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Abstract—The great achievement of IoT and the wide use
of edge devices have brought explosive growth in data. The
quality and scale of data determine the performances of machine
learning models. Federated learning has attracted widespread
attention for its ability to use isolated data and protect data
privacy. Models can represent excellent generalization capabil-
ities through federated training. However, the large number of
devices and complex models involved in federated training ex-
acerbate the communication costs and degrade the performance
of the global model. Although existing approaches can reduce
communication costs, they ignore the degradation of global
model accuracy in a heterogeneous environment. To alleviate
the huge communication costs in federated learning, this paper
focuses on reducing upstream and downstream communication
frequency while ensuring global model accuracy. We propose
a Two-way Delayed Updates method with Model Similarity
in Communication-Efficient Federated Learning (FedTDMS).
FedTDMS employs personalized local computation to improve
global model accuracy on heterogeneous data. Combining lo-
cal update relevance check and global model compensation,
FedTDMS reduces the communication frequency in Federated
Learning. We conduct experiments on the MNIST-FL and
CIFAR-10-FL datasets. Results show that FedTDMS can greatly
optimize communication efficiency while maintaining good global
model accuracy.

Index Terms—federated learning, data heterogeneity, commu-
nication efficiency optimization, communication frequency.

I. INTRODUCTION

With the great achievement of IoT and the wide use of edge
devices, massive amounts of data for training complex models
can be obtained from various edge devices [1] [2] [3] [4]. IoT
technology provides intelligent applications to users [5] [6],
the quality and scale of data gathered through edge devices
determine the performances of intelligent applications [7]. In
real-world scenarios, the scattered distribution and privacy
concerns of data result in poor data quality for intelligent
applications [8]. Federated learning [9] is capable of providing
edge intelligent applications for it can fully and effectively
utilize dispersed data while protecting data security. The
heterogeneity of federated settings requires huge client-server
communication costs during training, [10] which leads to
network latency or data loss, slowing down the convergence
speed of the global model [11].

Fig. 1 shows the frequent communication process in hetero-
geneous federated learning. In a federated environment, each
communication round can be divided into an upstream phase
of clients uploading the local model and a downstream phase

Fig. 1. The frequent communication process in heterogeneous federated
learning

of the server distributing the global model. Assuming the
number of clients is N , compared with the IID data, training
a global model on the Non-IID data requires more communi-
cation rounds due to the various data distribution among the
clients. Assuming each communication round includes both
N2 rounds of upstream and downstream communication. If
the client uploads its local model after each local update, the
total communication rounds of all clients is 2N3.

Related works reduce the communication frequency be-
tween clients and the server to optimize the communication
efficiency in federated training [12]. During the upstream
communication phase, the multi-round local update is an
effective way to reduce communication frequency. FedAvg
[13] reduces the frequency of upstream communication by
increasing iterations of the local update. CMFL [14] proposes
a check mechanism for local model updates to avoid uploading
irrelevant updates to the server, thereby reducing communica-
tion frequency. However, FedAvg and CMFL only optimize
the upstream communication efficiency.

During the downstream communication phase, the commu-
nication frequency can be reduced by distributing the model
updates to part of the clients. PRLC [15] enables clients to
discontinuously download the global model. LAG-PS [16]
employs an adaptive delayed update method to skip slowly-
varying gradients. However, LAG-PS is unsuitable for hetero-
geneous data due to the dramatic fluctuations of gradients.



In general, existing approaches only unilaterally reduce
the communication frequency upstream or downstream and
do not apply to heterogeneous federated learning. Therefore,
this paper proposes a Two-way Delayed Updates method
with Model Similarity in Communication-Efficient Federated
Learning (FedTDMS), considering reducing the communi-
cation frequency in both upstream and downstream phases
while ensuring the global model accuracy. FedTDMS employs
personalized local computation to improve the global model
accuracy in heterogeneous environments. By adding to the
local update relevance check and global model compensation,
FedTDMS delays the upload and download of the model up-
dates simultaneously. Generally speaking, FedTDMS reduces
the communication frequency of federated learning while
ensuring global model accuracy.

The main contributions of this paper are as follows,
• The personalized local computation is utilized to de-

termine the number of local iterations according to the
computing power and data distribution of the client. The
personalized local computation mitigates problems such
as slow convergence and low global accuracy due to
heterogeneous federated learning.

• To reduce upstream communication frequency, a local
update relevance check mechanism is employed for iden-
tifying and skipping weakly relevant local model updates.
Meanwhile, the local update relevance check alleviates
gradient conflict and drift caused by data heterogeneity.

• To reduce downstream communication frequency, a
global model compensation mechanism is introduced
for selecting part of the clients to receive the global
model. Furthermore, to ensure global accuracy, unse-
lected clients utilize a local update to imitate the global
updates.

The remainder of this paper is organized as follows. Section
II presents relevant work on reducing communication fre-
quency. The system model of FedTDMS is shown in Section
III. Section IV provides a detailed description of FedTDMS.
Section V evaluates the performance of FedTDMS. In the end,
Section VI presents the conclusions of this paper.

II. RELATED WORK

Reducing the communication frequency between the client
and the server is widely used to optimize communication
efficiency in federated training. During the upstream com-
munication phase, allowing for multi-round local update is
a common way to reduce communication costs [17] [18].
FedAvg [13] allows the clients to execute a fixed round of
stochastic gradient descent (SGD) [19]. The frequency of
global model updates in FedAvg drops significantly, thus
effectively reducing the upstream communication frequency.
Inspired by FedAvg, related researches [19] [20] [21] [22]
utilize parallel SGD and variant algorithms based on the multi-
round local updates for higher communication efficiency.
However, FedAvg and related variant algorithms force each
client to perform a fixed round of local update, which is
unsuitable for heterogeneous federated learning. FedProx [23]

assigns variable rounds of local update to each client by
introducing a regularization term, making it adaptable to
heterogeneous federated learning.

In addition to the multi-round local update, the delayed
aggregation mechanism can also reduce the frequency of
upstream communication. CMFL [14] compares the local
update direction with the global update trend, preventing
invalid updates from being uploaded. LAG-WK [16] utilizes
the difference in loss between the local updates and the global
updates to detect slowly changing gradients. LAG-WK skips
the computation and upload of the slowly changing gradients
to reduce upstream communication. However, local gradients
of clients change dramatically under strong heterogeneity
situations. For both CMFL and LAG-WK, a large amount
of gradient uploads are skipped in the prophase of training,
damaging global model accuracy.

Moreover, related works reduce the downstream commu-
nication frequency for less communication costs. PRLC [15]
introduces a delayed update mechanism based on local com-
pensation. Specifically, clients intermittently pull the global
model, while clients that have not obtained the global model
utilize a local update to imitate the global updates. However,
the experiments only show that PRLC can reduce communi-
cation costs in a homogeneous environment. Chen et al. [16]
proposed LAG-PS based on LAG-WK to check whether there
is a slow change during the global updates process. When the
changes in the global updates are small or the global model
is close to convergence, LAG-PS reuses the outdated model
and delays downstream communication.

In general, existing methods only unilaterally reduce the
communication frequency upstream or downstream, and the
heterogeneity of Federated learning is not fully considered.
This paper proposes a Two-way Delayed Updates method
with Model Similarity in Communication-Efficient Federated
Learning (FedTDMS). FedTDMS can optimize the commu-
nication efficiency of heterogeneous federated learning while
ensuring global model accuracy.

III. SYSTEM MODEL

Assuming that the clients set C = {ci |i = 1, · · · , c} and
the central server from the federated network, each of the
clients owns a private training dataset Di and an initialized
local model w0. Before each round of training, the server ran-
domly selects S clients for participating in federated training.
During the training, clients optimize their local loss function
fi (w), as shown in Equation (1):

fi (w) =

N∑
n=1

ℓ (Di,n;w) , (1)

where N is the total number of data samples owned by
client i, Di,n is the n-th data sample in client i, and ℓ (Di,n;w)
represents the local loss function. The global model w is
shared by all clients and is jointly trained by the S selected
clients. Therefore, the objective of federated learning is opti-
mizing the loss function F (w) of the global model to ensure



TABLE I
MAIN SYMBOLIC PARAMETERS IN SECTION III

Symbol Definition
M Number of clients
P Number of parameters of the network
S Number of clients participating in training
ηl Local learning rate
ci The i-th client participating in training

Spush Set of clients for uploading model updates
V push
comm Upstream communication volume

V pull
comm Downstream communication volume
wr

i Local model of client ci in r-th iteration
wr Global model in r-th iteration
△wr

i Local model updates of client ci in r-th iteration
△wr Global model updates in r-th iteration

that the average loss of all clients is minimized, as shown in
equation (2):

min
w

F (w) =
1

S

S∑
i=1

fi (w). (2)

Usually, SGD is used to optimize Equation (2). Specifically,
the local updates △wi are calculated by participating clients
based on their private data and are uploaded to the server
subsequently. The server averages all local updates to update
the global model, as shown in Equation (3):

wr+1 = wr +
1

S

S∑
i=1

△wi, (3)

where wr represents the global model in the t-th round of
training. wr+1 is the global model of r+1-th round updated
based on the average local updates.

After aggregating the local updates, the server distributes
the global model of r+1-th round to all clients for updating
their local model, as shown in Equation (4):

∀i ∈ C wi
r+1 = wr+1, (4)

where wi
r+1 is the local model owned by client i of r+1-th

round.
Assuming the federated training converges after T rounds

of iterations, each round of iterations involves one upstream
communication and one downstream communication. The
total communication volume is Vcomm, as shown in Equation
(5):

Vcomm =

T∑
r=1

(
S∑

i=1

V (wi
r) +

S∑
i=1

V (wr)

)
, (5)

where V (w) is used to calculate the size of w,
∑S

i=1 V (wi
r)

refers to the upstream communication volume V push
comm and∑S

i=1 V (wr) refers to the downstream communication volume
V pull
comm. According to Equation (5), the optimization objective

is reducing the frequency of uploading or downloading model
updates, furthermore reducing the total communication vol-
ume Vcomm in federated learning.

Fig. 2. The framework of FedTDMS

However, unilaterally reducing the frequency of model
updates leads to missing information during global model
aggregation, exacerbating global model accuracy. This phe-
nomenon is particularly evident in the heterogeneous envi-
ronment. Therefore, the overall optimization objective is to
achieve efficient communication by reducing both V push

comm and
V pull
comm while ensuring global model accuracy.
The main symbolic parameters of FedTDMS proposed in

this paper are shown in Table I.

IV. THE DESIGN OF FEDTDMS

A. Overall Framework

Fig. 2 illustrates the framework of FedTDMS. In each
training round, FedTDMS can be divided into three phases:
(1) personalized local computation, (2) local update relevance
check, and (3) global model compensation. Phases (1) and
(2) reduce the frequency of clients uploading local model
updates, thus reducing the upstream communication volume,
while phase (3) reduces the frequency of the server distributing
the global updates, thus reducing the downstream communi-
cation volume. Additionally, phases (1) and (3) can alleviate
the decrease in global model accuracy, thereby maintaining
good global model accuracy while optimizing communication
efficiency.

B. Personalized Local Computation

Personalized local computation allows FedTDMS to deter-
mine the iterations of local update according to the computing
power and data distribution of each client. Inspired by FedProx
[23], we introduce a regularization term into the loss function
to construct variable local iterations for different clients, as
shown in Equation (6):

g (wf ) = ∇h (wf , w
r
i ) = ∇f (wf ) + µ (wf − wr

i ) , (6)



Fig. 3. The illustration of the local update relevance check

where g (wf ) = ∇h (wf , w
r
i ) is the loss function with

the regularization term µ (wf − wr
i ), µ is the regularization

coefficient, and wf is the local model during the local update
process. In the first round of local iteration, it has wf = wr

i ,
where wr

i is the initial model of client ci in communication
round r. As the client performs personalized local computation
among iterations, wf gradually biases towards the local data
distribution of client i, and the local model update process is
shown in Equation (7):

wf = wf − ηlg (wf ) , (7)

where ηl is the local learning rate. Equation (7) is used to
perform a local model update after each local iteration.

By allowing clients to perform variable iterations of local
update, personalized local computation alleviates problems
such as slow convergence and low accuracy of the global
model.

C. Local Update Relevance Check

During the training process, some local model updates
either have the same direction with the global model updates
or contribute little to the global model updates. When the
global model is close to convergence, the similitude between
the updates of the model on both sides is extremely high.
Therefore, it is advisable to skip similar local model updates to
reduce upstream communication volume. Based on the above,
the local update relevance check is proposed to examine
whether the update trend of the models on both sides is
consistent. Local update relevance check allows clients to skip
uploading the highly correlated local updates to decrease the
frequency of upstream communication.

Before performing the local update relevance check, the
local model updates △wi is firstly obtained, as shown in
Equation (8):

△wi = wf − wr
i . (8)

Fig. 4. The two-way delayed updates mechanism of FedTDMS

Next, the number of parameters with consistent update
direction between the models on both sides is calculated to
obtain the update correlation coefficient, as shown in Equation
(9):

C (△wi,△w) =
1

P

P∑
p=1

I(sgn (△wp
i ) = sgn (△wp) ), (9)

where P represents the number of updated parameters,
and sgn (·) is the symbolic function. I(sgn (△wp

i ) =
sgn (△wp) ) = 1 represents that the update direction of the
p-th parameter between the models on both sides is identical.
The update correlation coefficient C (△wi,△w) ∈ [0, 1]
represents the proportion of the number of parameters with
the same update direction to the number of total parameters.
The bigger C (△wi,△w) is, the updates between the models
on both sides are more similar. Therefore, it is necessary to
set a threshold for C (△wi,△w) to determine whether the
client meets the delayed upload standard.

We use the local similarity coefficient vclient as the thresh-
old of C (△wi,△w). C (△wi,△w) < vclient indicates that
the local updates of ci are weakly correlated with the global
model updates and needed to be uploaded; C (△wi,△w) >
vclient indicates that the local updates of ci are similar to the
global model updates and the upstream communication of ci
in current round can be skipped. Fig. 3 is the illustration of
the local update relevance check of FedTDMS.

By identifying and skipping weakly correlated local model
updates, the local update relevance check reduces the fre-
quency of upstream communication. Moreover, the mech-
anism alleviates problems such as gradient conflicts and
gradient drift caused by data heterogeneity.

D. Global Model Compensation

During the downstream communication phase, the server
usually distributes the global updates to a section of the
clients for less communication costs. However, this operation
results in differences between the models on both sides. The
difference becomes more severe as the training proceeds,
ultimately reducing the accuracy of the global model and
even causing it to fail to converge. Therefore, global model
compensation is proposed to enable clients who have not



Algorithm 1 Two-way Delayed Updates method with Model
Similarity in Communication-Efficient Federated Learning
(FedTDMS)
Input: local model updates △w, local learning rate ηl,
local training epochs E, global learning rate ηg , number of
iterations R, number of clients N , current iteration round r,
regularization coefficient µ
Output: the global model wR+1

1: for r = 1, 2, · · · , R do
2: Client:
3: Define S ⊆ {1, 2 · · · , N}
4: for Client i ∈ S do
5: Download model update △wr−1

6: if i is selected with vpull then
7: wf = wr

i = wr−1
i +△wr−1

8: else
9: wf = wr

i = wr−1
i − ηlg

(
wr−1

i

)
10: end if
11: for e = 1, 2, · · · , E do
12: g (wf ) = ∇h (wf , w

r
i ) = ∇f (wf )+µ (wf − wr

i )
13: wf = wf − ηlg (wf )
14: end for
15: △wr

i = wf − wr
i

16: C
(
△wr

i ,△wr−1
)

= 1
P

∑P
p=1 I(sgn (△wp

i ) =
sgn (△wp) )

17: if C
(
△wr

i ,△wr−1
)
< vclient then

18: Communicate △wr
i

19: else
20: Communicate (NULL)
21: end if
22: end for
23: Server:
24: wr+1 = wr + 1

|Spush|
∑|Spush|

i=1 △wr
i

25: △wr = wr+1 − wr

26: Communicate △wr to selected clients with vpull
27: end for

received the global model to compensate for the gap with
the global model by performing local update.

Specifically, during the downstream communication phase,
the clients selected with probability vpull update their local
model using global model updates, as shown in Equation (10):

wr
i = wr−1

i +△w, (10)

Clients that have not received the global model updates
compensate for the gap with the global model by performing
local update, as shown in Equation (11):

wr
i =wr−1

i −ηlg
(
wr−1

i

)
(11)

where g
(
wr−1

i

)
is the client that has not received the global

model updates, and ηl represents the local learning rate.
As shown in Fig. 4, clients C1 and C4 delay the upstream

communication by utilizing local update relevance check,

and clients C2 and C3 delay the downstream communication
using global model compensation, achieving two-way delayed
updates.

E. Algorithm Design

During the training process, clients selected with vpull
update their local model according to the global updates, the
rest of the clients compensate for the gap with the global
model by performing personalized local computation. The
Local update relevance check is performed subsequently to
decide whether to upload local updates. Then the server
updates the global model while delivering it to selected clients.
Algorithm 1 shows the detailed steps of FedTDMS.

V. PERFORMANCE EVALUATION

A. Experiment Setup

1) Federated datasets and parameter settings: We select
the MNIST dataset and CIFAR-10 dataset for experiments.
For the purpose of imitating the data distribution among
clients in a heterogeneous federated network, we employ
the Dirichlet distribution Dir (α) to generate heterogeneous
federated datasets of various degrees, named as MNIST-FL
and CIFAR-10-FL. The larger α is, the more homogeneous
the data distribution among clients is.

For the MNIST-FL dataset, the iteration rounds R is set
to 100, the batch size batchsize is set to 200, the local
learning rate ηl is set to 0.1, the global learning rate ηg is
set to 1, and the number of clients N is set to 100. 10
clients are randomly selected for federated training in each
round. The regularization coefficient µ is set to 0.01, based
on the experimental settings of FedProx. For the CIFAR-10-
FL dataset, the iteration rounds R is changed to 200 and the
local learning rate ηl is changed to 0.01.

2) Network models: Based on the complexity of the
CIFAR-10-FL dataset in terms of class and RGB channels
compared to the MNIST-FL dataset, different network models
are chosen to handle image classification tasks for the two
datasets. Specifically, we use Logistic Regression and AlexNet
for the MNIST-FL dataset and CIFAR-10-FL dataset, respec-
tively. So that we can verify the communication efficiency of
FedTDMS on both convex and non-convex models.

3) Experimental baselines: FedAvg [13], as a typical
communication-efficient approach, is selected to be one of the
baselines. Additionally, we compare FedTDMS with CMFL
[14], which optimizes communication efficiency according to
the global model update trend and the local update direction,
and PRLC [15], which utilizes the intermittently pulling and
local update to reduce communication costs.

The reduction in communication volume represents the
skipped communication volume due to upstream and down-
stream communication delays when the global model reaches
a specified accuracy.

B. Analysis of Experiment Results

1) Analysis of hyperparameter selection for FedTDMS:
In order to select suitable hyperparameters for subsequent



TABLE II
REDUCTION IN COMMUNICATION VOLUME (KB) WITH vclient

vclient

Dataset
MNIST-FL CIFAR-10-FL

α = 0.5 α = 1 α = 10 α = 0.5 α = 1 α = 10
0.60 182.48 184.38 186.22 814.75 892.59 931.13
0.65 29.74 30.03 30.28 126.76 181.07 200.18
0.70 4.66 4.96 5.18 39.02 45.32 50.00
0.75 2.17 2.52 2.78 11.05 15.11 16.66
0.80 1.73 1.75 1.77 4.75 7.77 8.83

TABLE III
GLOBAL MODEL ACCURACY (%) WITH vclient

vclient

Dataset
MNIST-FL CIFAR-10-FL

α = 0.5 α = 1 α = 10 α = 0.5 α = 1 α = 10
0.60 92.35 92.44 92.61 60.10 64.22 67.73
0.65 92.41 92.45 92.49 60.43 64.86 67.65
0.70 92.40 92.46 92.55 60.87 65.29 67.42
0.75 92.37 92.47 92.54 61.69 65.63 67.26
0.80 92.43 92.47 92.54 61.85 65.71 67.58

experiments, we evaluate the performance of FedTDMS on
the reduction in communication volume and global model
accuracy with different hyperparameters. Specifically, we con-
duct experiments on the MNIST-FL dataset and CIFAR-10-FL
dataset under varying degrees of data heterogeneity (α = 0.5,
α = 1, and α = 10). Table II to Table V show the results.

In regard to local correlation coefficient vclient, it is found
that when vclient < 0.6, almost all the participating clients
have a local update correlation coefficient greater than vclient.
This means all the clients participating in federated learning
skip upstream communication, thus causing the federated
training fails. When vclient > 0.8, all the local update
correlation coefficients of the participating clients are less
than vclient, which means that all clients need to upload local
model updates, resulting in the reduction in communication
volume equal to 0. Therefore, the value of vclient should
be taken within [0.6, 0.8] to make it meaningful. The related
experiments only show the results with vclient in [0.6, 0.8].

As shown in Table II, as the value of vclient increases, the
reduction in communication volume decreases significantly.
Table III shows that, in high data heterogeneity situation
(α = 0.5, α = 1), as the value of vclient increases, the
global model accuracy improves slowly. Under low data
heterogeneity conditions (α = 10), the influence of vclient
on global model accuracy is not significant, and the global
model accuracy is highest for vclient = 0.6.

Based on the above analysis, it can be concluded that when
vclient = 0.6, the global model accuracy decreases slightly
under conditions of high data heterogeneity. While in low
data heterogeneity situation, the minimum upstream commu-
nication volume and the maximum global model accuracy
can be obtained simultaneously. Therefore, setting vclient to
0.6 can significantly improve communication efficiency while

TABLE IV
REDUCTION IN COMMUNICATION VOLUME (KB) WITH vpull

vpull

Dataset
MNIST-FL CIFAR-10-FL

α = 0.5 α = 1 α = 10 α = 0.5 α = 1 α=10

0.1 2046.16 2067.26 2088.35 8754.33 8859.80 8965.27
0.3 1591.46 1607.87 1624.27 7055.02 7137.05 7219.08
0.5 1136.76 1148.48 1160.20 5156.48 5215.08 5273.67
0.7 682.05 689.09 696.12 2847.80 2883.95 2918.11
0.9 227.35 229.70 232.04 996.14 1007.86 1019.58

TABLE V
GLOBAL MODEL ACCURACY (%) WITH vpull

vpull

Dataset
MNIST-FL CIFAR-10-FL

α = 0.5 α = 1 α = 10 α = 0.5 α = 1 α = 10
0.1 89.26 89.31 89.58 50.55 53.85 56.01
0.3 90.20 90.46 90.51 53.94 57.76 61.25
0.5 92.33 92.47 92.55 61.33 64.83 67.56
0.7 92.28 92.42 92.53 60.79 64.15 67.30
0.9 92.32 92.40 92.50 61.98 64.92 67.48

sacrificing a little global model accuracy.
As shown in Table IV, as the value of vpull increases, the

reduction in communication volume decreases significantly.
It can be seen from Table V that on the MNIST-FL dataset,
it has the highest global model accuracy when vpull = 0.5.
On the CIFAR-10-FL dataset, in high data heterogeneity
situation (α = 0.5, α = 1), it has the highest global model
accuracy when vpull = 0.9. In low data heterogeneity situation
(α = 10), it has the highest global model accuracy when
vpull = 0.5. To balance the global model accuracy against
downstream communication volume, we choose vpull = 0.5.
In this case, FedTDMS can reduce downstream communica-
tion volume and maintain good global model accuracy.

2) Analysis of reduction in communication volume: Fig. 5
illustrates the experimental results of the reduction in commu-
nication volume for FedAvg, CMFL, PRLC, and FedTDMS
on the MNIST-FL dataset.

Fig. 5(a) shows that, in high data heterogeneity situation
(α = 0.5), FedTDMS has the maximum reduction in commu-
nication volume. Compared to CMFL, which only optimizes
upstream communication, and PRLC, which only optimizes
downstream communication, FedTDMS improves communi-
cation efficiency by 718.4%, 641.5%, 616.5%, and 16.5%,
15.2%, 14.7%, respectively. FedTDMS reduces the upstream
and downstream communication volume by utilizing local up-
date relevance check and global model compensation, greatly
improving communication efficiency in federated learning.
PRLC has significantly better communication efficiency than
CMFL for the mechanism of randomly selecting clients to
receive global updates greatly reducing the communication
costs in the downstream communication phase. Although
CMFL skips communicating the model parameters unrelated
to global model updates, a large number of model parameters



Fig. 5. Reduction in communication volume on the MNIST-FL dataset for FedAvg, CMFL, PRLC, and FedTDMS

Fig. 6. Reduction in communication volume on the CIFAR-10-FL dataset for FedAvg, CMFL, PRLC, and FedTDMS

still need to be uploaded, resulting in lower communication
efficiency compared to PRLC. FedAvg has the lowest reduc-
tion in communication volume, its multi-round local update
mechanism needs to be improved for better communication
efficiency.

The results of optimizing communication efficiency on the
weakly heterogeneous MNIST-FL dataset are shown in Fig.
6(c). FedTDMS shows a more significant improvement in
optimizing communication efficiency; the reduction in com-
munication volume reaches 659KB, 996KB, and 1331KB,
respectively under different model accuracies, outperforming
the other three methods.

Fig. 6 illustrates the experimental results of optimizing
communication volume for FedAvg, CMFL, PRLC, and FedT-
DMS on the CIFAR-10-FL dataset. Similar to the results
obtained on the MNIST-FL dataset, FedTDMS achieved the
maximum reduction in communication volume under differ-
ent data heterogeneity degrees when global model accuracy
reaches 40%, 50%, and 60%, respectively.

Based on the above analysis, it can be concluded that FedT-
DMS outperforms FedAvg, CMFL, and PRLC in optimizing
communication efficiency under different degrees of data
heterogeneity. Additionally, all experimental approaches show
a further improvement in communication efficiency as the

degree of data heterogeneity weakens. This suggests that high
data heterogeneity is indeed a bottleneck for optimizing com-
munication efficiency in federated learning. FedTDMS can
significantly reduce high communication volume by reducing
both upstream and downstream communication frequency.

3) Analysis of global model accuracy: Table VI demon-
strates the global model accuracy of FedAvg, CMFL, PRLC,
and FedTDMS on the MNIST-FL dataset and CIFAR-10-FL
dataset with different heterogeneity degrees. Columns 2 to 4
in Table VI show that for the MNIST-FL dataset, the four
approaches have little difference in global model accuracy.
Specifically, the CMFL method achieved the highest global
model accuracy of 92.58% under low data heterogeneity con-
ditions (α = 10); as the data heterogeneity increased (α = 1,
α = 0.5), FedTDMS achieved the highest global model accu-
racy with 92.43%, and 92.35%, respectively, slightly better
than CMFL; PRLC had the lowest global model accuracy
under different heterogeneity degrees, and FedAvg had the
second lowest global model accuracy.

As the model and dataset become more complex, the dif-
ference in global model accuracy among the four approaches
is more obvious. Columns 5 to 7 in Table VI show that
on the CIFAR-10-FL dataset, FedTDMS achieves the highest
global model accuracy of 67.54% in low data heterogeneity



TABLE VI
GLOBAL MODEL ACCURACY OF DIFFERENT APPROACHES

Comparison
approaches

Dataset
MNIST-FL CIFAR-10-FL

α = 0.5 α = 1 α = 10 α = 0.5 α = 1 α = 10
FedAvg 92.19 92.33 92.50 57.13 61.25 65.17
CMFL 92.25 92.42 92.58 62.96 65.40 66.48
PRLC 92.14 92.21 92.49 55.24 60.36 64.52

FedTDMS 92.35 92.43 92.57 61.01 64.09 67.54

situations (α = 10); under high data heterogeneity conditions
(α = 1, α = 0.5), the global model accuracy of FedTDMS
is lower than that of CMFL, with a decrease of about 2.0%,
and 3.1%, respectively. However, the global model accuracy of
FedTDMS is still significantly higher than that of FedAvg and
PRLC, with PRLC suffering a significant decrease in global
model accuracy due to random updates of client models.

Analysis of the above experimental results reveals that
PRLC exacerbates model drift and conflict in a heterogeneous
environment, resulting in serious damage to the global model
accuracy. FedAvg forces clients to perform fixed rounds of
local computation, resulting in poor adaptability to the het-
erogeneous environment. Overall, the experimental results of
FedTDMS are not as good as CMFL, as FedTDMS sacrifices
some global model accuracy for communication efficiency
during downstream communication. However, the personal-
ized local computation and the global model compensation
mechanism employed by FedTDMS alleviate the low accuracy
of the global model due to delayed upload communication,
and the global accuracy is comparable to CMFL. Thus, FedT-
DMS optimizes communication efficiency in heterogeneous
federated learning while ensuring global model accuracy.

VI. CONCLUSIONS

This paper proposes a Two-way Delayed Updates method
with Model Similarity in Communication-Efficient Federated
Learning (FedTDMS). FedTDMS employs personalized local
computation to alleviate the negative impact of heterogeneous
data on global model accuracy. Combining local update rel-
evance check and global model compensation, FedTDMS
delays the upload and download of model updates. Experi-
mental results show that FedTDMS can greatly optimize the
communication efficiency of heterogeneous federated learning
while maintaining good global model accuracy.
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