Maximum Elastic Scheduling based on the Hose Model

基于软管模型的最大弹性调度

Jie Wu (吴杰)
Temple University (天普大学)
1. AI Takeoff

- Deep Blue
 - ICPP'96 panel: F. -H. Hsu (許峰雄) talked about LB instead.

- HPC-AI convergence
 - AI blackbox (黑箱子)
 - However, DARPA: **Explainable AI (XAI)**
 - Produce more explainable models
 - Enable human users to understand

- Back to fundamentals
 - Direct algorithmic/combinatoric solutions
 - A scheduling problem related to **maximum elasticity**
A Simple Illustration

- Given a cable connection in a graph, each household has an occupancy limit and each cable section has bandwidth limit.

- What is the maximum total occupancy that can support all possible simultaneous pairwise telephone conversations (hose model)?

- What is the schedule with the maximum elasticity (i.e., maximum uniform growth in occupancy)?

hose model (软管模型): statistical multiplexing
2. Model and Formulation

- **Maximum Admissible Load (MAL)**: 最大容许负载
 - Provisioning MAL of VMs in PMs for hose-model-based DCNs

- **Maximum Elastic Scheduling (MES)**: 最大弹性调度
 - A task assignment of a given load (< MAL) with potential maximum uniform growth in computation and communication

How to define elasticity?
A Simple 2-Level Tree

On DCN (数据中心网络), DCN cloud, or Internet cloud

\[G = (V, E), \text{ } V: \text{ server (服务器)} \text{ or switch (交换器)}, \text{ } E: \text{ link (链路)} \]

Each VM has 1B Gbps aggregate bandwidth
How to Solve It (Polya)

If you can’t solve a problem, then there is an easier problem you can solve: find it

- Tree topology (typical DCN)

Direct solutions
- Shortest path problem (最短路径)
 - LP solution
 - Greedy solution: Dijkstra algorithm
- Maximum elastic scheduling (最大弹性调度)
 - LP solution
 - Greedy solution: Two-phase sweep
LP Solution

maximize \(e \) \hspace{1cm} \text{(1)}

\[
\begin{align*}
\text{s.t. } & \quad e \leq \min_i (1 - \frac{x_i}{N_i}) \quad \text{and} \quad x_i \leq N_i \quad \text{for } \forall i \\
& \quad e \leq \min_j (1 - \frac{y_j}{L_j}) \quad \text{and} \quad y_j \leq L_j \quad \text{for } \forall j \\
& \quad y_j = \min \left[\sum_i \mu_{ij} x_i, \sum_i (1 - \mu_{ij}) x_i \right] \quad \text{for } \forall j
\end{align*}
\]

Eq. (1): objective function
Eq. (2) and Eq. (3): constraints on nodes \((N_i)\) and links \((L_j)\)
Eq. (4):

\(i \)th node on \(j \)th link
LP Solution (cont’d)

Variables: 3n−1
- n: # of leaf nodes
- 2n−2: # of links
- 1: objective function e

Constraints: 10n−8
- Eq. (6): 2n
- Eq. (7): 4n − 4
- Eq. (8): 4n − 4

Inefficiency: Simplex or Eclipse

maximize \[e \]
subject to
\[e \leq \min_i (1 - \frac{x_i}{N_i}) \text{ and } x_i \leq N_i \text{ for } \forall i \] (6)
\[e \leq \min_j (1 - \frac{y_j}{L_j}) \text{ and } y_j \leq L_j \text{ for } \forall j \] (7)
\[y_j \leq \sum_i \mu_{ij} x_i \text{ and } y_j \leq \sum_i (1 - \mu_{ij}) x_i \text{ for } \forall j \] (8)
3. Two-Phase Sweep Solutions

Up phase: Cal. MAL of a 2-level subtree

\[\min\{N_L, L_L\} + \min\{N_R, L_R\} \]

Down phase: Given a load \(N(<\text{MAL}) \) at root

- **Left**
 \[\min\{N_L, L_L\}/N \]

- **Right**
 \[\min\{N_R, L_R\}/N \]
Why Simple Solution May Fail?

A simple solution

However

How to find the OPT Solution?

\[10 + 6 = 16 \]

\[10 + 6 > 14 \]
How to Calculate?

Hose-model tree orientation

- Directed tree: Link orientation is based on the selected root.
- Find a root with the maximum summation of branch values.
Optimal Solution

Insights

- Apply the simple solution to different orientations.
- Select the best orientation.

MAL at the left leaf

MAL at the right leaf

MAL at the center
Distributed Implementation

At each node

<table>
<thead>
<tr>
<th>Step</th>
<th>v_1</th>
<th>v_2</th>
<th>v_3</th>
<th>v_4</th>
<th>v_5</th>
<th>v_6</th>
<th>v_7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>send $\min{5,4}+\min{6,7}=10$ to v_2</td>
<td>send $\min{5,4}=6$ to v_1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
<td></td>
<td></td>
<td>send $\min{6,2}$ to v_2</td>
<td>send $\min{6,7}=10$ to v_3</td>
<td>send $\min{6,6}=4$ to v_3</td>
<td>send $\min{6,6}=4$ to v_3</td>
</tr>
<tr>
<td>Step 3</td>
<td>send $\min{6,6}=6$ to v_2</td>
<td>send $\min{6,8}=8$ to v_3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Step 4</td>
<td>send $\min{6,8}=12$ to v_4</td>
<td>send $\min{6,8}=12$ to v_4</td>
<td>send $\min{8,6}=10$ to v_5</td>
<td>send $\min{8,6}=10$ to v_6</td>
<td>send $\min{8,6}=10$ to v_6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MAL</td>
<td>$\min{10,8}+\min{6,6}=14$</td>
<td>$\min{5,4}+\min{6,7}+\min{8,6}=16$</td>
<td>$\min{6,2}+\min{4,5}+\min{8,6}=12$</td>
<td>$\min{12,4}+\min{5,\infty}=9$</td>
<td>$\min{10,7}+\min{6,\infty}=13$</td>
<td>$\min{10,2}+\min{6,\infty}=8$</td>
<td>$\min{8,5}+\min{4,\infty}=9$</td>
</tr>
</tbody>
</table>
4. Properties and Extensions

Theorem 1: The up-phase determines the MAL.

Theorem 2: The two-phase solution generates a schedule with maximum elasticity.

Theorem 3: The two-phase solution uses $2\log n + 1$ parallel steps. The computation complexity is $5(n-1)$, and the communication complexity is $4(n - 1)$.
Extensions

- General trees
 - Any k-nary trees

- Optimal simple solution
 - Trees with computational-bottleneck

- Fat trees (used in DCN)
 - Still work!
5. Performance Comparisons

- **Basic setting**
 - Binary trees with levels: $k = 4, 5, \text{ and } 6$
 - Node capacity: 0 to 100 units
 - Link bandwidth: 0 to 100 GB
 - Bandwidth demand: 1 Gbps

- **Comparison algorithms**
 - Equally Distributed Placement (EDP)
 - Proportion to PM Capacities (PPMC)
 - Proportion to Physical Link Capacities (PPLC)
 - Proportion to PM and Channel Capacities (PPCC)
Binary Tree Simulation

Comparison of the elasticities
- Three comparison algorithms and PPCC
- Capacity ratio: average link capacity / node capacity

![Graphs showing comparison of elasticities for different values of k: (a) k = 4, (b) k = 5, (c) k = 6.](image)
Equal-cost multi-path routing (ECMP) with m=4 (ports)
Fat Tree Equivalence
Fat Tree Simulation

- **Settings**
 - $m = 4, 6, 8, \text{ and } 10$

- **Node capacity**
 - PM: 0 to 100 slots
 - VM comm. bandwidth: 1 Gpbs

- **Link bandwidth**
 - edge layer: [0, 10] Gbps
 - aggregation layer: [0, 15] Gbps
 - core layer: [0, 30] Gbps
Tree Testbed

- Central server: Grnlntrn
- Cisco switch: 8-port connector
- Pica8 switch: 48 ports
- Server: Dell Power Edge R210 (2.4 GHz CPU, 4 GB memory)
- Maximum link capacity: 1 Gbps

EDP 25% 25% 25% 25%
PCC 41% 24% 19% 16%
Testbed Results

- One-to-all comm.
- Stress-test on a hose: Map (comp.), shuffle (scatter/gather comm.), and reduce (comp.)

![Graph showing transmission time vs. file size for EDP and PPCC.]

- EDP: ≈1.2 min
- PPCC: ≈0.3 min
6. Conclusions

- **Models**
 - Hose model on trees

- **Elastic scheduling**
 - Maximum admissible load (MAL)
 - Maximum elastic scheduling (MES)

- **Future work**
 - Other topologies
 - Applications: Hadoop and Spark