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Maximum elastic scheduling of virtual machines in 
general graph cloud data center networks
Yusuf Qwareeq, Abdalaziz Sawwan and Jie Wu

Center for Networked Computing, Science Education and Research Center (SERC), Temple University, 
Philadelphia, PA, USA

ABSTRACT
In this research, we pioneer a novel method to evaluate the 
maximum admissible load (MAL) for virtual machines (VMs) 
in physical machines (PMs) in data centre networks (DCNs), 
without restricting DCN topologies. This unique approach 
simplifies the issue into a single-source, multiple-sink max-
imum flow problem. It also resolves the maximum elastic 
scheduling problem by determining the optimal load for 
consistent growth without reassigning tasks. An effective 
strategy for these challenges is introduced and validated 
through extensive simulations.
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1. Introduction

The problem of optimally allocating task resources has always been of utmost 
importance in cloud-based data centre networks (DCNs). A frequently used 
model is virtual machine (VM) scheduling in which a certain metric is optimised 
subject to the capacity of the physical machines (PMs) and links in the DCN [1,2]. 
Our paper makes use of the maximum elastic scheduling scheme [3] to maximise 
the uniform growth in both computation and communication loads without 
having to reassign tasks to PMs. This paradigm was originally proposed in [4] for 
the case of semi-homogeneous trees and further extended in [3] to include 
heterogeneous trees.

Unlike existing methods that focus exclusively on tree-structured DCNs, our 
approach broadens the scope to any DCN topology, thus providing a more 
flexible and efficient architecture for resource allocation. Central to our method 
is a novel reduction technique that capitalises on the inherent similarities 
between DCN resource constraints and classical network flow problems. 
Through the introduction of ‘virtual’ components – namely, a super source 
node and virtual switches – we convert the DCN into an analogous flow net-
work. These virtual elements are pivotal: they not only limit the load departing 
from each processing node according to its capacity but also serve as conduits 
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for this load as it transits through the network. This transformation essentially 
recasts the problem into a single-source, multiple-sink maximum flow problem, 
enabling us to leverage well-established algorithms in network optimisation to 
solve for optimal resource allocation.

We model the DCN as an undirected, connected graph G ¼ ðV; EÞ where 
a node could either be a PM (or processing node) or be a switch. No two PMs are 
connected directly to each other. The load at a PM is the computation load and 
it determines the communication load. There are strictly more than two PMs in 
a DCN. Figure 1 shows a DCN where each PM is represented as a black circle with 
a number inside it (which is the maximum number of VMs, or computation load, 
in a PM) while each switch is represented as a grey circle. The numbers 
associated with the links are the communication bandwidths.

There are mainly two models of communication to connect the VMs in a DCN 
network. The first model is the pipe model [5] in which every PM is connected 
with all other PMs through separate pipes. This means that the performance 
guarantees are provided on a per-pipe basis. The second model is the hose 
model, in which every PM is connected to the DCN through a hose, which 
specifies the total incoming/outgoing bandwidth between the set of all other 
PMs and that PM. For example, the PM denoted by v4 in Figure 1 has 
a computation load of 5B. This means that the bandwidth v4 sends to/receives 
from every other PM in the DCN cannot exceed 5B. This model provides more 
flexibility, ease of specification, multiplexing gain, and ease of characterisation 
along with aggregated performance guarantees per PM [6]. We use the hose 
model where between each VM and the set of all other VMs, there is a reserved 
communication bandwidth of B Gbps. There must be no restriction on the 
destination of the load migrating from one processing node to another.

The maximum admissible load (MAL) [3] is defined as the maximum number 
of VMs whose total communication load can be supported by the underlying 
structure of the DCN. If a bandwidth of B Gbps is reserved on a link connected 

Figure 1. An illustration of a DCN with a general topology. Gray nodes represent switches, while 
black nodes represent PMs. The number inside each PM represents its computation load.
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with a processing node, the bandwidth reserved at that link must equal the 
contribution of that processing node to the MAL. The schedule with the max-
imum elasticity (optimal schedule) is the schedule that allows for a uniform 
increase in the number of VMs across all processing nodes while neither violat-
ing the link nor node capacity constraints of the DCN. This elastic scheduling is 
what forestalls the need for rescheduling tasks when larger loads are to be 
supported.

Under the hose model, we are concerned with two problems:

● For a DCN of a general topology G, given the capacity of its processing 
nodes and links, what is the MAL of G?

● For a load that is admissible, what is the optimal schedule such that the 
uniform growth rate of the computation load at all processing nodes is 
maximised under the node and link capacity constraints of the topology?

Another way to look at the two problems is by modelling them as a special 
utility allocation problem under the hose model in which the processing 
nodes correspond to households that are connected through a network of 
cables and switches managed by a telecommunications company. Each one 
of the households has a certain limit on the number of telephone commu-
nications that could be done simultaneously, which corresponds to its 
occupancy limit. Each cable has a certain communication bandwidth capa-
city. There is no constraint on the underlying structure of the topology of 
the network and there must be no restriction on which household is 
connected to which. Given those settings, what is the bandwidth of all 
possible simultaneous pairwise telephone conversations that the network 
can support? Furthermore, what is the communication bandwidth assign-
ment at each household and cable such that all capacity constraints are 
satisfied?

In [3], the MAL and maximum elasticity are found for tree-structured DCNs 
using a distributed, linear-time algorithm that goes over the tree level-by-level 
through two steps. First, a bottom-up aggregation step determines the MAL of 
the tree. Second, a top-down partitioning step determines the schedule with 
the maximum elasticity. However, the supported topologies of the DCNs are 
exclusive to tree structures. In contrast, our work is generalised over any DCN 
topology. Additionally, the processing nodes are free to exist in any part of the 
graph with as many links connecting them to the rest of the DCN as necessary. 
This provides flexibility in the architecture of the DCN such that processing 
nodes can be deployed to any place within the network.

Our results in this research study are summarised as follows:
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● We show that the more generalised version of the problem (no constraints 
on the topology) can be reduced to a single-source, multiple-sink max-
imum flow problem.

● We prove the validity of this reduction and its consequences on answering 
the two broader problems at hand.

● We present a novel algorithm that provides the general framework which 
can utilise different existing algorithms that solve the single-source, multi-
ple-sink maximum flow problem.

● We evaluate the efficiency of our solution through an extensive simulation.

The remainder of the paper has the following organisation. Section 2 presents 
the preliminaries and the formulation of the problem. Section 3 introduces our 
optimal algorithm for finding the MAL and the schedule with the maximum 
elasticity before proving its optimality. Section 4 shows our experiments and 
simulation results. Section 5 discusses related work. Finally, the paper is con-
cluded in Section 6.

2. Problem formulation

2.1. Preliminaries

We consider the DCN under the hose model where the quality of service 
requirements are specified per processing node (unlike the pipe model where 
the requirements are specified per pair of processing nodes) [6]. The processing 
nodes are connected to the DCN with assigned ingress and egress bandwidths 
where each bandwidth defines how much of the load could be sent to/from 
each processing node from/to every other processing node. The two are 
assumed to be equal.

Figure 2 illustrates the difference between the pipe model and the hose 
model. In order to connect node C under the pipe model, there must exist 
separate pipes connecting it to the two other nodes, A and B. Hence, the total 
bandwidth reserved for node C will be 2Bþ 3B ¼ 5B. In other words, it is the 
direct sum of the bandwidths of the two other nodes. On the contrary, under 
the hose model, there needs to be only one pipe that supports the aggregated 
bandwidth of the two other nodes, which is maxf2B; 3Bg ¼ 3B.

Furthermore, the PMs must not be directly connected. To establish 
a connection between two VMs in different processing nodes at any given 
time, there must be a path of capacity B Gbps in the DCN reserved for this 
connection at that time. This means that generally speaking, the sum of the link 
capacities leaving a PM must be large enough to withstand the total commu-
nication load of the VMs leaving that PM when simultaneous connections of 
multiple VMs in the same processing node to the DCN are established.
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2.2. The problem

The paper aims to identify the MAL and schedule with the maximum elasticity 
for a cloud DCN. A DCN is modelled as an undirected, connected graph 
G ¼ ðV; EÞ where V 0 � V is the set of DCN PMs (processing nodes) with compu-
tation loads fLv0 jv0 2 V 0g (maximum number of VMs in a PM), VnV 0 is the set of 
DCN switches interconnecting the network elements, and E is the set of undir-
ected edges connecting the switches with other switches and processing nodes, 
which have capacities fCeje 2 Eg.

3. Optimal solution

3.1. Algorithm overview

The breadth of our algorithm lies in reducing the problems of finding the 
MAL and the schedule with the maximum elasticity to a single-source, 
multiple-sink maximum flow problem. First, we augment the graph G by 
adding a node (termed a virtual switch) for each PM and attaching it to the 
PM. The capacity of the edge that connects these two nodes (coined 
a virtual hose) is equal to the processing node capacity Lv0 of that PM. We 
then swap the virtual switch with its corresponding PM. After doing this for 
every PM, we coalesce the set of all PMs V 0 into a single super node which 
we call the source node S. After that, we solve multiple maximum flow 
problems with S as the source node while choosing the sink as a different 
node from VnV 0 at every instance, and we store the result. This result is the 
admissible load that G can support given a certain source-sink pairing. The 
maximum of those results is the MAL. Algorithm 1 shows the pseudocode 
of our strategy that evaluates the MAL of a DCN represented by G. 
Regarding the schedule with the maximum elasticity, it can be directly 
obtained using the proportion of the flow values through the virtual 

Figure 2. The difference between (a) the pipe model and (b) the hose model.
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hoses given an MAL assignment. Allocating the total load on the processing 
nodes with that proportion results in the maximum elastic schedule that 
allows for the largest possible uniform growth in the computation loads 
across the processing nodes. 

Algorithm 1 Evaluating the MAL 

Input: G ¼ ðV; EÞ; V 0 2 V , fLv0 jv0 2 V 0g, A.
Output: The MAL value.
Initialisation: A ¼ fg // Set of admissible loads.
1: for each v0 in V 0 do
2: Add to G a node iv0 and a link ðiv0 ; v0Þ of capacity Lv0 :

3: Swap node iv0 with node v0:
4: Coalesce V 0 into a single super source node S:
5: for each v in VnV 0 do
6: A MAX � FLOWGðS; vÞ // Append to set A.
7: return maxðAÞ:

The algorithm can now be demonstrated through an example. Figure 1 
shows a DCN with 3 processing nodes (V 0 ¼ fv3; v4; v8g) and 5 switches 
(VnV 0 ¼ fv1; v2; v5; v6; v7g). Our solution revolves around the idea of reducing 
the problem of finding the MAL to a maximum flow problem. To do this, for 
each v0 in V 0, we add a virtual switch iv0 with a virtual hose that connects it to v0. 
The capacity of this virtual hose is equal to the computation load of v0 which is 
Lv0 . We then swap every virtual switch iv0 with its corresponding v0. After that, 
nodes in V 0 are coalesced into a single node which we treat as a super source 
node S.

The maximum flow is then applied in a one-to-all manner between S and 
each v in VnV 0. From there on, the set of solutions A that we get is the set of 
admissible loads given load assignments rooted at each one of the switches. 
The admissible load with the maximum value will be the MAL. This process is 
described in Algorithm 1. The pseudocode describing the algorithm starts with 
determining the input, which is the DCN topology encoded in a graph so that 
each node in the graph is specified to be either a switch or a processing node. 
Furthermore, the values of the capacities of the links are determined alongside 
the values of the processing node capacities. The output of the algorithm will be 
the MAL.

Now, starting with the initialisation, the set of admissible loads A is reserved. 
Lines 1–3 of the algorithm replace each processing node v0 with a virtual switch 
iv0 , a virtual hose ðiv0 ; v0Þ, and v0 itself. The capacity of ðiv0 ; v0Þ is set to Lv0 . This 
makes each processing node v0 connected to the graph through exactly one link 
ðiv0 ; v0Þ. Figure 3 shows the augmented G after applying these lines to the DCN in 
Figure 1. Line 4 of the algorithm coalesces the processing nodes into one node 
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called the super source node, denoted as S. Lines 5–6 apply the one-to-all 
maximum flow algorithm in the most primitive way possible by applying a one- 
to-one maximum flow algorithm jVnV 0j times considering S as the source and 
a different node from jVnV 0j as the sink in each maximum flow instance. The last 
line returns the largest value of the maximum flows generated. This value is the 
target MAL.

Table 1 shows the list of admissible loads A after applying Algorithm 1 to the 
DCN in Figure 1. The MAL for the example is 12B and the schedule with the 
maximum elasticity is the one that follows the proportion of the flow values 
through the virtual hoses (the numbers are colored in red) in the figure (3 : 5 : 4 
for nodes v3, v4, and v8, respectively). This proportion is different from the PM’s 
available capacities. If we were to try any different schedule, the maximum 
uniform growth possible in the computation loads would decrease. This means 
that, given the same topology with the same (or linearly scaled) values assigned 
to the link and processing node capacities, the optimal assignment in order for 
the load on the PMs to have the maximum growth rate must follow the 
proportion 3 : 5 : 4.

We may now investigate the schedule with the maximum elasticity. For example, 
given the same topology with all the values of link and processing node capacities 
multiplied by 20, and given that the total load assignment allocated for all the 
processing nodes is predetermined to be 84B, the most elastic assignment for this 
load on the processing nodes must follow the proportion 3 : 5 : 4. Hence, the 
optimal load assignment of the predetermined load will be 21B, 35B, and 28B for 
nodes v3, v4, and v8, respectively. Having this assignment yields the optimal 

Figure 3. An example of evaluating the MAL for one source-sink pairing of the DCN shown in 
Figure 1 (taking super node S as the source and node v6, which is marked in red, as the sink).

Table 1. The set of admissible loads A found after applying MAX � FLOWGðS; vÞ to every node 
v 2 VnV 0 in the DCN in Figure 3.

Node Taken as Sink v1 v2 v5 v6 v7

Admissible Load (B) 6 7 12 12 10

CYBER-PHYSICAL SYSTEMS 7



elasticity value of ð60þ 100þ 80Þ=ð21þ 35þ 28Þ ¼ 285:7%. However, if we, for 
example, consider the load proportion to be the same as the one of the processing 
node capacities (which is Lv3 : Lv4 : Lv8 ¼ 5 : 5 : 4) such that the load is assigned to 
the processing nodes with values of 30B, 30B, and 24B for nodes v3, v4, and v8, 
respectively, the elasticity value will now be ð60þ 60þ 48Þ=ð30þ 30þ 24Þ ¼
200:0%, which is less than the optimal elasticity value.

3.2. Algorithm analysis

In this subsection, we prove the optimality of Algorithm 1, show that it provides 
the schedule with the maximum elasticity, and find its time complexity. 

Theorem 1. The largest maximum flow evaluated for all possible pairings of the 
super source node S and every node v 2 VnV 0 is the MAL of the graph G.

Proof. Given a graph G ¼ ðV; EÞ, we first demonstrate that admissible loads are 
analogous to classical feasible flow assignments. We begin by examining the 
applicability of the definition of feasible flows to admissible loads after adding 
the virtual switches and the virtual hoses with capacities equal to their corre-
sponding processing node capacities. A virtual hose of capacity Lv0 connected 
between the coalesced super source node S and the virtual switch iv0 serves as 
a cap equal to the capacity of the processing node v0 for the amount of load 
going out from it, which is determined by how many VMs the PM can support 
concurrently.

Feasible flows are simply defined as abstract quantities assigned to each 
edge of s–t networks (where s is the source node and t is the sink node) while 
satisfying two properties. The first one is the capacity condition, which means 
that for each e 2 E, we have 0 � f ðeÞ � Ce, where an s–t flow is a function f that 
maps each edge e to a non-negative integer, f : E ! Nþ; the value f ðeÞ intui-
tively represents the amount of flow carried by edge e. This first condition 
identically applies to loads going through links in DCNs as loads may not exceed 
the capacity of the links carrying them.

The second property is the conservation condition, which states that for each 
node v other than s and t, we have 

P
e into v fðeÞ ¼

P
e out o f v f ðeÞ. Now, for an 

MAL assignment, since the bandwidth reserved at the links connected with each 
processing node equals the contribution of that processing node to the MAL, 
and there is no constraint on the choice of the destination processing node for 
a load going out from another processing node, and there is strictly more than 
two processing nodes in the DCN, there will be at least one switch through 
which all of the communication load between the processing nodes passes. This 
switch plays the role of a sink node t while coalesced processing nodes (or the 
super source node S) are modelled as the source node s.

8 Y. QWAREEQ ET AL.



Under the MAL assignment, the load can be thought of as a flow going 
out from the processing nodes, that are modelled as s, into the switch, 
which is modelled as t. Since the entirety of this MAL is leaving s, 
draining in t, and conserved when it goes through any other switch, 
the second property of feasible flows applies to MAL assignments; both 
are considered conserved quantities constrained by the capacities of the 
links of the graph that they pass through. Hence, evaluating the MAL is 
analogous to finding the maximum flow when S is considered to be s, 
and the correct switch, which has all of the load going through it, is 
considered to be t.

Lastly, we need to specify that correct switch under the MAL assignment. 
Since we have already shown that such a switch always exists, searching for it is 
done by exhausting all the switches in the DCN. Once that switch is found, 
choosing it as t would guarantee finding the MAL value.                                ▪

Note that it is possible for a DCN to be able to support multiple different load 
assignments under the same MAL, as more than one switch may yield the MAL 
value when chosen as the sink node t. In addition, even for the same switch 
chosen as a sink, there might be different valid MAL assignments. The assign-
ment our algorithm produces depends on the method chosen to evaluate the 
maximum flow. 

Theorem 2. Assigning a predetermined load to the processing nodes with the 
same proportion of the loads under the MAL assignment results in the schedule 
with the maximum elasticity.

Proof. Following the proportion of the loads under the MAL assignment when 
setting the loads across the processing nodes maximises the elasticity because 
this is the only proportion of loads which guarantees that all of them will reach 
their maximum potential together, given a uniform linear growth in the loads of 
the processing nodes. Any deviation from said proportion would cause at least 
one of the processing nodes to reach its bottleneck before others reach theirs. ▪

The time complexity of Algorithm 1 is OðjVnV 0j � TðjVjÞÞ where TðjVjÞ is the 
time complexity of one instance of the one-to-one maximum flow algorithm. 
After coalescing the PMs, since we perform the one-to-one maximum flow 
between the coalesced nodes (super source node S) and every switch in the 
graph, we end up invoking the one-to-one maximum flow algorithm jVnV 0j
times (which is the number of switches in G), yielding the aforementioned time 
complexity.

Although we opted to choose the most basic way to perform the one-to-all 
maximum flow algorithm, there have been extensive studies on more efficient 
ways to do it. For example, Lacki et al. [7] have come up with a more efficient 
algorithm that would perform the complete one-to-all maximum flow in 
OðjVnV 0j � log3 jVnV 0jÞ time in case the graph is planar.
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On the other hand, if we stick to the basic strategy and use the principal 
Ford – Fulkerson algorithm [8] jVnV 0j times, we get a total time complexity of 
OðjVnV 0j � jEj � jMALjÞ. We can use Dinic’s algorithm [9] (which is an improved 
version of the Edmonds – Karp algorithm [10]) if we desire a time complexity 
independent from the value of the MAL. That would yield a total time complex-

ity of OðjVnV 0j3 � jEjÞ.
The most efficient TðjVjÞ time that has been developed for a one-to-one 

maximum flow algorithm applied for the case of a general graph is the one 
introduced by Chen et al. [11]. Their new one-to-one maximum flow strategy 
asymptotically outperforms any existing algorithm with a time complexity of 

OðjEj1þoð1Þ
Þ. If we choose their algorithm for our MAX � FLOWGðS; vÞ subrou-

tine, the time complexity of our strategy will reduce to OðjVnV 0j � jEj1þoð1Þ
Þ. 

Finally, Abboud et al. [12] have come up with the best all-pair maximum flow 
algorithm in terms of the time complexity bound. Their algorithm can be 

applied to evaluate the MAL in our case with a time complexity of OðjEj3=2þoð1Þ
Þ.

4. Simulation

We use NetworkX [13] to generate graphs randomly by first creating a k-node 
spanning tree from a Prüfer sequence [14]. A Prüfer sequence from the k 
possible sequences is chosen at random and then inputted into a Prüfer decod-
ing algorithm that produces a unique tree T . After that, the switches are added 
in a one-by-one manner to create an undirected, connected graph G with jVnV 0j
nodes. When adding a switch, a normal random variable X,Nðμe; σ2

eÞ is 
sampled to decide the number of edges connecting that switch to G. After 
adding the switches and their edges, a fraction of the total number of nodes 
(PjVj) is chosen as processing nodes V 0 and are then added in a one-by-one 
manner as well. The number of edges connecting them to G is picked in a similar 
fashion to switches but we make sure these processing nodes are not directly 
linked to each other. From there on, a super source node S is connected to each 
processing node with an edge that has a capacity sampled from the uniform 
random variable Y,NðμLV0

; σ2
LV0
Þ. As for the other edges, their capacities are 

sampled from the uniform random variable Z,NðμCE
; σ2

CE
Þ.

4.1. Algorithm comparison

We consider various settings to compare the performance of four algo-
rithms: our optimal algorithm (Algorithm 1), Proportion with Physical Link 
Capacities (PPLC) [3] where the VMs are assigned into the processing 
nodes with proportion to the bandwidth (link capacities), Equally 
Distributed Placement (EDP) where the VMs are evenly assigned into the 
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processing nodes, and Maximum Spanning Tree (MST) where we build 
a maximum spanning tree on G using Kruskal’s algorithm [15]. In terms of 
time complexities, the EDP algorithm, which uniformly apportions loads 
across the PMs, has a time complexity of OðV 0Þ. The PPLC algorithm, on 
the other hand, ascertains the aggregate bandwidth of links affiliated with 
each PM, and iteratively examines both PMs and their associated links, 
leading to an average time complexity of Oðμe � V 0Þ. Lastly, the MST 
algorithm first constructs a maximum spanning tree on G utilising 
Kruskal’s algorithm, which incurs a time complexity of OðE log VÞ, followed 
by a solution that is constrained to tree topologies, which takes 
a complexity of OðVÞ [3]. Cumulatively, MST exhibits a time complexity 
of OðE log V þ VÞ.

4.2. Experimental results

In subfigures (a) and (b) of Figure 4, the number of nodes jVj was varied for 
a sparse and dense network, respectively. Notice how increasing the number of 
nodes increased the MAL up to a certain point where the MAL tapered off. This 
happened because P and μ2

LV0
are fixed, and thus, a bottleneck in how much 

flow G could support is formed. The MAL of the optimal algorithm would take 
the longest time to saturate and is consistently higher than the MAL of the other 
algorithms. We can also see how the bottleneck is less of an issue in (b) when 
compared to (a) due to the difference in D.

On the other hand, Figure 5‘s subfigures (a) and (b) show how changing the 
number of processing nodes jV 0j affects the MAL for a sparse and dense net-
work, respectively. Note how increasing the number of processing nodes always 
increases the MAL the DCN is able to withstand. However, the optimal algorithm 
fully makes use of the limitations of G which is why it outperforms the other 
algorithms for the same mean of processing node capacities. Additionally, due 
to the increase in D when comparing (b) to (a), the bottleneck that exists in the 
link capacities μCE 

becomes a non-issue due to the huge number of edges in G.
Further, subfigures (a) and (b) of Figure 6 show the effect of varying the mean 

of the processing node capacities μLV0
. The subfigures are split into two regions 

based on whether the link capacities or the processing node capacities are the 
dominant factor. To the left of the knee of the two subfigures, the processing 
node capacities are what is limiting the MAL. The MAL continues to increase as 
the processing node capacities are increased until the edge capacities become 
unable to support the flow leaving the processing nodes causing the MAL to hit 
saturation. This limit is higher when comparing (b) to (a) due to the increase in 
the number of links.

Finally, Figure 7‘s subfigures (a) and (b) show how varying the mean of the 
link capacities μCE 

influences the MAL for a sparse and dense network, 
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Figure 4. How the MAL is affected due to varying the number of nodes jVj in (a) a sparse 
network and (b) a dense network during the generation process of the random graphs.
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Figure 5. How the MAL is affected due to varying the number of processing nodes jV 0j in (a) 
a sparse network and (b) a dense network during the generation process of the random graphs.

CYBER-PHYSICAL SYSTEMS 13



Figure 6. How the MAL is affected due to varying the mean of the processing node capacities 
μLV0

in (a) a sparse network and (b) a dense network during the generation process of the 
random graphs.
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Figure 7. How the MAL is affected due to varying the mean of the link capacities μCE 
in (a) 

a sparse network and (b) a dense network during the generation process of the random graphs.
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respectively. We have a similar story to the other two subfigures in Figure 6, 
except this time, the two regions are swapped. The region to the left of the 
knee of the curves is dominated by the link capacities while the region to the 
right of the knee of the curves is dominated by the processing node 
capacities. Having a dense network this time allows the network to reach 
saturation earlier.

5. Related work

VM scheduling is a widely used technology in order to guarantee application 
isolation and to simultaneously allow for utilisation of the PMs. Much has been 
accomplished in VM placement in cloud-based DCNs [1,2,16] with constraints 
including power [17], reliability [18], and traffic minimisation [19]. Other prac-
tical factors in VM scheduling have also been discussed [20,21]. Predictability is 
another important goal in designing efficient DCNs [22,23]. Empirical estimates 
of bandwidth are often used in allocating computing and network resources 
[24,25].

Elasticity, or the ability to adapt to changes in workload, is a central aspect of 
cloud computing. It is crucial when estimation of resources cannot be easily 
obtained [3,26–28]. In this context, the authors in [4] pioneered the concept of 
elasticity specifically for VMs in datacenters. They introduced a hierarchical VM 
placement algorithm that considers both machine and bandwidth resources, 
proving its optimality in semi-homogeneous and K-ary datacenter topologies. 
Their evaluation results demonstrated the efficiency of their approach in multi- 
tenant datacenters. Cloud computing elasticity is also defined as the degree to 
which a system autonomically provisions and de-provisions resources to adapt 
to workload changes [29]. Shawky and Ahmed have provided benchmarks for 
measuring this attribute [26].

The concept of maximum elasticity scheduling was explored by the authors 
in [3]. They focused on optimising task resource allocation in tree-based cloud 
data centre networks. They introduced the hose model for communication and 
discussed the limitations of static load distribution. To circumvent these issues, 
they proposed a maximum elasticity scheduling method, revealing that it has 
the highest growth potential subject to node and link capacities. Their findings 
generalise the one-to-all maximum flow problem, positioning their work as 
a special case of this broader issue.

6. Conclusion

Task resource assignment has generated a lot of research activity in the applica-
tions of cloud-based DCNs. In this study, we introduced an optimal solution that 
computed the MAL given a number of VMs inside PMs. This is the first work that 
does not place any constraints on the topologies of the DCNs. We did this by 
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proving that this problem could be reduced to a single-source, multiple-sink 
maximum flow problem. Additionally, we found the optimal VM assignment 
such that the maximum possible uniform growth rate could be supported 
without having to reassign tasks to PMs, known as the maximum elastic sche-
dule. Our approach’s efficiency and effectiveness were validated via extensive 
simulations, comparing it to three different algorithms.
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