Maximum Elastic Scheduling based on the Hose Model

基于软管模型的最大弹性调度

Jie Wu (吴杰) Temple University (天普大学)

HPC China 2019

1. AI Takeoff

🗅 Deep Blue

- 1997: defeated Kasparov.
- ICPP'96 panel: F. -H. Hsu (許峰雄) talked about LB instead.

HPC-AI convergence

- AI blackbox (黑箱子)
- However, DARPA: Explainable AI (XAI)
 - Produce more explainable models
 - Enable human users to understand
- Back to fundamentals
 - Direct algorithmic/combinatoric solutions
 - A scheduling problem related to maximum elasticity

A Simple Illustration

- Given a cable connection in a graph, each household has an occupancy limit and each cable section has bandwidth limit.
- □ What is the maximum total occupancy that can support all possible simultaneous pairwise telephone conversations (hose model)?
- What is the schedule with the maximum elasticity (i.e., maximum uniform growth in occupancy)?

hose model (软管模型): statistical multiplexing

2. Model and Formulation

How to define elasticity?

- Maximum Admissible Load (MAL) 最大容许负载
 Provisioning MAL of VMs in PMs for hose-model-based DCNs
- Maximum Elastic Scheduling (MES) 最大弹性调度
 - A task assignment of a given load (< MAL) with potential maximum uniform growth in computation and communication

A Simple 2-Level Tree

On DCN (数据中心网络), DCN cloud, or Internet cloud

G = (V, E), V: server (服务器) or switch (交换器), E: link (链路)

MAL: 3 VM +6 VM =9 VM MES for 3: 1+2 Max. Elasticity: 200%

MAL: 2+6 =8 MES for 3: 1+2 or 0+3 Max. Elasticity: 100%

Each VM has 1B Gbps aggregate bandwidth

How to Solve It (Polya)

If you can't solve a problem, then there is an easier problem you can solve: find it

- Tree topology (typical DCN)
- **Direct solutions**
- Shortest path problem (最短路径)
 - LP solution
 - Greedy solution: Dijkstra algorithm
- Maximum elastic scheduling (最大弾性调度)
 - LP solution
 - Greedy solution: Two-phase sweep

LP Solution

 $\begin{array}{ll} maximize & e & (1) \\ \textbf{s.t.} \ e \leq \min_i (1 - \frac{x_i}{N_i}) & \text{and} & x_i \leq N_i & \text{for } \forall i & (2) \\ e \leq \min_j (1 - \frac{y_j}{L_j}) & \text{and} & y_j \leq L_j & \text{for } \forall j & (3) \\ y_j = \min\left[\sum_i \mu_{ij} x_i, \sum_i (1 - \mu_{ij}) x_i\right] & \text{for } \forall j & (4) \end{array}$

Eq. (1): objective function

Eq. (2) and Eq. (3): constraints on nodes (N_i) and links (L_j) Eq. (4): $\mu_{ij}x_i$ $(1 - \mu_{ij})x_i$ μ_{ij} : 0 or 1 i^{th} node on j^{th} link

LP Solution (cont'd)

$$\begin{array}{ll} maximize & e & (5) \\ \text{s.t. } e \leq \min_i (1 - \frac{x_i}{N_i}) & \text{and} & x_i \leq N_i & \text{for } \forall i & (6) \\ e \leq \min_j (1 - \frac{y_j}{L_j}) & \text{and} & y_j \leq L_j & \text{for } \forall j & (7) \\ y_j \leq \sum_i \mu_{ij} x_i & \text{and} & y_j \leq \sum_i (1 - \mu_{ij}) x_i & \text{for } \forall j & (8) \end{array}$$

- Variables: 3n-1
 n: # of leaf nodes
 2n-2: # of links
 1: objective function e
 Constraints: 10n-8
 Eq. (6): 2n
 Eq. (7): 4n 4
 Eq. (8): 4n 4
- Inefficiency: Simplex or Eclipse

3. Two-Phase Sweep Solutions

Why Simple Solution May Fail?

How to Calculate?

Hose-model tree orientation

- Directed tree: Link orientation is based on the selected root.
- Find a root with the maximum summation of branch values.

Optimal Solution

Insights

- Apply the simple solution to different orientations.
- Select the best orientation.

Distributed Implementation

	v_1	v_2	v_3	v_4	v_5	v_6	v_7
Step 1	-	-	-	send 5 to v_2	send 6 to v_2	send 6 to v_3	send 4 to v_3
Step 2		send $\min\{5, 4\}$ +	send $\min\{6, 2\}+$				
	-	$\min\{6,7\}=10$ to v_1	$\min\{4,5\}=6$ to v_1	-	-	-	-
Step 3	send $\min\{6, 6\}$						
	$=6$ to v_2	-	-	-	-	-	-
	send min{10, 8}						
	$=8$ to v_3						
Step 4		send $\min\{6, 8\}$ +	send min{8,6}+				
		$\min\{6,7\}=12$ to v_4	$\min\{4,5\}=10$ to v_6	-	-	-	-
		send $\min\{6, 8\}+$	send $\min\{8, 6\}$ +				
		$\min\{5,4\}$ =10 to v_5	$\min\{6,2\}=8$ to v_7				
MAL	$\min\{10,8\}+$	$\min\{5,4\}+\min\{6,7\}$	$\min\{6,2\}+\min\{4,5\}$	$\min\{12,4\}+$	$\min\{10,7\}+$	$\min\{10, 2\}+$	$\min\{8,5\}+$
	$\min\{6, 6\}=14$	$+\min\{8,6\}$ =16	$+\min\{8,6\}=12$	$\min\{5,\infty\}=9$	$\min\{6,\infty\}=13$	$\min\{6,\infty\}=8$	$\min\{4,\infty\}=9$

4. Properties and Extensions

Theorem 1: The up-phase determines the MAL.

Theorem 2: The two-phase solution generates a schedule with maximum elasticity.

Theorem 3: The two-phase solution uses $2\log_{n+1}$ parallel steps. The computation complexity is 5(n-1), and the communication complexity is 4(n - 1).

Extensions

General trees

• Any k-nary trees

Optimal simple solution

• Trees with computational-bottleneck

Fat trees (used in DCN) Still work !

5. Performance Comparisons

Basic setting

- Binary trees with levels: k = 4, 5, and 6
- Node capacity: 0 to 100 units
- Link bandwidth: 0 to 100 GB
- Bandwidth demand: 1 Gbps
- Comparison algorithms
 - Equally Distributed Placement (EDP)
 - Proportion to PM Capacities (PPMC)
 - Proportion to Physical Link Capacities (PPLC)
 - Proportion to PM and Channel Capacities (PPCC)

Binary Tree Simulation

Comparison of the elasticities

- Three comparison algorithms and PPCC
- Capacity ratio: average link capacity / node capacity

Fat Tree

Equal-cost multi-path routing (ECMP) with m=4 (ports)

Fat Tree Equivalence

Tree Testbed

- Central server: GrnIntrn
- Cisco switch: 8-port connector
- Pica8 switch: 48 ports
- Sever: Dell Power Edge R210 (2.4 GHz CPU, 4 GB memory)
- Maximum link capacity: 1 Gbps

Testbed Results

- One-to-all comm.
- Stress-test on a hose: Map (comp.), shuffle (scatter/gather comm.), and reduce (comp.)

6. Conclusions

Models

🖵 Hose model on trees

Elastic scheduling

Maximum admissible load (MAL)

Maximum elastic scheduling (MES)

Future work

Other topologies

Applications: Hadoop and Spark

J. Wu, S. Lu, and H. Zheng, "On maximum elastic scheduling of virtual machines for cloud-based data center networks. "IEEE ICC, 2018.

