

Prolonging WSN Lifetime with an Actual Charging Model

ZHI MA*[†], JIE WU[†], SHENG ZHANG*, AND SANGLU LU* *STATE KEY LAB. FOR NOVEL SOFTWARE TECHNOLOGY, NANJING UNIVERSITY, CN [†]CENTER FOR NETWORK COMPUTING, TEMPLE UNIVERSITY, USA EMAIL: MARSZER@FOXMAIL.COM, JIEWU@TEMPLE.EDU, {SHENG, SANGLU}@NJU.EDU.CN

Outline

Introduction

- Nonlinear superposition
- New problem in wireless charging

Algorithm design

- Related works
- Weight-Greedy Picking
- Experiments
- Conclusion and future works

Nonlinear Superposition

Radio interference occurs

Nonlinear superposition

Charging model

•
$$a_{i0} = \frac{A_0}{4\pi d_{ij}/\lambda\omega_0} \cos(\omega_0 t + \varphi_0 - 2\pi \frac{d_{ij}}{\lambda\omega_0})$$

•
$$P_{j|C} = \int [A_0^j(t)]^2 d_\omega = P \sum_{c_i \in C} \frac{1}{d_{ij}^2} + P \sum_{c_i \in C} \sum_{c_m \in Cc_m \neq c_i} \frac{1}{d_{ij}d_{mj}} \cos(2\pi \frac{d_{ij} - d_{mj}}{\lambda})$$

NANIA CONTRACTOR

Our problem in wireless charging

- Variable: scheme chargers on/off state in every charging period.
- Objective: minimize charging periods.
- Constraint: charge each sensor with energy no less than E.

Related work

Computation ahead

Have to calculate the charging utility of each charger set at every sensor node in advance. As a result, the complexity of this step grows exponentially with the number of chargers, making it much more complex than previously thought.

Weight-Greedy Picking

Algorithm 1 Weight-Greedy Picking (WGP)

Input: C: Charger set, S: Sensor set, E: Energy capacity **Output:** The time schedule

- 1: Initialize W, and set W'_1 to be 1,*i*=1.
- 2: while $S \neq \emptyset$ do
- 3: Find a MCS, and divide chargers into two groups H_i , C'.
- 4: while W'_1 is over 0 do
- 5: for each charger c_i in C' do
- 6: Compute the w'_i .
- 7: sort from largest to smallest in W'.
- 8: **if** W'_1 is over 0 **then**
- 9: Add C'_1 in H_i .
- 10: Make chargers in H_i work for time Δ .
- 11: for every sensor in S do
- 12: **if** s_i is fully charged **then**
- 13: remove s_i from S.
- 14: $i++, W'_1=1$, compute W;

NANILING UM

First find a MCS: pick charger with the maximum weight, and the remove chargers and repeat;

Add new chargers: add the charger which has the most effective

A simple Example

An example of a MCS

Experiments

Conclusion and Future Work

- Nonlinear superposition
- Adjustable initial phases
- Different duration of each charging period

Thank you!

marszer@foxmail.com