two nodes will be in contact at time k if both will be at
the same geo-community Lx(1 ≤ x ≤ l) at time k. Hence,
assuming that two nodes a and b are at states ia, ib at
the past times ta, tb, respectively, the contact profile Cab(k)
that gives the contact probability of those two nodes at time
k ≥ max{ta, tb} can be computed as in Eq.3:

Cab(k) =
l∑

x=1

ϕa
ia(LxLx)

(k − ta)ϕ
b
ib(LxLx)

(k − tb) (3)

The details of the above model could be referred to in our
prior work [15].

D. Path Selection

Based on the above contact prediction, McRTP evaluates the
possible paths from the source to the destination. Specifically,
a source node computes a set of routes with the highest
probability of delivery before a message expires. We define
the delay distribution d() as the probability of a message that
at time T is at node a, to be delivered at node b at time T + t
using direct transmission:

d(T, t, ab) =



1
(a and b are in contact at time T )

Cab(T + t)
∏t−1

k=0(1− Cab(T + k))
(a and b not in contact at time T and t > 0)
0
(if a and b not in contact at time T and t = 0)

The 3rd parameter of d(), ab, is the path – a sequence
of nodes that the message must pass through. The delay
distribution d(T, t, R1R2) is then extended for a path made
of the concatenation of two adjacent sub-paths R1 and R2

(such as R1 = 1, 2, 3 and R2 = 3, 4, 5). It can be derived
similar to the convolution, and is equal to

d(T, t, R1R2) =
t∑

k=0

d(T, k,R1)d(T + k, t− k,R2)

Consider there are two acyclic paths R1 and R2 that both
begin in node a and end in z, with no other common nodes.
R1 = a...z, R2 = a...z are disjoint except for the end nodes,
R1 ∩R2 = {a, z}. The message delivery delay from a to z is
the minimum of the delay on path R1 and the delay on path
R2. Therefore, the delay distribution for a message located at
node a at time T , transmitted in parallel on both paths, can
be written using the parallel composition operator |:

d(T, t, R1|R2) = d(T, t, R1)|d(T, t, R2)

= d(T, t, R1)(1−
t∑

k=0

d(T, k,R2))

+ d(T, t, R2)(1−
t∑

k=0

d(T, k,R1)).
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It can be shown that the parallel composition operator is
associative and commutative. Path disjointness is required for
the independence condition. The probability that a message
transmitted at time T on a path R arrives with maximum delay
t is given by Eq.4:

D(T, t, R) =

t∑
k=0

d(T, k,R) (4)

D is called the maximum delay distribution for messages on
path R before time t, and it is used by McRTP as a prediction
metric to select the most promising paths.

Since messages expire after TTL, the mobility prediction
horizon should be limited by the remaining time-to-live. For
a message m created at time mt, the time-to-live computed at
time T is ttl(m) = mt +mttl −T . Our forwarding algorithm
computes the maximum delay distribution D at the source for
all possible paths of lengths 2, ..., λ, from the current node
s to destination d: for length 2 (s → i → d), and 3 (s →
i → j → d). Considering that longer paths bring diminishing
prediction accuracy and increasing processing overhead, λ is
limited to 3 in this protocol. Denote the set of all these paths as
R, |R| <nλ−1. Then, use DR = D(T, ttl(m), R) to represent
the maximum delay probability on path R. The paths in R are
then sorted by a decreasing DR value, and the corresponding
paths are written in order as R1, R2, ..., R|R| (Path R1 has the
maximum value D(T, ttl(m), ·) from all paths). The algorithm
is shown in Algorithm 1.

Assume that the source node s has mc−1 copies of message
m to give up (one is reserved for direct transmission). At this
point the algorithm selects a maximal subset Q ⊆ R so that the
number of copies needed for forwarding on all paths in Q is
less than mc−1, and the probability of delivery before ttl(m)
combined on all paths in Q is maximized. This problem is
similar to the 0-1 Knapsack Problem and is NP-hard. Finding
the optimal subset Q of paths has a very high computational
complexity, more so due to the parallel composition operator
| (see Eq.4) that must be used, compared to simple addition.
Our protocol relies on a suboptimal greedy heuristic: it adds
to set Q paths R from R with decreasing DR value until the
paths in Q need more copies than mc − 1.

E. Copy Count Assignment

While the candidate paths set Q is built, the algorithm
populates a vector β with n elements. Element βi in β is
the total number of m’s copies needed for all paths in set Q
that begin with node si.

A helper function CountCopies(c,Q, β) computes the total
number of message copies needed to send a message from a
node s to destination d on all paths in the candidate paths set
Q. Each element R ∈ Q is a path s...d with the maximum
length (number of edges) λ(λ ≤ 3). If during the counting
of copies, the current count reaches parameter c, the function
returns c. Therefore, the complexity of CountCopies(c,Q, β)
is O(min{c, nλ−1}). For example, if Q = {sad, sbd, sacd},
then CountCopies(10, Q, β) computes βsabcd = [4, 2, 1, 1, 0]
and the function returns 4, which is the value of βs.

F. Message Forwarding

Once the β values are computed, node s sends βj copies to
each node j who is currently in contact with s, if βj > 0. It
does this by creating m′, a copy of message m, and by setting
field m′

c = βj before sending m′ to a connected node j. The
original copy counter mc on node s is reduced accordingly,
mc = mc − βj . If βj = 0, then node s does not forward the
message to node j. If node s decides to forward βj copies of
m to node j and j already has m buffered with x copies, then
node j updates the number of copies to x+βj , and s reduces
mc to mc − βj , just as if the transmission went through but
without actually transmitting m. This is done because better
paths have been identified that pass through node j.

Algorithm 1 Candidate Paths Selection

Require: V , set of nodes; s, source node; T , current time;
mpath, set of nodes already visited by message m.

Ensure: set Q with candidate paths on which to forward the
message

1: set R = ∅ {set with paths from s to destination d}
2: {for adding paths of length 2}
3: for all i ∈ V \mpath \ {s, d} do
4: if D(T, ttl(m), si) > 0 then
5: R = [s, i, d]
6: DR = D(T, ttl(m), R)
7: if DR > 0 then
8: R = R∪{R}

{for adding paths of length 3}
9: if mc > 2 then

10: for all i ∈ V \mpath \ {s, d} do
11: if D(T, ttl(m), si) > 0 then
12: for all j ∈ V \mpath \ {s, d, i} do
13: R = [s, i, j, d] {path from s to d of length 3}
14: DR = D(T, ttl(m), R)
15: if DR > 0 then
16: R = R∪{R}
17: sort paths R from R based on decreasing value DR

18: create β vector with n elements
19: set Q = ∅ {set with selected paths from s to d}
20: k = 1 {index in sorted set R}
21: while k ≤ |R| do
22: Rk = the kth path from R sorted in decreasing order

of DR

23: if CountCopies(mc, Q ∪ {Rk}, β) ≤ mc − 1 then
24: Q = Q ∪ {Rk}
25: k = k + 1

We can evaluate the computational complexity of our algo-
rithm as follows. Denote the runtime of computing D(T, t, R)
with T (Dr), when path R has r edges. Assuming the contact
profiles are known for all node pairs for time 1..ttl(m),
use caching when computing d(·), the time complexity of
T (D1) = O(ttl(m)2), T (D2) = O(ttl(m)3), and T (D3) =
O(ttl(m)3). In Algorithm 1, the first for loop is O(nT (D2)),
and the second top for loop is O(n2T (D3)). Sorting set R re-
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Fig. 2. Comparison of delivery ratio in DTNs with different network sizes.

quires O(n2 log(n)) time. The while loop executes maximum
O(n2) times. Since the protocol parameter C ≤ n, then the
runtime of function CopyCount() is O(n), and so the while
loop’s runtime is in O(n3). Thus, the algorithm runtime is
given by O(n2TTL3+n2 log(n)+n3) = O(n2 ·TTL+n3)).

IV. PERFORMANCE EVALUATION

A. Simulation Setup

We developed a custom packet-based simulator imple-
mented in Java to evaluate McRTP and compare its perfor-
mance against the following protocols: Epidemic routing [12]
(“Epidemic”) and Spray-and-wait [10] (“SprayWait”). In Epi-
demic, a node would spread the message it has to any nodes
it encounters. We implement this approach to investigate
the optimal end-to-end delivery ratio between two nodes. In
SprayWait, the system sprays a number of copies into the
network, and then waits until one of these copies meets the
destination. Discrete time is used in our simulation. Nodes
are moving with a geo-community-based DTN scenario. Two
nodes can communicate only when they are at the same
geo-community. In our simulated DTNs, there are 10 geo-
communities, and initially, n nodes are uniformly distributed
among those geo-communities. Also, we assume that each
node has a trajectory deviation probability p to indicate a mo-
bility preference. Specifically, each node has a probability 1−p
to head for a geo-community from where it is, and visits other
geo-communities with probability p/8, individually. Here p is
set as 10%. The travelling time between two geo-communities
is uniformly distributed in [2, 3]. The sojourn time of a node at
a specified geo-community is uniformly selected in [w,w+2],
where w varies from 2 to 15 time units. Note that larger
w indicates nodes spend more time at geo-communities, and
there would be less mobility in networks. We use the Poisson
distribution to model the message generation in the network,
with the average message arrival rate as 10 time units. For
each message, we randomly select a pair of nodes as source
and destination, respectively. The initial prediction window
of McRTP is set to 35 time units, and packet TTL is 35
time units. Also, in our simulation we regulate that SprayWait
sprays the same number of message copies as in McRTP,
which is 5. We run the simulation for a “warm-up period”
to reach a steady state, and collect sufficient mobility history

information to generate P and Sij(k) for prediction. After
that, the simulator runs for 2048 time units in each scenario
for data collection, and we run each scenario 10 times to report
the average. Considering that the average message arrival rate
is 10, we believe that in 2,048 time units a sufficient number
of messages can be generated for retrieving the stable average
data tendency.

For performance evaluation, the following metrics are em-
ployed: 1) Delivery ratio is defined as the ratio of the number
of successfully delivered messages to the total number of
generated messages in the network; 2) Delivery latency is the
average end-to-end delivery latency between a pair of source
and destination in the network.

B. Results
The performance evaluation is conducted in three DTNs

with different network sizes. The first one is a DTN with 10
nodes to represent a sparse network. The second one has 20
nodes, while the third one represents a crowded network with
30 nodes. Note that sparse networks have less contacts than
crowded ones since they have fewer nodes.

We first investigate delivery ratio of the three protocols with
different sojourn time in three simulated networks. Figure 2
plots the simulation results. We see that as sojourn time w
increases, delivery ratio of three protocols declines in all
of the three networks. This is because as nodes stays at
a geo-community longer, there would be less mobility in
networks, which reduces contact opportunity and consequently
influences message delivery. Further, from figure 2(a), McRTP
has much better delivery ratio than SprayWait in the sparse
network with 10 nodes. The reason is that due to the prediction
of contact probability and contact times, and the candidate
paths selection mechanism, McRTP always picks the paths
who have the highest possibility to reach destinations for
routing, while SprayWait randomly spreads message copies in
networks. But when the network size is enlarged, McRTP and
SprayWait has similar delivery ratio, as shown in figure 2(b)
and 2(c). Note that each node has a behavior deviation, which
is indicated by the trajectory deviation probability p, per
described in the simulation setup. As the number of nodes
increases, the overall network behavior deviation is accumu-
lated, which can heavily influence the prediction accuracy of
McRTP. As a result, McRTP has a similar delivery ratio as
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Fig. 3. Comparison of delivery latency in DTNs with different network sizes.

SprayWait. Besides that, as network size arises, there are more
contact opportunities, and more suitable nodes could be used
as forwarders. Therefore, delivery ratio in the network with 30
nodes (crowded network) is larger than the one with 10 nodes
(sparse network), as shown in figure 2(a) and 2(c).

Then, we discuss the delivery latency difference. Figure 3
compares the corresponding delivery latency of the three
protocols in the simulated DTNs. It shows that when sojourn
time w goes up, delivery latency of three protocols is raised
in all three networks. The reason is that DTNs rely on
nodes mobility for message delivery, but larger w brings less
mobility, which results in increased delivery latency. Also,
figure 3(a) presents McRTP has an obvious advantage over
SprayWait on delivery latency in the network with 10 nodes
(sparse network). This is because with the contact prediction
model and the path evaluation mechanism, McRTP can better
choose the relay nodes to forward messages. However, we
also see that this advantage looks less obvious in figure 3(b)
and 3(c). Especially in figure 3(c), McRTP even has the same
delivery latency as SprayWait. As we mentioned before, when
network size rises, network behavior deviation is also enlarged,
which disturbs the prediction accuracy of our model. Thus,
the advantage of McRTP on delivery latency turns smaller
when network size is increasing. Furthermore, since there
are more contact opportunities in crowded networks than in
sparse networks, it makes relay nodes encounter destinations
relatively easier. Thus, delivery latency in figure 3(c) is smaller
than that in figure 3(a) and 3(b).

In summary, we see that McRTP outperforms traditional
SprayWait, especially in sparse networks. This is because in
sparse networks, where there are less contact opportunities,
nodes have to rely on contact prediction for routing.

V. CONCLUSION

In this paper, we propose McRTP, a multi-copy routing pro-
tocol with trajectory prediction for social DTNs, where nodes
follow scheduled trajectories among a set of geo-communities
with small deviations. McRTP evaluates paths based on the
prediction of future contact probability and contact times for
routing. Also, we develop a copy count assignment mechanism
constraining the number of message copies. Simulation results
prove McRTP’s performance, especially in sparse networks.
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