
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tcyb20

Cyber-Physical Systems

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/tcyb20

Maximum elastic scheduling of virtual machines in
general graph cloud data center networks

Yusuf Qwareeq, Abdalaziz Sawwan & Jie Wu

To cite this article: Yusuf Qwareeq, Abdalaziz Sawwan & Jie Wu (04 Jan 2024): Maximum elastic
scheduling of virtual machines in general graph cloud data center networks, Cyber-Physical
Systems, DOI: 10.1080/23335777.2023.2301106

To link to this article: https://doi.org/10.1080/23335777.2023.2301106

Published online: 04 Jan 2024.

Submit your article to this journal

View related articles

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=tcyb20
https://www.tandfonline.com/loi/tcyb20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/23335777.2023.2301106
https://doi.org/10.1080/23335777.2023.2301106
https://www.tandfonline.com/action/authorSubmission?journalCode=tcyb20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=tcyb20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/23335777.2023.2301106
https://www.tandfonline.com/doi/mlt/10.1080/23335777.2023.2301106
http://crossmark.crossref.org/dialog/?doi=10.1080/23335777.2023.2301106&domain=pdf&date_stamp=04 Jan 2024
http://crossmark.crossref.org/dialog/?doi=10.1080/23335777.2023.2301106&domain=pdf&date_stamp=04 Jan 2024

Maximum elastic scheduling of virtual machines in
general graph cloud data center networks
Yusuf Qwareeq, Abdalaziz Sawwan and Jie Wu

Center for Networked Computing, Science Education and Research Center (SERC), Temple University,
Philadelphia, PA, USA

ABSTRACT
In this research, we pioneer a novel method to evaluate the
maximum admissible load (MAL) for virtual machines (VMs)
in physical machines (PMs) in data centre networks (DCNs),
without restricting DCN topologies. This unique approach
simplifies the issue into a single-source, multiple-sink max-
imum flow problem. It also resolves the maximum elastic
scheduling problem by determining the optimal load for
consistent growth without reassigning tasks. An effective
strategy for these challenges is introduced and validated
through extensive simulations.

ARTICLE HISTORY
Received 17 February 2023
Accepted 20 November 2023

KEYWORDS
Cloud; data centre networks
(DCNs); elasticity; maximum
flow; optimisation

1. Introduction

The problem of optimally allocating task resources has always been of utmost
importance in cloud-based data centre networks (DCNs). A frequently used
model is virtual machine (VM) scheduling in which a certain metric is optimised
subject to the capacity of the physical machines (PMs) and links in the DCN [1,2].
Our paper makes use of the maximum elastic scheduling scheme [3] to maximise
the uniform growth in both computation and communication loads without
having to reassign tasks to PMs. This paradigm was originally proposed in [4] for
the case of semi-homogeneous trees and further extended in [3] to include
heterogeneous trees.

Unlike existing methods that focus exclusively on tree-structured DCNs, our
approach broadens the scope to any DCN topology, thus providing a more
flexible and efficient architecture for resource allocation. Central to our method
is a novel reduction technique that capitalises on the inherent similarities
between DCN resource constraints and classical network flow problems.
Through the introduction of ‘virtual’ components – namely, a super source
node and virtual switches – we convert the DCN into an analogous flow net-
work. These virtual elements are pivotal: they not only limit the load departing
from each processing node according to its capacity but also serve as conduits

CONTACT Yusuf Qwareeq qwareeq@temple.edu Center for Networked Computing, Science Education
and Research Center (SERC), Temple University, 332, 1925 N 12th St, Philadelphia, PA 19122, USA

CYBER-PHYSICAL SYSTEMS
https://doi.org/10.1080/23335777.2023.2301106

© 2024 Informa UK Limited, trading as Taylor & Francis Group

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/23335777.2023.2301106&domain=pdf&date_stamp=2024-01-04

for this load as it transits through the network. This transformation essentially
recasts the problem into a single-source, multiple-sink maximum flow problem,
enabling us to leverage well-established algorithms in network optimisation to
solve for optimal resource allocation.

We model the DCN as an undirected, connected graph G ¼ ðV; EÞ where
a node could either be a PM (or processing node) or be a switch. No two PMs are
connected directly to each other. The load at a PM is the computation load and
it determines the communication load. There are strictly more than two PMs in
a DCN. Figure 1 shows a DCN where each PM is represented as a black circle with
a number inside it (which is the maximum number of VMs, or computation load,
in a PM) while each switch is represented as a grey circle. The numbers
associated with the links are the communication bandwidths.

There are mainly two models of communication to connect the VMs in a DCN
network. The first model is the pipe model [5] in which every PM is connected
with all other PMs through separate pipes. This means that the performance
guarantees are provided on a per-pipe basis. The second model is the hose
model, in which every PM is connected to the DCN through a hose, which
specifies the total incoming/outgoing bandwidth between the set of all other
PMs and that PM. For example, the PM denoted by v4 in Figure 1 has
a computation load of 5B. This means that the bandwidth v4 sends to/receives
from every other PM in the DCN cannot exceed 5B. This model provides more
flexibility, ease of specification, multiplexing gain, and ease of characterisation
along with aggregated performance guarantees per PM [6]. We use the hose
model where between each VM and the set of all other VMs, there is a reserved
communication bandwidth of B Gbps. There must be no restriction on the
destination of the load migrating from one processing node to another.

The maximum admissible load (MAL) [3] is defined as the maximum number
of VMs whose total communication load can be supported by the underlying
structure of the DCN. If a bandwidth of B Gbps is reserved on a link connected

Figure 1. An illustration of a DCN with a general topology. Gray nodes represent switches, while
black nodes represent PMs. The number inside each PM represents its computation load.

2 Y. QWAREEQ ET AL.

with a processing node, the bandwidth reserved at that link must equal the
contribution of that processing node to the MAL. The schedule with the max-
imum elasticity (optimal schedule) is the schedule that allows for a uniform
increase in the number of VMs across all processing nodes while neither violat-
ing the link nor node capacity constraints of the DCN. This elastic scheduling is
what forestalls the need for rescheduling tasks when larger loads are to be
supported.

Under the hose model, we are concerned with two problems:

● For a DCN of a general topology G, given the capacity of its processing
nodes and links, what is the MAL of G?

● For a load that is admissible, what is the optimal schedule such that the
uniform growth rate of the computation load at all processing nodes is
maximised under the node and link capacity constraints of the topology?

Another way to look at the two problems is by modelling them as a special
utility allocation problem under the hose model in which the processing
nodes correspond to households that are connected through a network of
cables and switches managed by a telecommunications company. Each one
of the households has a certain limit on the number of telephone commu-
nications that could be done simultaneously, which corresponds to its
occupancy limit. Each cable has a certain communication bandwidth capa-
city. There is no constraint on the underlying structure of the topology of
the network and there must be no restriction on which household is
connected to which. Given those settings, what is the bandwidth of all
possible simultaneous pairwise telephone conversations that the network
can support? Furthermore, what is the communication bandwidth assign-
ment at each household and cable such that all capacity constraints are
satisfied?

In [3], the MAL and maximum elasticity are found for tree-structured DCNs
using a distributed, linear-time algorithm that goes over the tree level-by-level
through two steps. First, a bottom-up aggregation step determines the MAL of
the tree. Second, a top-down partitioning step determines the schedule with
the maximum elasticity. However, the supported topologies of the DCNs are
exclusive to tree structures. In contrast, our work is generalised over any DCN
topology. Additionally, the processing nodes are free to exist in any part of the
graph with as many links connecting them to the rest of the DCN as necessary.
This provides flexibility in the architecture of the DCN such that processing
nodes can be deployed to any place within the network.

Our results in this research study are summarised as follows:

CYBER-PHYSICAL SYSTEMS 3

● We show that the more generalised version of the problem (no constraints
on the topology) can be reduced to a single-source, multiple-sink max-
imum flow problem.

● We prove the validity of this reduction and its consequences on answering
the two broader problems at hand.

● We present a novel algorithm that provides the general framework which
can utilise different existing algorithms that solve the single-source, multi-
ple-sink maximum flow problem.

● We evaluate the efficiency of our solution through an extensive simulation.

The remainder of the paper has the following organisation. Section 2 presents
the preliminaries and the formulation of the problem. Section 3 introduces our
optimal algorithm for finding the MAL and the schedule with the maximum
elasticity before proving its optimality. Section 4 shows our experiments and
simulation results. Section 5 discusses related work. Finally, the paper is con-
cluded in Section 6.

2. Problem formulation

2.1. Preliminaries

We consider the DCN under the hose model where the quality of service
requirements are specified per processing node (unlike the pipe model where
the requirements are specified per pair of processing nodes) [6]. The processing
nodes are connected to the DCN with assigned ingress and egress bandwidths
where each bandwidth defines how much of the load could be sent to/from
each processing node from/to every other processing node. The two are
assumed to be equal.

Figure 2 illustrates the difference between the pipe model and the hose
model. In order to connect node C under the pipe model, there must exist
separate pipes connecting it to the two other nodes, A and B. Hence, the total
bandwidth reserved for node C will be 2Bþ 3B ¼ 5B. In other words, it is the
direct sum of the bandwidths of the two other nodes. On the contrary, under
the hose model, there needs to be only one pipe that supports the aggregated
bandwidth of the two other nodes, which is maxf2B; 3Bg ¼ 3B.

Furthermore, the PMs must not be directly connected. To establish
a connection between two VMs in different processing nodes at any given
time, there must be a path of capacity B Gbps in the DCN reserved for this
connection at that time. This means that generally speaking, the sum of the link
capacities leaving a PM must be large enough to withstand the total commu-
nication load of the VMs leaving that PM when simultaneous connections of
multiple VMs in the same processing node to the DCN are established.

4 Y. QWAREEQ ET AL.

2.2. The problem

The paper aims to identify the MAL and schedule with the maximum elasticity
for a cloud DCN. A DCN is modelled as an undirected, connected graph
G ¼ ðV; EÞ where V 0 � V is the set of DCN PMs (processing nodes) with compu-
tation loads fLv0 jv0 2 V 0g (maximum number of VMs in a PM), VnV 0 is the set of
DCN switches interconnecting the network elements, and E is the set of undir-
ected edges connecting the switches with other switches and processing nodes,
which have capacities fCeje 2 Eg.

3. Optimal solution

3.1. Algorithm overview

The breadth of our algorithm lies in reducing the problems of finding the
MAL and the schedule with the maximum elasticity to a single-source,
multiple-sink maximum flow problem. First, we augment the graph G by
adding a node (termed a virtual switch) for each PM and attaching it to the
PM. The capacity of the edge that connects these two nodes (coined
a virtual hose) is equal to the processing node capacity Lv0 of that PM. We
then swap the virtual switch with its corresponding PM. After doing this for
every PM, we coalesce the set of all PMs V 0 into a single super node which
we call the source node S. After that, we solve multiple maximum flow
problems with S as the source node while choosing the sink as a different
node from VnV 0 at every instance, and we store the result. This result is the
admissible load that G can support given a certain source-sink pairing. The
maximum of those results is the MAL. Algorithm 1 shows the pseudocode
of our strategy that evaluates the MAL of a DCN represented by G.
Regarding the schedule with the maximum elasticity, it can be directly
obtained using the proportion of the flow values through the virtual

Figure 2. The difference between (a) the pipe model and (b) the hose model.

CYBER-PHYSICAL SYSTEMS 5

hoses given an MAL assignment. Allocating the total load on the processing
nodes with that proportion results in the maximum elastic schedule that
allows for the largest possible uniform growth in the computation loads
across the processing nodes.

Algorithm 1 Evaluating the MAL

Input: G ¼ ðV; EÞ; V 0 2 V , fLv0 jv0 2 V 0g, A.
Output: The MAL value.
Initialisation: A ¼ fg // Set of admissible loads.
1: for each v0 in V 0 do
2: Add to G a node iv0 and a link ðiv0 ; v0Þ of capacity Lv0 :

3: Swap node iv0 with node v0:
4: Coalesce V 0 into a single super source node S:
5: for each v in VnV 0 do
6: A MAX � FLOWGðS; vÞ // Append to set A.
7: return maxðAÞ:

The algorithm can now be demonstrated through an example. Figure 1
shows a DCN with 3 processing nodes (V 0 ¼ fv3; v4; v8g) and 5 switches
(VnV 0 ¼ fv1; v2; v5; v6; v7g). Our solution revolves around the idea of reducing
the problem of finding the MAL to a maximum flow problem. To do this, for
each v0 in V 0, we add a virtual switch iv0 with a virtual hose that connects it to v0.
The capacity of this virtual hose is equal to the computation load of v0 which is
Lv0 . We then swap every virtual switch iv0 with its corresponding v0. After that,
nodes in V 0 are coalesced into a single node which we treat as a super source
node S.

The maximum flow is then applied in a one-to-all manner between S and
each v in VnV 0. From there on, the set of solutions A that we get is the set of
admissible loads given load assignments rooted at each one of the switches.
The admissible load with the maximum value will be the MAL. This process is
described in Algorithm 1. The pseudocode describing the algorithm starts with
determining the input, which is the DCN topology encoded in a graph so that
each node in the graph is specified to be either a switch or a processing node.
Furthermore, the values of the capacities of the links are determined alongside
the values of the processing node capacities. The output of the algorithm will be
the MAL.

Now, starting with the initialisation, the set of admissible loads A is reserved.
Lines 1–3 of the algorithm replace each processing node v0 with a virtual switch
iv0 , a virtual hose ðiv0 ; v0Þ, and v0 itself. The capacity of ðiv0 ; v0Þ is set to Lv0 . This
makes each processing node v0 connected to the graph through exactly one link
ðiv0 ; v0Þ. Figure 3 shows the augmented G after applying these lines to the DCN in
Figure 1. Line 4 of the algorithm coalesces the processing nodes into one node

6 Y. QWAREEQ ET AL.

called the super source node, denoted as S. Lines 5–6 apply the one-to-all
maximum flow algorithm in the most primitive way possible by applying a one-
to-one maximum flow algorithm jVnV 0j times considering S as the source and
a different node from jVnV 0j as the sink in each maximum flow instance. The last
line returns the largest value of the maximum flows generated. This value is the
target MAL.

Table 1 shows the list of admissible loads A after applying Algorithm 1 to the
DCN in Figure 1. The MAL for the example is 12B and the schedule with the
maximum elasticity is the one that follows the proportion of the flow values
through the virtual hoses (the numbers are colored in red) in the figure (3 : 5 : 4
for nodes v3, v4, and v8, respectively). This proportion is different from the PM’s
available capacities. If we were to try any different schedule, the maximum
uniform growth possible in the computation loads would decrease. This means
that, given the same topology with the same (or linearly scaled) values assigned
to the link and processing node capacities, the optimal assignment in order for
the load on the PMs to have the maximum growth rate must follow the
proportion 3 : 5 : 4.

We may now investigate the schedule with the maximum elasticity. For example,
given the same topology with all the values of link and processing node capacities
multiplied by 20, and given that the total load assignment allocated for all the
processing nodes is predetermined to be 84B, the most elastic assignment for this
load on the processing nodes must follow the proportion 3 : 5 : 4. Hence, the
optimal load assignment of the predetermined load will be 21B, 35B, and 28B for
nodes v3, v4, and v8, respectively. Having this assignment yields the optimal

Figure 3. An example of evaluating the MAL for one source-sink pairing of the DCN shown in
Figure 1 (taking super node S as the source and node v6, which is marked in red, as the sink).

Table 1. The set of admissible loads A found after applying MAX � FLOWGðS; vÞ to every node
v 2 VnV 0 in the DCN in Figure 3.

Node Taken as Sink v1 v2 v5 v6 v7

Admissible Load (B) 6 7 12 12 10

CYBER-PHYSICAL SYSTEMS 7

elasticity value of ð60þ 100þ 80Þ=ð21þ 35þ 28Þ ¼ 285:7%. However, if we, for
example, consider the load proportion to be the same as the one of the processing
node capacities (which is Lv3 : Lv4 : Lv8 ¼ 5 : 5 : 4) such that the load is assigned to
the processing nodes with values of 30B, 30B, and 24B for nodes v3, v4, and v8,
respectively, the elasticity value will now be ð60þ 60þ 48Þ=ð30þ 30þ 24Þ ¼
200:0%, which is less than the optimal elasticity value.

3.2. Algorithm analysis

In this subsection, we prove the optimality of Algorithm 1, show that it provides
the schedule with the maximum elasticity, and find its time complexity.

Theorem 1. The largest maximum flow evaluated for all possible pairings of the
super source node S and every node v 2 VnV 0 is the MAL of the graph G.

Proof. Given a graph G ¼ ðV; EÞ, we first demonstrate that admissible loads are
analogous to classical feasible flow assignments. We begin by examining the
applicability of the definition of feasible flows to admissible loads after adding
the virtual switches and the virtual hoses with capacities equal to their corre-
sponding processing node capacities. A virtual hose of capacity Lv0 connected
between the coalesced super source node S and the virtual switch iv0 serves as
a cap equal to the capacity of the processing node v0 for the amount of load
going out from it, which is determined by how many VMs the PM can support
concurrently.

Feasible flows are simply defined as abstract quantities assigned to each
edge of s–t networks (where s is the source node and t is the sink node) while
satisfying two properties. The first one is the capacity condition, which means
that for each e 2 E, we have 0 � f ðeÞ � Ce, where an s–t flow is a function f that
maps each edge e to a non-negative integer, f : E ! Nþ; the value f ðeÞ intui-
tively represents the amount of flow carried by edge e. This first condition
identically applies to loads going through links in DCNs as loads may not exceed
the capacity of the links carrying them.

The second property is the conservation condition, which states that for each
node v other than s and t, we have

P
e into v fðeÞ ¼

P
e out o f v f ðeÞ. Now, for an

MAL assignment, since the bandwidth reserved at the links connected with each
processing node equals the contribution of that processing node to the MAL,
and there is no constraint on the choice of the destination processing node for
a load going out from another processing node, and there is strictly more than
two processing nodes in the DCN, there will be at least one switch through
which all of the communication load between the processing nodes passes. This
switch plays the role of a sink node t while coalesced processing nodes (or the
super source node S) are modelled as the source node s.

8 Y. QWAREEQ ET AL.

Under the MAL assignment, the load can be thought of as a flow going
out from the processing nodes, that are modelled as s, into the switch,
which is modelled as t. Since the entirety of this MAL is leaving s,
draining in t, and conserved when it goes through any other switch,
the second property of feasible flows applies to MAL assignments; both
are considered conserved quantities constrained by the capacities of the
links of the graph that they pass through. Hence, evaluating the MAL is
analogous to finding the maximum flow when S is considered to be s,
and the correct switch, which has all of the load going through it, is
considered to be t.

Lastly, we need to specify that correct switch under the MAL assignment.
Since we have already shown that such a switch always exists, searching for it is
done by exhausting all the switches in the DCN. Once that switch is found,
choosing it as t would guarantee finding the MAL value. ▪

Note that it is possible for a DCN to be able to support multiple different load
assignments under the same MAL, as more than one switch may yield the MAL
value when chosen as the sink node t. In addition, even for the same switch
chosen as a sink, there might be different valid MAL assignments. The assign-
ment our algorithm produces depends on the method chosen to evaluate the
maximum flow.

Theorem 2. Assigning a predetermined load to the processing nodes with the
same proportion of the loads under the MAL assignment results in the schedule
with the maximum elasticity.

Proof. Following the proportion of the loads under the MAL assignment when
setting the loads across the processing nodes maximises the elasticity because
this is the only proportion of loads which guarantees that all of them will reach
their maximum potential together, given a uniform linear growth in the loads of
the processing nodes. Any deviation from said proportion would cause at least
one of the processing nodes to reach its bottleneck before others reach theirs. ▪

The time complexity of Algorithm 1 is OðjVnV 0j � TðjVjÞÞ where TðjVjÞ is the
time complexity of one instance of the one-to-one maximum flow algorithm.
After coalescing the PMs, since we perform the one-to-one maximum flow
between the coalesced nodes (super source node S) and every switch in the
graph, we end up invoking the one-to-one maximum flow algorithm jVnV 0j
times (which is the number of switches in G), yielding the aforementioned time
complexity.

Although we opted to choose the most basic way to perform the one-to-all
maximum flow algorithm, there have been extensive studies on more efficient
ways to do it. For example, Lacki et al. [7] have come up with a more efficient
algorithm that would perform the complete one-to-all maximum flow in
OðjVnV 0j � log3 jVnV 0jÞ time in case the graph is planar.

CYBER-PHYSICAL SYSTEMS 9

On the other hand, if we stick to the basic strategy and use the principal
Ford – Fulkerson algorithm [8] jVnV 0j times, we get a total time complexity of
OðjVnV 0j � jEj � jMALjÞ. We can use Dinic’s algorithm [9] (which is an improved
version of the Edmonds – Karp algorithm [10]) if we desire a time complexity
independent from the value of the MAL. That would yield a total time complex-

ity of OðjVnV 0j3 � jEjÞ.
The most efficient TðjVjÞ time that has been developed for a one-to-one

maximum flow algorithm applied for the case of a general graph is the one
introduced by Chen et al. [11]. Their new one-to-one maximum flow strategy
asymptotically outperforms any existing algorithm with a time complexity of

OðjEj1þoð1Þ
Þ. If we choose their algorithm for our MAX � FLOWGðS; vÞ subrou-

tine, the time complexity of our strategy will reduce to OðjVnV 0j � jEj1þoð1Þ
Þ.

Finally, Abboud et al. [12] have come up with the best all-pair maximum flow
algorithm in terms of the time complexity bound. Their algorithm can be

applied to evaluate the MAL in our case with a time complexity of OðjEj3=2þoð1Þ
Þ.

4. Simulation

We use NetworkX [13] to generate graphs randomly by first creating a k-node
spanning tree from a Prüfer sequence [14]. A Prüfer sequence from the k
possible sequences is chosen at random and then inputted into a Prüfer decod-
ing algorithm that produces a unique tree T . After that, the switches are added
in a one-by-one manner to create an undirected, connected graph G with jVnV 0j
nodes. When adding a switch, a normal random variable X,Nðμe; σ2

eÞ is
sampled to decide the number of edges connecting that switch to G. After
adding the switches and their edges, a fraction of the total number of nodes
(PjVj) is chosen as processing nodes V 0 and are then added in a one-by-one
manner as well. The number of edges connecting them to G is picked in a similar
fashion to switches but we make sure these processing nodes are not directly
linked to each other. From there on, a super source node S is connected to each
processing node with an edge that has a capacity sampled from the uniform
random variable Y,NðμLV0

; σ2
LV0
Þ. As for the other edges, their capacities are

sampled from the uniform random variable Z,NðμCE
; σ2

CE
Þ.

4.1. Algorithm comparison

We consider various settings to compare the performance of four algo-
rithms: our optimal algorithm (Algorithm 1), Proportion with Physical Link
Capacities (PPLC) [3] where the VMs are assigned into the processing
nodes with proportion to the bandwidth (link capacities), Equally
Distributed Placement (EDP) where the VMs are evenly assigned into the

10 Y. QWAREEQ ET AL.

processing nodes, and Maximum Spanning Tree (MST) where we build
a maximum spanning tree on G using Kruskal’s algorithm [15]. In terms of
time complexities, the EDP algorithm, which uniformly apportions loads
across the PMs, has a time complexity of OðV 0Þ. The PPLC algorithm, on
the other hand, ascertains the aggregate bandwidth of links affiliated with
each PM, and iteratively examines both PMs and their associated links,
leading to an average time complexity of Oðμe � V 0Þ. Lastly, the MST
algorithm first constructs a maximum spanning tree on G utilising
Kruskal’s algorithm, which incurs a time complexity of OðE log VÞ, followed
by a solution that is constrained to tree topologies, which takes
a complexity of OðVÞ [3]. Cumulatively, MST exhibits a time complexity
of OðE log V þ VÞ.

4.2. Experimental results

In subfigures (a) and (b) of Figure 4, the number of nodes jVj was varied for
a sparse and dense network, respectively. Notice how increasing the number of
nodes increased the MAL up to a certain point where the MAL tapered off. This
happened because P and μ2

LV0
are fixed, and thus, a bottleneck in how much

flow G could support is formed. The MAL of the optimal algorithm would take
the longest time to saturate and is consistently higher than the MAL of the other
algorithms. We can also see how the bottleneck is less of an issue in (b) when
compared to (a) due to the difference in D.

On the other hand, Figure 5‘s subfigures (a) and (b) show how changing the
number of processing nodes jV 0j affects the MAL for a sparse and dense net-
work, respectively. Note how increasing the number of processing nodes always
increases the MAL the DCN is able to withstand. However, the optimal algorithm
fully makes use of the limitations of G which is why it outperforms the other
algorithms for the same mean of processing node capacities. Additionally, due
to the increase in D when comparing (b) to (a), the bottleneck that exists in the
link capacities μCE

becomes a non-issue due to the huge number of edges in G.
Further, subfigures (a) and (b) of Figure 6 show the effect of varying the mean

of the processing node capacities μLV0
. The subfigures are split into two regions

based on whether the link capacities or the processing node capacities are the
dominant factor. To the left of the knee of the two subfigures, the processing
node capacities are what is limiting the MAL. The MAL continues to increase as
the processing node capacities are increased until the edge capacities become
unable to support the flow leaving the processing nodes causing the MAL to hit
saturation. This limit is higher when comparing (b) to (a) due to the increase in
the number of links.

Finally, Figure 7‘s subfigures (a) and (b) show how varying the mean of the
link capacities μCE

influences the MAL for a sparse and dense network,

CYBER-PHYSICAL SYSTEMS 11

Figure 4. How the MAL is affected due to varying the number of nodes jVj in (a) a sparse
network and (b) a dense network during the generation process of the random graphs.

12 Y. QWAREEQ ET AL.

Figure 5. How the MAL is affected due to varying the number of processing nodes jV 0j in (a)
a sparse network and (b) a dense network during the generation process of the random graphs.

CYBER-PHYSICAL SYSTEMS 13

Figure 6. How the MAL is affected due to varying the mean of the processing node capacities
μLV0

in (a) a sparse network and (b) a dense network during the generation process of the
random graphs.

14 Y. QWAREEQ ET AL.

Figure 7. How the MAL is affected due to varying the mean of the link capacities μCE
in (a)

a sparse network and (b) a dense network during the generation process of the random graphs.

CYBER-PHYSICAL SYSTEMS 15

respectively. We have a similar story to the other two subfigures in Figure 6,
except this time, the two regions are swapped. The region to the left of the
knee of the curves is dominated by the link capacities while the region to the
right of the knee of the curves is dominated by the processing node
capacities. Having a dense network this time allows the network to reach
saturation earlier.

5. Related work

VM scheduling is a widely used technology in order to guarantee application
isolation and to simultaneously allow for utilisation of the PMs. Much has been
accomplished in VM placement in cloud-based DCNs [1,2,16] with constraints
including power [17], reliability [18], and traffic minimisation [19]. Other prac-
tical factors in VM scheduling have also been discussed [20,21]. Predictability is
another important goal in designing efficient DCNs [22,23]. Empirical estimates
of bandwidth are often used in allocating computing and network resources
[24,25].

Elasticity, or the ability to adapt to changes in workload, is a central aspect of
cloud computing. It is crucial when estimation of resources cannot be easily
obtained [3,26–28]. In this context, the authors in [4] pioneered the concept of
elasticity specifically for VMs in datacenters. They introduced a hierarchical VM
placement algorithm that considers both machine and bandwidth resources,
proving its optimality in semi-homogeneous and K-ary datacenter topologies.
Their evaluation results demonstrated the efficiency of their approach in multi-
tenant datacenters. Cloud computing elasticity is also defined as the degree to
which a system autonomically provisions and de-provisions resources to adapt
to workload changes [29]. Shawky and Ahmed have provided benchmarks for
measuring this attribute [26].

The concept of maximum elasticity scheduling was explored by the authors
in [3]. They focused on optimising task resource allocation in tree-based cloud
data centre networks. They introduced the hose model for communication and
discussed the limitations of static load distribution. To circumvent these issues,
they proposed a maximum elasticity scheduling method, revealing that it has
the highest growth potential subject to node and link capacities. Their findings
generalise the one-to-all maximum flow problem, positioning their work as
a special case of this broader issue.

6. Conclusion

Task resource assignment has generated a lot of research activity in the applica-
tions of cloud-based DCNs. In this study, we introduced an optimal solution that
computed the MAL given a number of VMs inside PMs. This is the first work that
does not place any constraints on the topologies of the DCNs. We did this by

16 Y. QWAREEQ ET AL.

proving that this problem could be reduced to a single-source, multiple-sink
maximum flow problem. Additionally, we found the optimal VM assignment
such that the maximum possible uniform growth rate could be supported
without having to reassign tasks to PMs, known as the maximum elastic sche-
dule. Our approach’s efficiency and effectiveness were validated via extensive
simulations, comparing it to three different algorithms.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This research was supported in part by NSF grants CPS 2128378, CNS 2107014, CNS 2150152,
CNS 1824440, CNS 1828363, and CNS 1757533.

Notes on contributors

Yusuf Qwareeq, is a first-year PhD candidate in the Computer & Information Sciences
department at Temple University. He holds a Bachelor of Science in Electrical
Engineering from the University of Jordan, which he completed in 2021. Qwareeq’s
current research interests include networks, distributed computing, and parallel
processing.

Abdalaziz Sawwan, is a second-year Ph.D. student in Computer and Information Sciences at
Temple University. Sawwan received his bachelor’s degree in Electrical Engineering from the
University of Jordan in 2020. His current research interests include multi-armed bandits,
communication networks, mobile charging, and wireless networks.

Jie Wu, is a Laura H. Carnell Professor and the Director of the Center for Networked
Computing at Temple University. He also serves as the Director of International Affairs at
the College of Science and Technology. Dr. Wu was previously the Chair of the Department of
Computer and Information Sciences and Associate Vice Provost for International Affairs at
Temple University. Prior to joining Temple University, he was a distinguished professor at
Florida Atlantic University and a program director at the National Science Foundation.
Dr. Wu’s research interests include mobile computing and wireless networks, routing proto-
cols, cloud and green computing, network trust and security, and social network applications.
He has published extensively in scholarly journals, conference proceedings, and books, and
serves on several editorial boards. Dr. Wu has also chaired and co-chaired several IEEE and
ACM conferences and is a Fellow of both the IEEE and the AAAS.

Data availability statement

Data sharing is not applicable to this article as no new data were created or analysed in this
study.

CYBER-PHYSICAL SYSTEMS 17

References

[1] Á Mann Z. Allocation of virtual machines in cloud data centers—a survey of problem
models and optimization algorithms. ACM Comput Surveys. 2015;48(1):1–34. doi:10.
1145/2797211

[2] Saif MAN, Niranjan S, Al-Ariki HDE. Efficient autonomic and elastic resource manage-
ment techniques in cloud environment: taxonomy and analysis. Wireless Networks.
2021;27(4):2829–2866. doi:10.1007/s11276-021-02614-1

[3] Wu J, Lu S, Zheng H. On maximum elastic scheduling of virtual machines for
cloud-based data center networks. 2018 IEEE International Conference on
Communications (ICC); Kansas City, MO, USA. IEEE; 2018. p. 1–6.

[4] Li K, Wu J, Blaisse A. Elasticity-aware virtual machine placement for cloud datacenters.
2013 IEEE 2nd International Conference on Cloud Networking (CloudNet); San
Francisco, CA, USA. IEEE; 2013. p. 99–107.

[5] Duffield NG, Goyal P, Greenberg A, et al. A flexible model for resource management in
virtual private networks. Proceedings of the conference on Applications, technologies,
architectures, and protocols for computer communication; New York, NY, United
States. 1999. p. 95–108.

[6] Kumar A, Rastogi R, Silberschatz A, et al. Algorithms for provisioning virtual private
networks in the hose model. IEEE/ACM Trans Networking. 2002;10(4):565–578. doi:10.
1109/TNET.2002.802141

[7] Lacki J, Nussbaum Y, Sankowski P, et al. Single source–all sinks max flows in planar
digraphs. 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science;
New Brunswick, NJ, USA. IEEE; 2012. p. 599–608.

[8] Ford LR, Fulkerson DR. Flows in networks. In: Flows in networks. Princeton, NJ, USA:
Princeton university press; 2015 .

[9] Dinic E. Algorithm for solution of a problem of maximum flow in a network with power
estimation. Soviet Math Doll. 1970;11(5):1277–1280. English translation by RF. Rinehart,
1970.

[10] Edmonds J, Karp RM. Theoretical improvements in algorithmic efficiency for network
flow problems. J ACM. 1972;19(2):248–264. doi:10.1145/321694.321699

[11] Chen L, Kyng R, Liu YP, et al. Maximum flow and minimum-cost flow in almost-linear
time. 2022 IEEE 63rd Annual Symposium on Foundations of Computer Science (FOCS);
Denver, CO, USA. IEEE; 2022. p. 612–623.

[12] Abboud A, Krauthgamer R, Trabelsi O. New algorithms and lower bounds for all-pairs
max-flow in undirected graphs. Proceedings of the Fourteenth Annual ACMSIAM
Symposium on Discrete Algorithms; Salt Lake City, UT, USA. SIAM; 2020. p. 48–61.

[13] Hagberg AA, Schult DA, Swart PJ. Exploring network structure, dynamics, and function
using networkx. In: Varoquaux G, Vaught T Millman J, editors. Proceedings of the 7th
Python in Science Conference, Pasadena, CA USA; 2008, p. 11–15.

[14] Wu BY, Chao K-M. Spanning trees and optimization problems. Boca Raton, FL, USA:
Chapman and Hall/CRC; 2004.

[15] Pemmaraju S, Skiena S. Computational discrete mathematics: combinatorics and graph
theory with mathematica®. Cambridge, UK: Cambridge university press; 2003.

[16] Sridharan R, Domnic S. Network policy aware placement of tasks for elastic applications
in iaas-cloud environment. Cluster Comput. 2021;24(2):1381–1396. doi: 10.1007/
s10586-020-03194-z

[17] Kusic D, Kephart JO, Hanson JE, et al. Power and performance management of virtua-
lized computing environments via lookahead control. Cluster Comput. 2009;12
(1):1–15. doi:10.1007/s10586-008-0070-y

18 Y. QWAREEQ ET AL.

https://doi.org/10.1145/2797211
https://doi.org/10.1145/2797211
https://doi.org/10.1007/s11276-021-02614-1
https://doi.org/10.1109/TNET.2002.802141
https://doi.org/10.1109/TNET.2002.802141
https://doi.org/10.1145/321694.321699
https://doi.org/10.1007/s10586-020-03194-z
https://doi.org/10.1007/s10586-020-03194-z
https://doi.org/10.1007/s10586-008-0070-y

[18] Yang S, Wieder P, Yahyapour R, et al. Reliable virtual machine placement and routing in
clouds. IEEE Trans Parallel Distrib Syst. 2017;28(10):2965–2978. doi:10.1109/TPDS.2017.
2693273

[19] Meng X, Pappas V, Zhang L. Improving the scalability of data center networks with
traffic-aware virtual machine placement. 2010 Proceedings IEEE INFOCOM; San Diego,
CA, USA. IEEE; 2010. p. 1–9.

[20] Xu F, Liu F, Jin H, et al. Managing performance overhead of virtual machines in cloud
computing: a survey, state of the art, and future directions. Proc IEEE. 2013;102
(1):11–31. doi:10.1109/JPROC.2013.2287711

[21] López-Pires F, Barán B. Cloud computing resource allocation taxonomies. Int J Cloud
Comput. 2017;6(3):238–264. doi:10.1504/IJCC.2017.086712

[22] Ballani H, Costa P, Karagiannis T, et al. Towards predictable datacenter networks.
Proceedings of the ACM SIGCOMM 2011 Conference; New York, NY, USA. 2011. p.
242–253.

[23] Silva Filho MC, Monteiro CC, Inácio PR, et al. Approaches for optimizing virtual machine
placement and migration in cloud environments: A survey. J Parallel Distrib Comput.
2018;111:222–250. doi:10.1016/j.jpdc.2017.08.010

[24] Wang R, Wickboldt JA, Esteves RP, et al. Using empirical estimates of effective band-
width in network-aware placement of virtual machines in datacenters. IEEE Trans
Network Serv Manage. 2016;13(2):267–280. doi:10.1109/TNSM.2016.2530309

[25] Laghrissi A, Taleb T. A survey on the placement of virtual resources and virtual network
functions. IEEE Commun Surv Tutorials. 2018;21(2):1409–1434. doi:10.1109/COMST.
2018.2884835

[26] Shawky DM, Ali AF. Defining a measure of cloud computing elasticity. 2012 1st
International conference on systems and computer science (ICSCS); Lille, France. IEEE;
2012. p. 1–5.

[27] Lu S, Fang Z, Wu J, et al. Elastic scaling of virtual clusters in cloud data center networks.
2017 IEEE 36th International Performance Computing and Communications
Conference (IPCCC); San Diego, CA, USA. IEEE; 2017. p. 1–8.

[28] Li K, Wang L. Elastic scheduling of virtual machines in cloudlet networks. 2021 IEEE
International Performance, Computing, and Communications Conference (IPCCC);
Austin, TX, USA. IEEE; 2021. p. 1–7.

[29] Herbst NR, Kounev S, Reussner R. Elasticity in cloud computing: what it is, and what it is
not. 10th international conference on autonomic computing (ICAC 13); San Jose, CA.
2013. p. 23–27.

CYBER-PHYSICAL SYSTEMS 19

https://doi.org/10.1109/TPDS.2017.2693273
https://doi.org/10.1109/TPDS.2017.2693273
https://doi.org/10.1109/JPROC.2013.2287711
https://doi.org/10.1504/IJCC.2017.086712
https://doi.org/10.1016/j.jpdc.2017.08.010
https://doi.org/10.1109/TNSM.2016.2530309
https://doi.org/10.1109/COMST.2018.2884835
https://doi.org/10.1109/COMST.2018.2884835

	Abstract
	1. Introduction
	2. Problem formulation
	2.1. Preliminaries
	2.2. The problem

	3. Optimal solution
	3.1. Algorithm overview
	3.2. Algorithm analysis

	4. Simulation
	4.1. Algorithm comparison
	4.2. Experimental results

	5. Related work
	6. Conclusion
	Disclosure statement
	Funding
	Notes on contributors
	Data availability statement
	References

