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Abstract—Federated learning faces significant challenges of
data heterogeneity among clients. In this heterogeneous data
scenario, the preference of local models can result in gradient
conflict during the global aggregation phase. This can signifi-
cantly lead to a decrease in the global accuracy. In this paper,
we present a novel Federated Learning Mitigating Gradient
Conflict method named FedMGC that aims to mitigate gradient
conflict. FedMGC replaces the cross-entropy loss function with
the focal loss function. This balances the proportion of each class
in the loss and reduces the preference of the local models for
majority classes. In the global aggregation phase, we design the
dominant gradient correction method called DGC to improve
the global accuracy. Specifically, we select some of the gradients
with small outliers to form the dominant gradients. And then
we use dominant gradients to adjust the local gradients and
alleviate the gradient conflict. In the evaluation experiments on
heterogeneous datasets, FedMGC achieves higher test accuracy
compared to baselines. In particular, over the CIFAR-10 dataset,
FedMGC achieves 3.88%, 1.7% and 1.31% higher test accuracy
than those of FedAvg, FedProx and FedNova, respectively.

Index Terms—Federated Learning, Gradient Conflict, Focal
Loss, Dominant Gradients.

I. INTRODUCTION

As a new distributed framework, federated learning [1] [2]
enables multiple clients to train models with non-disclosure
of privacy. However, federated learning also faces the major
challenge about data heterogeneity [3] [4]. Data heterogeneity
is a common environment involved in federated learning
systems, i.e., the data distribution among clients is usually non
independent and identically distributed (Non-IID). For exam-
ple, the label distribution and the feature distribution varies
across clients [5]. Heterogeneous data leads to the generation
of discrepant local models [6], and the phenomenon of local
gradients conflict while aggregating gradients is called gradient
conflict. Gradient conflict degrades the global accuracy, so we
try to alleviate the gradient conflict.

Fig. 1 shows the gradient conflict across three clients, where
the green, red and blue ellipses represent the loss space of the
three clients. Due to various label distribution, the local models
are optimized toward their respective optimum w∗

1 ,w∗
2 ,w∗

3 , and
there is a large difference among the local gradients. Most of
the current federated learning methods only perform a simple
weighted average on the uploaded local gradients in the global
aggregation phase. However, the angle < g1, g2 > between

the gradient g1 and the gradient g2 is so large that results in
g1 · g2 < 0. If the gradients g1, g2 are added directly, gradient
conflict may occur. Similarly, there is gradient conflict between
the gradient g2 and the gradient g3, while g1 and g3 form
a smaller angle < g1, g3 >, so there is no gradient conflict
between g1 and g3. Due to the gradient conflict, the updated
direction of the aggregated model deviates from the actual
optimum, i.e., the yellow arrow is distant from w∗, and the
global accuracy is harmed.

At present, most studies lessen the discrepancy of local
models to attenuate the gradient conflict. Model-level com-
parison learning was employed by Li et al. [7] to correct
local training by reducing the gap among the representations
obtained by the current, previous, and global models. Li et
al. [8] utilized correction terms to suppress device parame-
ter divergence during local training. Karimireddy et al. [9]
presented SCAFFOLD, which was based on control variables
that reduced the discrepancy between local and global models.
Wang et al. [10] proposed FedNova, which standardized and
adjusted local updates in accordance with the quantity of local
iterations. However, these methods fail to consider the model
preference caused by the class imbalance [11]. Therefore, the
local models trained by these methods still perform poorly
for minority classes and well for majority classes. Moreover,
the gradient conflict is not handled during global aggregation,
resulting in a lower global accuracy.

In addition, some works also focus on the global aggre-
gation optimization. Wang et al. [12] conducted momentum
updates in the global aggregation phase after clients performed
multiple local iterations. Reddi et al. [13] employed adaptive
approaches to make the global aggregation smoother. Yeganeh
et al. [14] proposed an inverse distance aggregation method,
which allowed clients to obtain higher weights, thus reducing
the distance among the models. Although the above methods
make the global aggregation smoother and increase the global
accuracy, the gradient conflict problem is not properly solved.

Motivated by these observations, we propose FedMGC to
mitigate the gradient conflict and enhance the global accuracy.
FedMGC first replaces the cross-entropy (CE) loss function
with the focal loss (FL) function to amplify the loss impact
of minority classes. By using the FL function to equalize
the proportion of each class in the loss, FedMGC mitigates



Fig. 1. Schematic diagram of gradient conflict.

the difference in recognition performance of local models on
various classes and provides high-quality local gradients for
the parameter server. Secondly, we design the DGC strategy
in the global aggregation phase. Specifically, DGC detects and
corrects conflicting gradients by using high-quality dominant
gradients, thus avoiding gradient conflict and increasing the
global accuracy. Our main contributions are as follows:

• We reformulate the FL function to balances the contribu-
tion of each class to the loss and alleviates the differences
in the local model’s recognition performance for each
class.

• We propose FedMGC to mitigate the gradient conflict.
FedMGC mitigates the difference of local model recog-
nition performance for each class through the FL function
in the local training phase and provides high quality local
gradients for the parameter server. In the global aggre-
gation phase, DGC selects and corrects the dominant
gradients and conflicting gradients respectively.

• Experiments on CIFAR-100, CIFAR10 and FMNIST
(Fashion-MNIST) datasets show that FedMGC can miti-
gate the gradient conflict and raise the global accuracy.

The structure of our paper is as follows; section II presents
the relevant work. The problem formulation and associated
concepts are defined in Section III. In section IV, FedMGC is
discussed in further depth. Section V contains the experiment
analyses. Finally, we summarize the whole paper in Section
VI.

II. RELATED WORK

A. Data Augmentation

Data augmentation can transform heterogeneous data into
homogeneous data, prevent gradient conflict, and increase the
consistency of data distribution across edge devices. To lessen
the extent of the local data imbalance, Yoon et al. [16] send
the average batch of local data exchanged with the client to
the server. Hao et al. [17] used zero-sample data augmentation
for underrepresented data to attenuate data heterogeneity. Zhu

et al. [18] presented a distillation method where each client
generated an augmented representation on the feature space.
Duan et al. [19] mitigated class imbalance by fraction-based
data enhancement and data downsampling. Wu et al. [20]
executed SMOTE algorithm for low dimensional features of
coded networks for clients to generate locally enhanced, class-
balanced datasets. Shullar et al. [25] integrated the active
learning by transferring a modest amount of data amongst
clients to lessen the skewness of the data distribution. How-
ever, the above data augmentation approaches usually require
data exchange or depend on the usability of the proxy data
representing the overall data distribution, and the applicability
is somewhat limited.

B. Federated Training Optimization

1) Local Training Optimization: A number of works have
been produced to enhance the similarity of local gradients
to stifle gradient conflict by optimizing the local training.
Li et al. [7] corrected local updates of clients by injecting
projection heads into the model with a model-level comparison
learning method. Chen et al. [26] proposed a contractible
regularization method to avoid local models deviating from
the optimal model, thereby ensuring a global aggregate model
without bias. With the use of an online learning mechanism
and decaying coefficients, Chen et al. [21] balanced prior and
current gradients. Sannara et al. [22] modified the network of
local models by finding variations among client neurons. By
including a regularization component, Li et al. [23] introduced
a teacher-student approach to modify local gradients derived
from various data distributions. Li et al. [8] suppressed
the divergence of local model parameters with a correction
term. Karimireddy et al. [9] presented a control variable-
based method to reduce the discrepancy among the local
models and the global model, thus reducing the conflict among
local gradients. In order to guarantee that the global updates
were unbiased, Wang et al. [10] presented FedNova, which
standardized and adjusted local updates in accordance with
the amount of local iterations. According to the previous
descriptions, it is found that the divergence of local gradients
can be stifled by optimizing the local training. However,
the models trained by these methods still results in poor
performance for minority classes and good performance for
the majority classes. The preference of the local model is still
strong. As a result, the gradient conflict problem still arises
in the aggregation of models based on weighted averaging,
which impairs the global accuracy.

2) Global Aggregation Optimization: Some works cope
with gradient conflict through global aggregation optimization.
Jeong et al. [24] aggregated local model parameters based
on local model reliability. Reddi et al. [13] employed adap-
tive approaches to adjust the global model update direction
making the model aggregation smoother. Wang et al. [13]
conducted momentum updates in the model aggregation stage
after clients performed multiple local iterations. Yeganeh et al.
[14] proposed an inverse distance aggregation method, which
allowed the client to obtain higher weights, thus shortening the



TABLE I
THE MEANINGS OF THE MAIN SYMBOLS USED IN FEDMGC.

Symbol Meaning
N Number of clients
K Number of client samples per commucation
λ Dominant gradient selection ratio
gi Gradient of client i
gt Dominant gradient array in round t
gt The global aggregation gradient in round t
γ Loss of focus parameters
β Loss of scaling parameters

Fk(w) Empirical risk of client k
w Model parameter
Dk Local data of client k
pi,j Gradient projection outlier of client i and client j
pi Gradient projection outlier of client i
li Loss of client i
zi Gradient outlier of client i

gap among models. Shang et al. [27] propose FEDIC, which
utilized the calibration distillation to improve the robustness
of the models. Although the above methods make the global
aggregation smoother and enhance the global accuracy by
momentum, adaptive methods and client weight adjustment,
the gradient conflict problem is not properly solved.

III. PROBLEMS AND DEFINITIONS

A. Problem Formulation

In federated learning , the network consists of 1 parameter
server and N clients. Federated learning aims to train wT
across various clients while maintaining the privacy of local
data. Since client k has access to dataset Dk only, the objective
function is optimized by minimizing the loss function of N
clients, which can be formulated as,

min f (w) =
1

N

N∑
k=1

Fk (w), (1)

where Fk (w) represents the objective function of client k. The
empirical risk of the local model is the specific meaning of
Fk (w), which is expressed as follows,

Fk (w) = Eξk Dk
[fk (w, ξk)] , (2)

where fk (·) denotes the CE loss function. However, with
unbalanced classes among clients, the CE loss function focuses
on training for the majority class due to the different sample
sizes in each class. Thus the local model may perform better
for the majority classes and worse for the minority classes. To
address the above problem, we replace the CE loss function
with the FL function, so the optimization objective can be
expressed as,

Fk (w) = Eξk Dk
[flk (w, ξi)] , (3)

where flk (·) denotes the FL function, and the objective
function becomes,

min f (w) =
1

N

N∑
k=1

[Eξk Dk
[flk (w, ξk)]]. (4)

In FedMGC, the parameter server further corrects the re-
ceived local gradients to mitigate the gradient conflict. The
specific local gradients correction method is explained thor-
oughly in section IV. Table I lists the main symbols used in
this paper.

B. Related Definitions of Gradient Conflict

Definition 1. For ∀i, j and i ̸= j, there exists the gradient
conflict between client i and client j when and only when
gi · g⊤j < 0.

Definition 2. For ∀i, j and i ̸= j, the projection of the
gradient gi in the gradient gj is |gi| cos ⟨gi, gj⟩

Definition 3. For ∀i, j and i ̸= j, let pi,j =
1
2 (|gi|+ |gj |) cos ⟨gi, gj⟩ denote the gradient projection out-
lier of client i and client j. It can be found that pi,j = pj,i.
In the edge environment consisting of K clients, let pi =

1
K−1

∑
j∈[K],j ̸=i pi,j denote the gradient projection outlier of

client i.

Definition 4. For any client i, pi denotes the gradient projec-
tion outlier of client i and li denotes the loss value of client
i. Let zi = pi

li
denote the gradient outlier of client i.

IV. FEDMGC

A. Overall Framework

Fig. 2 shows the whole process of FedMGC for dealing with
gradient conflict. In the local training phase, FedMGC replaces
the CE loss function with the FL function, and improves
the contribution of minority classes to the loss. This can
equalize the proportion of each class in the total loss, which
in turn lessen the disparity in local model performance for
each class and provide a high-quality local gradient for the
parameter server. In the global aggregation phase, we design
the dominant gradient correction approach to alleviate the
gradient conflict. The actual procedure is as follows.

(i) Obtain an array of gradient outliers based on the inner
product of two gradients and the inverse of the loss value. The
server calculates the gradient projection outlier ptk for each
gradient, which forms the gradient projection outlier array pt,
and then calculates the gradient outlier ztk corresponding to
each gradient gtk based on pt and lt and forms the gradient
outlier array zt = {zt1, ..., ztK}.

(ii) The server sorts the gradient outlier array zt =
{zt1, ..., ztK} and selects ⌈λK⌉ gradients as the dominant
gradients according to the parameter λ ∈ (0, 1].

(iii) Adjusting local gradients by domain gradient adjust-
ment approach.



Fig. 2. Framework of FedMGC.

B. Handling of Class Imbalance

FL function is originally used to solve the imbalance of
samples in one-stage target detection. We use this method to
address the class imbalance.

To better illustrate FL function, we first illustrate the CE
loss function in terms of a binary classification, which is
represented as,

CE (p, y) =

{
− log (p) if y = 1,

− log (1− p) if y = −1,
(5)

where y = {±1} represents the sample class and p ∈ [0, 1]
denotes the prediction rate. To simplify the written form, we
let,

pt =

{
p if y = 1,

1− p if y = −1.
(6)

With Eq. 5 and Eq. 6, the CE loss function can be abbre-
viated to the following form,

CE (p, y) = CE (pt) = − log (pt) , (7)

where pt represents the prediction probability. Therefore, the
derivative of the CE loss function is expressed as,

dCE (pt)

dx
= y (pt − 1) . (8)

As shown in Eq. 8, if there is class imbalance within a client,
the gradient change of the local model based on the CE loss
function may be dominated by easily classifiable majority
classes. This results in a weak contribution of minority classes
to the gradient, thus making the model poorer in identifying
minority classes.

For the disadvantage of the CE loss function for the class
imbalance case, the FL function implements a dynamic scaling
of the CE loss function. The specific equation of the focal loss
function is written as,

FL (pt) = − (1− pt)
γ
log (pt) . (9)

The FL loss function is reshaped as Eq. 9 to decrease the
proportion of the loss for majority classes and increase the
proportion of the loss for minority classes.

The modulation factor of the FL function improves the
contribution of the minority classes to the total loss and
reduces the difference of training loss among various classes.
In addition we modify the modulation factor to −β (1− pt)

γ

to reconstruct the FL as,

FL (pt) = −β (1− pt)
γ
log (pt) . (10)

(1− pt)
γ
< 1 causes the training loss calculated by the FL to

be smaller than the training loss calculated by the CE function.
By Eq. 10, we can set a suitable β to compensate for the
smaller loss value caused by the FL function.

C. Dominant Gradient Correction

1) Dominant Gradient Generation: The purpose of the
dominant gradient generation is to select some gradients with
a lower gradient outlier from local gradients as the dominant
gradients. The specific steps are:

(i) Calculate the gradient projection outliers. The concept of
gradient projection and gradient projection outlier is defined
in Def. 2 and Def. 3. Fig. 3 shows the process of projecting
three gradients g1, g2, g3 to each other and calculating the
gradient projection outliers p1, p2, p3. The process can be
divided into gradient projection, calculation of the outlier pi,j



Fig. 3. The process of calculating the gradient projection outliers.

Algorithm 1 Dominant Gradient Generation
Input: Local gradients gt = {gt1, ..., gtK}, loss values lt =
{lt1, ..., ltK}, dominant gradient selection ratio λ.
Output:Dominant gradient dgt.

1: Initialize pt = {}, zt = {}
2: for gti ∈ gt do
3: for gtj ∈ gt do
4: pti,j =

(
gi·gj
∥gj∥ +

gjgi
∥gi∥

)
/2

5: end for
6: end for
7: for i = 1, · · · ,K do
8: add pti =

∑K
j=1 p

t
i,j to pt

9: end for
10: for i = 1, · · · ,K do
11: add zti =

pt
i

lti
to zt.

12: end for
13: sort array zt in descending order to achieve zs ={

zts1 , ..., z
t
sK

}
, then choose top ⌈λK⌉ gradients dgt ={

gts1 , ..., g
t
s⌈λK⌉

}
as dominant gradients which map to zs.

14: return dgt

of mutual projection between two gradients and calculation
of the gradient projection outlier pi of client i. The gradient
projection |gi| cos ⟨gi, gj⟩ represents the length of gi in the
direction of gj . pi,j is the mean value of the mutual projection
of gi and gj , which indicates the outliers of gi and gj in terms
of direction and size. The gradient projection outlier pi is the
sum of the mean value of gradient projection of gi on other
gradients, which reflects the degree of anomaly between gi
and the rest of the gradients. If pi is smaller, it means that
the overall anomaly of gi is larger, whereas if pi is larger, it
means the overall anomaly is smaller.

(ii) Calculate gradient outliers. By dividing the gradient
projection outlier array p = {p1, ..., pK} with the array of

Fig. 4. Illustration of the dominant gradient adjustment process.

loss values lt = {l1, ..., lK} one by one as,

zk =
pk
lk

, (11)

we get the array of gradient outliers z = {z1, ..., zK}.
(iii) Select dominant gradients. The server sorts the gradient

outliers array z = {z1, ..., zK} in descending order to get
zs = {zs1 , ..., zsK}, and the gradients corresponding to the
first ⌈λK⌉ gradient outliers are selected as the dominant gradi-
ents according to parameter λ. Finally we correct the gradient
gi based on the dominant gradient. Algorithm 1 illustrates the
exhaustive procedure of dominant gradient generation.

2) Dominant Gradient Adjustment: The dominant gradient
adjustment method takes the dominant gradient as the high-
quality gradients and corrects the gradients with the gradient
conflict based on the dominant gradients. The workflow is as
follows, (i) detects whether there is a gradient conflict between
the dominant gradients and the local gradients based on the
positive or negative of the inner product of the gradients. (ii)
if a gradient has gradient conflict with dominant gradients,
we correct the gradient based on the dominant gradients, (iii)
aggregate the corrected gradients.

Fig. 4 illustrates the working process of the dominant gra-
dient adjustment approach. As shown in Fig. 4, the gradients
g1,g2,g3 are in conflict with each other, and g2 and g3 are
chosen as the dominant gradients in the case of the same loss
value. For g1, because it conflicts with both g2 and g3, we
adjust g1 with g2 and g3 respectively. The specific method
is to adjust the length of g2 and g3 according to the module
length of g1 and its angle with g2 and g3 to obtain g

′

2 and
g

′

3. Add g1 and g
′

2to get g
′

1, and then add g
′

1 and g
′

3 to get
the adjusted gradient of g

′′

1 . At this point the conflict between
g

′′

1 , g2 and g3 becomes significantly weaker. For g2, although
there is a conflict between g2 and g1, g1 is not the dominant
gradient, so we only use g3 to adjust g2. The specific process
is the same as the adjustment of g1, and we don’t repeat it
here. After the adjustment, the conflict among the gradients
is reduced, which is reflected in the reduction of the angle
among the gradients and the reduction of the difference of the
mode size among the gradients. Finally, the model is revised



Algorithm 2 Dominant Gradient Adjustment
Input: Local gradients gt = {gt1, ..., gtK}, dominant gradients
dgt =

{
gts1 , ..., g

t
s⌈λK⌉

}
.

Output: Corrected gradients gt.
1: Initialize n = |dg| = ⌈λK⌉, m = |gt|, gcuri ← gti
2: for i < m do
3: for j < b do
4: if gcuri · gsj < 0 and i ̸= sj then

5: gcuri = gcuri −
gcur
i ·gt

sj

∥gt
sj

∥2 gtsj
6: end if
7: end for
8: end for
9: gt = 1

m

∑m
i=1 g

cur
i

10: return gt

TABLE II
CIFAR-100, CIFAR-10 AND FMNIST DATASET STATISTICS

Dataset Data volume Training sets Test sets

CIFAR-100 60000 50000 10000

CIFAR-10 60000 50000 10000

FMNIST 70000 60000 10000

in the optimum direction. The details of the dominant gradient
adjustment can be found in Algorithm 2.

In general, DGC is divided into two parts. First, a portion
of the gradients with low gradient outliers from all local
gradients are selected as the dominant gradients. Then, all of
the gradients are subjected to gradient conflict detection. If a
gradient conflict with the dominant gradients, it is adjusted in
accordance with the dominant gradient adjustment approach.
After all the gradients have been adjusted, the conflict among
these gradients is significantly reduced, and then global aggre-
gation is performed.

V. EXPERIMENTS

A. Experimental Setup

1) Datasets and Models: We evaluate FedMGC over three
datasets, CIFAR-100, CIFAR-10, and FMNIST (Fashion-
MNIST), and Table II displays the quantity of each dataset
utilized for training and testing. We utilize the Dirichlet distri-
bution q ∼ Dir (αp) to manage the level of data heterogeneity,
where p denotes prior class distribution and α determines
the level of heterogeneity. When α → 0, the degree of data
heterogeneity is strong i.e. class imbalance is severe, and when
α → ∞ , the data heterogeneity becomes weaker. As shown
in Fig. 5(a), When α → 0 , each client only own the data
from one class. As the α becomes larger, the sample size of
each class is balanced.

Different models are designed to evaluate the performance
of FedMGC. For CIFAR-100, two convolutional layers are
used, a 2*2 maximum pooling layer is built in the middle,
followed by three fully connected layers, and finally the

Fig. 5. The percentage of local data belonging to classes for clients in CIFAR-
10 dataset.

prediction results are output by the softmax layer. The network
architecture of CIFAR-10 is two convolutional layers, with
a 2*2 maximum pooling layer in the middle, followed by
three fully connected layers, and finally the prediction results
are output by softmax layer. For FMNIST, a two-layer CNN
network with 5*5 convolutional kernels is employed. Each
layer has a 2*2 maximum pooling layer, and the last layer
is a fully connected layer. The results are output by softmax
layer.

2) Hyperparameter Settings: In all experiments, we employ
the SGD optimizer. The batch size is 128, the local epoch is
10 and the learning rate is 0.001. Because the proportion of
the sample size of each class in the client differs when the
data heterogeneity and datasets are different, the hyperparam-
eters of the FL function are taken differently, and we make
γ ∈ {0.1, 0.2, 0.5, 1.0} and β ∈ {1.0, 1.2, 1.5, 2.0} . All the
following experiments are performed with γ and β adjusted
optimally.

3) Baselines and Validation Metrics: We compare Fed-
MGC with several related methods such as FedAvg [15],
FedProx [8], SCAFFOLD [9] and FedNova [10]. We mainly
measure the performance of FedMGC in terms of test ac-
curacy, local loss of various classes, and gradient projection
outliers.

B. Analysis of Hyperparameter λ

The hyperparameter λ denotes the selection ratio of the
dominant gradients, which means that ⌈λK⌉ gradients are
selected as the dominant gradients. To investigate the effect
of the hyperparameter λ on FedMGC, we selected λ ∈
{0.1, 0.3, 0.5, 0.7, 0.9} under the heterogeneous data setting
of α = 0.5 over the CIFAR-10 dataset. We employee 100
clients with an equal amount of data on the clients, and



Fig. 6. Test accuracy of FedMGC and related ablation methods.

Fig. 7. Test accuracy of FedMGC at different dominant gradient selection
ratios.

10 clients are involved in each round of communication for
federated training. As shown in Fig. 7, FedMGC works best
when λ = 0.5, which may be because the main gradients is
selected as the dominant gradients when λ = 0.5 to avoid
the lopsidedness when there are fewer dominant gradients.
The problem of negative gradient correction due to too much
dominant gradient selection is also prevented.

C. Ablation Experiments

We conduct ablation experiments on the CIFAR-10 dataset
with α = 1, where the number of clients is 100, the client
participation rate is 10%, and the amount of data in each
client is the same. Fig. 6 shows the results of the accuracy of
FedMGC compared with related ablation methods. FedAvg(ce)
and FedProx(ce) denote the FedAvg [15] and FedProx [8]
approaches based on the CE loss function, respectively. The
test accuracy of FedMGC is superior to FedAvg(ce)+DGC and
FedProx(ce)+DGC, which indicates the effectiveness of the
FL loss function for dealing with class imbalance. The test
accuracies of FedAvg(ce)+DGC and FedProx(ce)+DGC are
higher than those of FedAvg(ce) and FedProx(ce) respectively,
which indicates the effectiveness of DGC.

1) The Effectiveness of FL Function: As shown in Fig. 8,
class 9 and class 4 are majority classes with sample sizes of
148 and 113, respectively. Class 8 and class 5 are minority
classes with sample sizes of 5 and 10, respectively. The local
model is trained to rapidly improve the recognition of majority

Fig. 8. Class loss variation in a client with class imbalance.

Fig. 9. The variation of gradient projection outliers for FedMGC, FedAvg,
and FedProx.

classes, followed by the loss adjustment term (1− pt)
γ to

decrease the contribution of the loss of majority classes. It
can be seen that class 9 and class 4 rapidly reduce their
own contribution within the first 50 rounds, increasing the
proportion of minority classes in the loss of the client, thus
alleviating the gradient conflict caused by class imbalance.
The test accuracy of FedMGC in Fig. 6 is superior to those
of FedAvg(ce)+DGC and FedProx(ce)+DGC, which verifies
the effectiveness of the FL function and shows that the
minority class samples are important for improving the model
performance.

2) The Effectiveness of DGC: Fig. 9 shows the change
process of gradient projection outliers of FedMGC, FedAvg
and FedProx on the CIFAR-10 dataset when α = 1. As
shown in Fig. 9, the gradient projection outliers gradually
become smaller as the federated training continues, which
suggests that the updated gradients tend to be consistent in
size and direction. The gradient projection outliers of FedMGC
are smaller than those of FedAvg and FedProx, indicating
that the use of DGC to correct the updated gradient can
effectively alleviate the gradient conflict. The test accuracies of
FedAvg(ce)+DGC and FedProx(ce)+DGC in Fig. 6 are 2.9%
and 3.0% higher than those of FedAvg(ce) and FedProx(ce),
respectively.

D. Performance Analysis

1) Full Client Participation: Compared with other base-
lines, SCAFFOLD [9] is more sensitive to the client partici-



Fig. 10. Test accuracy of FedMGC and baselines with full client participation.

pation rate. Due to the infrequent updating of local control
variables, the prediction of updated direction using control
variables can be quite erroneous when the client engagement
rate isn’t high. Thus, it is difficult for SCAFFOLD to converge
[3]. To facilitate the comparison of test accuracy, we conducted
experiments with a client participation rate of 100% on the
CIFAR-10 dataset with clients is 10 and α = 0.5. As shown
in Fig. 10, FedProx and FedAvg have similar test accuracies
because the regularization has less impact due to the small
µ. SACFFOLD corrects the client-drift in local updates by
controlling the variables, and its test accuracy is higher than
those of FedAvg, FedProx, and FedNova. FedMGC achieves
the highest test accuracy among all methods, which indicates
that the global accuracy can be improved to some extent by
mitigating the gradient conflict in global aggregation.

2) Client Partial Participation: Because in a real scenario
of federated learning, only a few clients participate in fed-
erated training per round, we conducted experiments with
client partial participation. The size of clients is 100, and
10 clients participate in federated training in each round.
Because SCAFFOLD doesn’t converge in this case [3], we
don’t compare FedMGC with SCAFFOLD when the clients
are partially involved in federated training.

Fig. 11 and Fig. 12 show the test accuracy of FedMGC,
FedAvg, FedProx, and FedNova when the degree of het-
erogeneity is α = 0.5 and α = 1, respectively. Among
these, the hyperparameters of the FedMGC have been adjusted
optimally. Observing Fig. 11 and Fig.12, it is found that these
four methods perform similarly on the FMNIST dataset, and
FedMGC performs slightly better than other methods. Taking
the CIFAR-10 dataset in Fig. 11 and Fig. 12 as an example, the
performance of the four methods can be analyzed as follows:

• As Fig. 12, FedMGC has the greatest global accuracy,
which is at most 6.56%, 5.50%, and 5.19% higher than
those of FedAvg, FedProx, and FedNova. This indicates
that the gradient conflict seriously affects the global accu-
racy, and FedMGC can effectively mitigate the gradient
conflict.

• The volatility of the FedMGC test accuracy curve in
the pre-training period is larger than those of FedAvg,

FedProx and FedNova when α = 0.5 on the CIFAR-10
dataset in Fig. 11. The reason is that the model parameter
space is unstable under the strongly heterogeneous data
environment, and the dominant gradients correct the
unstable gradients easily to cause correction error, so
much so that it leads to the volatility of local model
parameters. With the convergence of local models, the
parameters gradually stabilize and the accuracy curve
gradually smooths out.

• FedMGC needs to train more rounds to converge. On the
CIFAR-10 dataset with α = 1, FedMGC achieves stable
test accuracy at 400 rounds, while FedProx achieves a
more stable test accuracy at 250 rounds. The reasons
for the convergence slowdown of FedMGC are analyzed
as, (i) FL requires some computation time to control the
loss of majority classes and minority classes in a relative
equilibrium state, thus reducing the convergence rate, (ii)
The DGC decreases the length of the gradients, which
results in less variation in the model parameters and leads
to a reduction in the global model convergence rate.

VI. CONCLUSION

To address the issue of the degradation of the global accu-
racy due to the gradient conflict among clients, we propose
FedMGC, a gradient conflict mitigation approach. FedMGC
increases the loss contribution of minority classes based on
the FL function, thus reducing the preference of the local
models and providing high-quality local gradients for the
parameter server. In the global aggregation phase, FedMGC
detects and corrects gradients with conflict based on the
DGC approach. Through extensive experimental evalution, we
show that FedMGC significantly outperforms the baselines in
various scenarios and can mitigate the gradient conflict. In the
future, we plan to further optimize the FL function to reduce
the tuning of the hyperparameters of this loss function and
provide a analysis of the convergence.
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