
1

MPV: Enabling Fine-Grained Query
Authentication in Hybrid-Storage Blockchain
Qin Liu, Member, IEEE, Yu Peng, Student Member, IEEE, Mingzuo Xu, Student Member, IEEE,

Hongbo Jiang, Senior Member, IEEE, Jie Wu, Fellow, IEEE, Tian Wang, Member, IEEE,
Tao Peng, Member, IEEE, and Guojun Wang, Member, IEEE

Abstract—Due to the large-scale data streams produced by distributed terminals, hybrid-storage blockchain (HSB) that combines
on-chain and off-chain storages has emerged as a promising solution for secure data storage in decentralized applications. Because all
the raw data is outsourced to an untrusted service provider (SP), existing solutions suggest to utilize an on-chain authenticated data
structure (ADS) to verify query results retrieved off-chain. However, existing solutions support only coarse-grained authentication
making a user abandon all the query results once the validation fails. In this paper, we focus on realizing fine-grained authentication for
range queries, enabling a user to distinguish authentic data from falsified results. Considering the heavy gas consumption of on-chain
storage, we propose two multi-dimensional parity-based verification (MPV) schemes with a trade-off between off-chain and on-chain
efficiencies. Our main idea is to design an accumulator-based ADS to summarize well-designed verifiable hypercubes, so that fake
results can be quickly located by combining multi-dimensional faces failed validation. Compared with previous solutions, our MPV
schemes allow a user to make efficient use of query results by filtering out errors, and thus have higher data utility. The detailed
security analysis and extensive experiments demonstrate the security and effectiveness of our MPV schemes, respectively.

Index Terms—Blockchain, hybrid storage, fine-grained authentication, range query, error locating.

F

1 INTRODUCTION

A blockchain is a distributed append-only ledger built upon
a chain of blocks maintained by a peer-to-peer network [1].
Owing to the feature of immutability and tamper resistance,
blockchain is emerging as a promising solution to secure
data storage in decentralized applications, such as internet
of things (IoT) and crowdsourcing [2]. However, as the ever-
increasing amount of data produced by terminal devices
(e.g., IoT devices), storing all the raw data directly on
the blockchain lacks scalability and efficiency, enabling the
hybrid-storage blockchain (HSB) that combines on-chain
and off-chain storages to become a preferred alternative [3].

A typical HSB architecture is shown in Fig. 1, where a
data owner outsources massive key-value data streams to
an off-chain service provider (SP) [4], while storing only
the metadata (e.g. cryptographic hashes) on the blockchain.
Since the SP is not fully trusted, existing solutions put for-
ward to incorporate an authenticated data structure (ADS)
into the on-chain metadata, so that a user can authenticate
the query results retrieved off-chain by validating an ver-
ification object (VO) [5] constructed by the SP. Although
query credibility is ensured, previous solutions support only

Qin Liu, Yu Peng, Mingzuo Xu, and Hongbo Jiang are with the Col-
lege of Computer Science and Electronic Engineering, Hunan University,
Changsha, Hunan Province 410082, China. E-mail: {gracelq628, pengyu411,
mzxu}@hnu.edu.cn; hongbojiang2004@gmail.com
Jie Wu is with the Department of Computer and Information Sciences, Temple
University, Philadelphia, PA 19122 USA. E-mail: jiewu@temple.edu
Tian Wang is with the Institute of Artificial Intelligence and Future Networks,
Beijing Normal University & UIC, Zhuhai, Guangdong Province 519000,
China. E-mail: cs tianwang@163.com
Tao Peng and Guojun Wang are with the School of Computer Science and Cy-
ber Engineering, Guangzhou University, Guangzhou, Guangdong Province
510006, China. E-mail: {pengtao, csgjwang}@gzhu.edu.cn

1 2 … 10

1 o1 o2 … o10

2 o11 o12 … o20

3 o21 o22 … o30

… … … … …

10 o91 o92 …

ln: line no. cn: column no.

ln
cn

ADSMetadata

Data owner

Blockchain

SP

User

R={o’1,…,o20},VO

Q=[k1, k20]

oi = {ki, vi},ki+1>ki

2 …

o11 o12 …

o1 o o10

o20

{o1, …,o100}

o100

Fig. 1: HSB architecture.
coarse-grained authentication, in which a user accepts or aban-
dons all the query results depending on if the validation
passes or not. In practice, the most common queries (e.g.,
range queries) would retrieve a lot of matched objects, only
a small part of which are tampered, making most of the
results still valid when the query validation fails. Therefore,
fine-grained authentication that allows a user to distinguish
authentic data from falsified results is essential to improve
the data utility in an HSB environment.

As illustrated in [6], range queries are most frequently
used in blockchain applications. For a better query ex-
perience, this paper is devoted to achieving fine-grained
authentication of range queries over a key-value HSB. We
propose two multi-dimensional parity-based verification
(MPV) schemes with support for error locating. Our main
idea is to construct an n-dimensional verifiable hypercube
Qs for each key ks, while generating an accumulator-based
ADS to summarize all the faces of hypercube Qs so that each
fake result can be located by n faces failed validation. In the
special case of n = 2, the hypercube Qs is degenerated into
a matrix Ms, and the error-locating process is similar to the
two-dimensional parity-based method. Taking the example
shown in the Fig. 1, where results R = {o1, . . . , o20} of
query Q = [k1, k20] spread over the first two lines of matrix

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2024.3359173

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on May 16,2024 at 00:52:41 UTC from IEEE Xplore. Restrictions apply.

2

Ms. If the real object o1 is replaced by a fake object o′1, the
verification regarding the 1-st line and the 1-st column of
matrix Ms fails. By combining the line and column numbers
failed validation, the user can locate the fake object and
make use of the remaining 95% of results.

The basic MPV scheme helps to improve the utility of
off-chain data, but renders the size of on-chain ADS to grow
as the increase of data scale. As the operation of storing
data to the blockchain consumes expensive gas cost [7],
we trade higher off-chain computational costs for lower
on-chain storage costs, and further propose a gas-efficient
MPV scheme to generate a constant-size ADS. Detailed
discussions are also provided to support dynamic updates
and freshness authentication (i.e., ensuring that the object
returned is the latest version for the searching key). The
main contributions of this paper are summarized as follows:

• To the best of our knowledge, this is the first work on
fine-grained query authentication with support for
error locating in the key-value HSB environment.

• We propose two MPV schemes with a trade-off be-
tween off-chain and on-chain efficiencies. Compared
with previous solutions, the main advantage of this
work is high data utility, i.e., the user can make
efficient use of query results by filtering out errors.

• We conduct formal security analyses and an empiri-
cal study to validate the proposed MPV schemes.

The remainder of the paper is organized as follows. We
introduce the related work in Section 2 before formulat-
ing the problem in Section 3. We construct the proposed
schemes in Section 4 and Section 5 before analyzing the
security in Section 6. After providing discussions in Sec-
tion 7, we evaluate the performance in Section 8. Finally, we
conclude this paper in Section 9.

2 RELATED WORK

2.1 Verifiable Query and Error Locating
To authenticate query results returned by an untrusted
party, existing work mainly constructs an ADS based on
verifiable technologies, such as digital signature [8], Merkle
hash tree (MHT) [9], and accumulator [10]. Xu et al. [11] de-
signed a vector neighbor chain, which concatenated a data
item with its left neighbor and right neighbor to authenticate
the integrity of range query results. Wu et al. [12] proposed
a verifiable range query system ServeDB, which built a
SVETree by incorporating the hierarchical cubes into MHTs
to realize results validation. To reduce the computation and
storage costs in work [12], Meng et al. [13] designed a
verifiable spatial range query scheme VSRQ by combining
accumulator technology and G-tree. To enrich the query
conditions, Zhang et al. [14] devised a verifiable SQL query
scheme CorrectMR by integrating the Pedersen commitment
into Merkle R-tree. Xu et al. [15] proposed a verifiable ag-
gregate query scheme PA2 by combining G-tree and bilinear-
pairing accumulators. Gupta et al. [16] designed a Obscure
scheme, which realized verifiable aggregate queries with
complex predicates based on the secret-sharing technique.

As for freshness queries, Jin et al. [17] realized instant
freshness check for the retrieved data by combining broad-
cast encryption, key regression, and MHT. Zhu et al. [18]
proposed a GSSE scheme that guaranteed data freshness
by developing a timestamp-chain. Hu et al. [19] proposed a

TABLE 1: Comparison of Verifiable Query Schemes

Ref. Verification Error
Locating Freshness Blockchain/HSB

[12] ✓ × × ×
[15] ✓ × × ×
[23] ✓ ✓ × ×
[25] ✓ × × ✓
[32] ✓ × × ✓

Ours ✓ ✓ ✓ ✓

freshness authentication scheme KV-Fresh, which designed
a linked key span MHT embedded with time relationship
between records to provide real-time freshness guarantee.
As for error locating, Mu et al. [20] accomplished range
query verification and result correction through signature
chain and Reed Solomon code. Kittur et al. [21] proposed
an error locating scheme based on cyclic redundancy check.
Li et al. [22] detected illegal RSA signatures by randomly
filling each signature into a matrix and verifying each
row and each column. Xu et al. [23] proposed the CUBE
scheme, which used cube segmentation to locate erroneous
outsourced data. Yuan et al. [24] designed a reverse sig-
nature aggregation tree to support batch verification and
error locating in cloud file auditing. On the whole, most of
the above schemes focus on query verification other than
error locating. Existing error locating solutions are mainly
designed for achieving proofs of retrievability and provable
data possession, and thus cannot support fine-grained query
authentication services.

2.2 Verifiable Query in Blockchain

Xu et al. [6] proposed vChain, which used accumulator-
based ADSs to verify the boolean range queries and sub-
scription queries in blockchain. To improve query efficiency,
their follow-up work [25] devised vChain+ based on the slid
window index. Dai et al. [26] proposed a LVQ scheme to
realize verifiable historical transactions in Bitcoin systems
by integrating Bloom filter (BF) into MHT. Peng et al. [27]
proposed a FalconDB system to realize range query verifi-
cation in blockchain by combining accumulator and MHT.
However, the above verifiable schemes upload the raw data
together with ADSs to the blockchain. With the explosion of
data volume, it will cause huge storage burden and frequent
write operations on blockchain, resulting in a performance
bottleneck. To improve the scalability of blockchain systems,
a common practice is combining the blockchain with an
off-chain storage to form an HSB system, so that only the
small-sized ADSs are stored on the blockchain, while the
enormous raw data is outsourced.

To ensure the off-chain SP faithfully executes queries,
Rahman et al. [28] designed a verification framework for in-
dustrial internet of things by exploiting Guillou-Quisquater
multisignature. Zhu et al. [29] devised SEBDB to provide
verifiable SQL queries based on Merkle B-tree. Pei et al. [30]
proposed a verifiable semantic query scheme over HSB
by exploiting Merkle semantic Trie-based indexing tech-
nique. Wu et al. [31] designed a verifiable query layer VQL
deployed in the cloud and used Merkle Patricia Tree to
construct ADSs so as to provide verifiable query services for
blockchain systems. To reduce the gas consumption of smart
contracts, Zhang et al. [7] proposed a gas efficiency structure
GEM2-tree by replacing the expensive write operation with
lightweight operations (such as reading and computing op-

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2024.3359173

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on May 16,2024 at 00:52:41 UTC from IEEE Xplore. Restrictions apply.

3

SP

Blockchain

ADS

Query

Results, VO

Query usersData owner

HSB system

ADS

Dataset

Fig. 2: System and threat models.

erations). Their follow-up work [32] provided an optimized
structure based on chameleon vector commitment and BF.
Zhang et al. [33] proposed a blockchain-based auditing
scheme to protect data integrity for a multi-cloud storage.
Once the verification failed, the smart contract asked an
organizer to find the malicious SPs thereby accomplishing
faults locating. However, their scheme required an orga-
nizer to manage the interaction between users and SPs. In
summary, existing verification schemes in the HSB system
mainly focus on improving query efficiency and enriching
query expressions without considering the problems of
freshness verification and error locating. The comparison
between our work and previous work is shown in Table 1.

3 PROBLEM FORMULATION

3.1 System and Threat Models

As illustrated in Fig. 2, our system model consists of a data
owner, a HSB system, and multiple query users, where the
HSB system is composed of a blockchain with smart contract
functionality and an off-chain service provider (SP).
• Data owner. The data owner is responsible for collect-

ing data and constructing the dataset D, which is modeled
as a multi-version key-value store consisting of a collection
of key/object-set pairs. Each object set associated with an
unique key k contains multiple object versions, each repre-
sented as an update value v, and a timestamp t indicating
when the update happens. For cost effectiveness, the data
owner outsources the dataset D to the SP once adequate
data has been collected. To enable verifiable queries, the
data owner also constructs a small-sized ADS and uploads
it to the blockchain. Furthermore, the data owner is allowed
to update the on-chain ADS once the new collected data is
pushed to the off-chain key-value store.
• Service provider. The SP, which centralizes abundant

computation and storage resources, is responsible for pro-
viding data storage and query services in a pay-as-you-use
manner. Compared with the blockchain, the SP can deliver
storage and query services in a cheaper and more scalable
way. Therefore, the data owner outsources the whole dataset
D to the SP but uploads only small-sized ADSs to the
blockchain. However, the SP is not fully trusted and thus
needs to prove to the data owner and query users that the
offered services are credible. On receiving the query Q, the
SP performs calculations on D to obtain results R while
constructing a verification object VO accordingly and finally
returns (R,VO) to the query user.
• Blockchain. The blockchain is a decentralized database

which consists of multiple blocks, and is maintained by all
nodes in the network. Due to the immutability property,
the blockchain is used to store ADSs. On getting the ADS
from the data owner, the blockchain executes smart contract
to write the ADS in a new block. During query authenti-
cation, the query user submits a query transaction to the

TABLE 2: Summary of Notations

Notations Descriptions

OBJs The object set of key ks
ds The size of object set |OBJs|
n, N The number of dimensions/keys
ROs The ranked object set {(ks, vc, tc, c)}c∈[ds] for key ks
Ms, Qs The verifiable matrix/hypercube of key ks
µs, νs The size of matrix Ms or hypercube Qs

Ms[i][∗] The set of elements in the i-th line of matrix Ms

Ms[∗][j] The set of elements in the j-th column of matrix Ms

Fi,j The j-th face at the i-th dimension
Qs[i, j] The set of elements in face Fi,j of hypercube Qs

δLi
, δCj

The digest of Ms[i][∗] or Ms[∗][j]
πLi

, πCj
The proof for the subset of Ms[i][∗] or Ms[∗][j]

δFi,j
, πFi,j

The digest of Qs[i, j] or the proof for Qs[i, j]’s subset
acc(X) The accumulative value of set X

blockchain, which executes smart contract and returns the
corresponding ADS.
• Query user. The query user issues a range query Q =

(k, [tl, tu]) to the SP to retrieve the objects updated within
time period [tl, tu] regarding the searching key k. On getting
the query results and the VO from the off-chain SP, the user
authenticates results and locates errors by combining the
on-chain ADS and the off-chain VO.

In our threat model, we assume that the data owner,
blockchain and query users are honest, but the SP is ma-
licious. That is, the SP may return tampered results unin-
tentionally or intentionally. To authenticate the outsourced
query process, the user checks if the query results R satisfy
the following conditions:
• Soundness. All the objects in results R satisfy the

query condition, and haven’t been tampered with.
• Completeness. No object satisfying the query condi-

tion is skipped in the search process.
3.2 Notations
Let λ ∈ N be the security parameter throughout this paper.
Let {0, 1}n be the set of binary strings of length n and
{0, 1}∗ the set of binary strings of finite length. Notation
[x, y] represents the set of integers {x, . . . , y} and can be ab-
breviated as [y] when x = 1. For a finite set X , |X| denotes
its cardinality. Notation ∥ denotes string concatenation.

The outsourced dataset D consists of a collection of
key/object-set pairs {(ks,OBJs)}Ns=1. The universal key set
is denoted by KEY = {k1, . . . , kN}. For each key ks, the set
of multi-version objects is denoted by OBJs = {(vi, ti)}ds

i=1

where ds = |OBJs|. To generate an on-chain ADS, the data
owner constructs an n-dimensional hypercube Qs and cal-
culates a digest for each face of Qs. As for VO construction,
the SP generates proofs for the set of faces of Qs covered
by the query results R. When n = 2, the hypercube Qs is
degenerated into a matrix Ms, and the digests and proofs
are calculated regarding matrix lines and columns. For quick
reference, the most relevant notations are shown in Table 2.
3.3 RSA Accumulator
The ADS and VO are calculated based on RSA accumula-
tor [34] that provides a constant-size digest for a large set
and a succinct proof for the (non-)membership test. Let
N = p · q and φ(N) = (p − 1)(q − 1), where p, q are
two large primes. Let g be the generator of a cyclic group
QRN, and let H : {0, 1}∗ → {0, 1}λ be a collision-resistant
hash function. Given public keys pk = {N, (g,QRN)} and
secret keys sk = {φ(N)}, RSA accumulator consists of the
following algorithms taking pk as their implicit input.

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2024.3359173

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on May 16,2024 at 00:52:41 UTC from IEEE Xplore. Restrictions apply.

4

•GenAcc(X)→ acc(X) : Given a set X = {x1, . . . , xn}
with xi ∈ {0, 1}∗, this algorithm generates the accumulative
value as acc(X)← g

∏n
i=1 P(H(xi)) mod N 1.

• GenProof(Y,X) → π : This algorithm calculates the
proof for a subset Y as π ← g

∏
xi∈(X−Y) P(H(xi)) mod N.

• VeriWit(Y, π,acc(X))→ {0, 1} : This algorithm checks
the proof regarding Y ⊆ X , and outputs 1 only when
π
∏

xi∈Y P(H(xi)) mod N = acc(X). Based on the collision
resistance of hash functions as well as strong RSA assump-
tion, it is difficult for the adversary to find a set Y ′ ̸⊆ X and
a proof π′ s.t. π′

∏
xi∈Y ′ P(H(xi)) = acc(X).

4 THE BASIC MPV SCHEME

In this section, we first introduce a strawman construction,
denoted by MPV0, where verifiable matrices are designed
for query authentication and error locating, and then we
propose an improved construction, denoted by MPV+, whi-
ch employs n-dimensional hypercubes for higher scalability.

4.1 MPV0: The Strawman Construction
Before going deep into details, we introduce the following
definitions closely related to the strawman construction.

Definition 1 (Ranked Object Set). Each key ks ∈ KEY is
associated with a ranked object set ROs = {(ks, vc, tc, c)}c∈[ds],
where (ks, vc, tc, c), denoted by ROs.c, means that the object
with value vc and timestamp tc is the c-th version for key ks.

Definition 2 (Verification Matrix). Each key ks ∈ KEY is
associated with a µs × µs verification matrix Ms, where the ele-
ment at the i-th row and j-th column for i, j ∈ [µs] is defined as:

Ms[i][j] =

{
ROs.X, if (i− 1) · µs + j ≤ ds
⊥, Otherwise

where X = (i−1) ·µs+j. The set of elements in the i-th row and
j-th column are denoted by Ms[i][∗] and Ms[∗][j], respectively.

The details of the strawman construction are shown in
Protocol 1, where the matrix sizes {µs}Ns=1 are assumed
publicly known. Our main idea is letting the on-chain ADS
summarize the verifiable matrix for each key by using RSA
accumulator, so that result soundness and completeness can
be verified by testing if query results belong to the matrix
or not. In particularly, the error locating process is similar to
the two-dimensional parity-based method: The query result
located at Ms[i][j] is deemed to be fake, if the verification
regarding the i-th row and j-th column of Ms fails.

ADS Generation. Once enough data {(ks,OBJs)}Ns=1

has been collected, the data owner uploads ADS =
{∆s}Ns=1 to the blockchain, where ∆s = {(δLi , δCj)}i,j∈[µs]

is a digest set summarizing the verifiable matrix Ms. Specif-
ically, δLi

= acc(Ms[i][∗]) and δCj
= acc(Ms[∗][j]) are the

digest of i-th row and j-th column of Ms, respectively.
VO Construction. Given a queryQ = (ks, [tl, tu]), the SP

first runs the Query algorithm (Alg. 1) to obtain the search
results SR and the boundary results BR, and constructs a
verifiable matrix Ms according to Def. 1. Then, the SP takes
R = SR∪BR, d = µs, and n = 2 as the input of the SetCon-
struct algorithm (Alg. 2) to obtain (I, J, {Li}i∈I , {Cj}j∈J),
i.e., the set of lines I and the set of columns J of matrix Ms

1. P(xi) denotes the prime number corresponding to element xi. It
can be implemented by a two-universal hash function [35].

Protocol 1 The Strawman Construction
ADS Generation (by the data owner)
Input: Key/objects (ks,OBJs)
Output: Digest set ∆s

1: Construct a ranked object set ROs according to Def. 1
2: Construct a µs × µs matrix Ms according to Def. 2
3: for i, j = 1 to µs do
4: δLi ← GenAcc(Ms[i][∗]); δCj ← GenAcc(Ms[∗][j])
5: ∆s ← {(δLi , δCj)}i,j∈[µs]

VO Construction (by the SP)
Input: Query Q = (ks, [tl, tu]), key/objects (ks,OBJs)
Output: Search results SR, verifiable object VO

1: (SR,BR)← Query(ks,OBJs,Q); {ΠL,ΠC} ← ∅
2: Construct a µs × µs matrix Ms according to Def. 2
3: (I, J, {Li}i∈I , {Cj}j∈J)← SetConstruct(SR ∪ BR, µs, 2)
4: for each i ∈ I do
5: πLi ← GenProof(Li,Ms[i][∗]); ΠL ← ΠL ∪ πLi

6: for each j ∈ J do
7: πCj ← GenProof(Cj ,Ms[∗][j]); ΠC ← ΠC ∪ πCj

8: VO ← (BR,ΠL,ΠC)

Verification (by the user)
Input: Search result SR, verifiable object VO, digest set ∆s

1: Parse VO as (BR,ΠL,ΠC); (EL,EC)← ∅
2: flag ← 0 ▷ 0 indicates query verification fails
3: (I, J, {Li}i∈I , {Cj}j∈J)← SetConstruct(SR ∪ BR, µs, 2)
4: for each i ∈ I do
5: if VerProof(Li, πLi , δLi) = 0 then
6: EL← EL ∪ i
7: if EL = ∅ then
8: flag ← 1
9: else

10: for each j ∈ J do
11: if VerProof(Cj , πCj , δCj) = 0 then
12: EC← EC ∪ j
13: VR ← (flag,EL,EC)

Algorithm 1 Query(ks,OBJs,Q)
1: SR ← {ROs.X, . . . ,ROs.Y } s.t. tX ≥ tl, tX−1 < tl, tY ≤ tu

and tY +1 > tu ▷ Q = (ks, [tl, tu])
2: BR ← {ROs.(X − 1),ROs.(Y + 1)}

that are covered by the query results R, and the subsects Li

and Cj of R that locate at the i-th line and the j-th column of
matrix Ms, s.t. i ∈ I and j ∈ J , respectively. Specifically, for
each ranked object e ∈ R, Alg. 2 computes which line (resp.
column) of matrix Ms object e locates in according to Def. 2,
then inserts the line number i (resp. the column number j)
into set I (resp. set J), and puts object e into set Li and
set Cj separately. Given the output of Alg. 2, the SP com-
putes {(πLi , πCj)}i∈I,j∈J in order to form the VO, where
πLi = acc(Ms[i][∗] − Li) and πCj = acc(Ms[∗][j] − Cj)
are the proofs for the query results belonging to the i-th line
and j-th column of matrix Ms, respectively.

Verification. For the query Q = (ks, [tl, tu]), the user
first checks if the query results R = SR ∪ BR meet the
requirement of completeness: (1) The objects in R have
continuous version numbers; (2) The objects in SR satisfy
the query condition; (3) The objects in BR have the smallest
and largest version numbers compared with those in SR;
(4) The objects in BR are outside the query range. Once the
validation passes, the user runs VerProof(Li, πLi , δLi) for
i ∈ I to verify the authenticity of elements in Li. Due to the
security of RSA accumulator, algorithm VerProof outputs

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2024.3359173

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on May 16,2024 at 00:52:41 UTC from IEEE Xplore. Restrictions apply.

5

Algorithm 2 SetConstruct(R, d, n)

1: for each element e = (k, vX , tX , X) ∈ R do
2: if n = 2 then
3: i← (X − 1)/d+ 1; j ← X − (i− 1) · d;
4: Li ← Li ∪ e; I ← I ∪ i; Cj ← Cj ∪ e; J ← J ∪ j
5: else
6: for i = n to 2 do
7: j ← (X − 1)/d(i−1) + 1; X ← X − (j − 1) · d(i−1);
8: F ← F ∪ (i, j); Zi,j ← Zi,j ∪ e
9: j ← X ; F ← F ∪ (1, j); Zi,j ← Z1,j ∪ e

10: if n = 2 then
11: return (I, J, {Li}i∈I , {Cj}j∈J)
12: else
13: return (F, {Zi,j}(i,j)∈F)

1 only when Li ⊆ Ms[i][∗]. If all the lines in I pass the
validation, this means that all the query results R are real,
validating result soundness. Otherwise, the user locates fake
results by using the set of lines EL and the set of columns
EC failed validation, i.e., 0 ← VerProof(Li, πLi

, δLi
) and

0← VerProof(Cj , πCj
, δCj

) for i ∈ EL and j ∈ EC.
Example. To illustrate, let us consider the following

example: Assume that the data flow of key ks is in
the form of OBJs = {(vi, ti)}24i=1 where ti = i + 100.
The verifiable matrix Ms with parameter µs = 5 is as
shown in Fig. 3, where the key ks is omitted. Given
a query Q = (ks, [113, 114]), the search results SR =
{(ks, v13, 113, 13), (ks, v14, 114, 14)} and the boundary re-
sults BR = {(ks, v12, 112, 12), (ks, v15, 115, 15)} locate at
line I = {3} and columns J = {2, 3, 4, 5} of matrix Ms. The
subset of R = SR∪BR locate at the 3rd line, and span from
the 2nd column to the 5th column of matrix Ms (covered
by blue rectangle): L3 = R, C2 = {(ks, v12, 112, 12)},
C3 = {(ks, v13, 113, 13)}, C4 = {(ks, v14, 114, 14)},
and C5 = {(ks, v15, 115, 15)}. If the SP returns fake results
SR′ = {(ks, v′13, 113, 13), (ks, v14, 114, 14)}, algorithms
VerProof(L3, πL3

, δL3
) and VerProof(C3, πC3

, δC3
) output 0,

and the user knows that the object located at Ms[3][3]
is fake (the intersection of the yellow line and yellow
column). If the SP returns incomplete results SR′ =
{(ks, v14, 114, 14)}, it has to forge boundary results BR′ =
{(ks, v13, 112′, 13), (ks, v15, 115, 15)} to convince the user
that the objects in BR′ are outside the query range. How-
ever, the user will know that the object located at Ms[3][3]
is fake since the verification of Ms[3][∗] and Ms[∗][3] fails.

4.2 MPV+: The Improved Construction
In the strawman construction, the digest set ∆s associated
with key ks is of size O(2µs), where µs as the number
of lines/columns in matrix Ms is determined by the data
size ds. For a large-scale dataset, the strawman construction
incurs massive on-chain data, lacking scalability. To alleviate
this problem, we extends the two-dimensional verifiable
matrix to an n-dimensional verifiable hypercube, reducing
the ADS size from O(2µs) to O(n · νs), s.t. µs ≈ ν

n/2
s

2.
Besides the ranked object set defined in Def. 1, the improved
construction works under the following definitions:
Definition 3 (n-Integer Coordinate System). Zn =
{(x1, . . . , xn)} is an n-dimensional cartesian coordinate system
in integer field, in which any point is represented by an n-
dimensional coordinate (x1, . . . , xn) where xi ∈ Z for i ∈ [n].

2. Given ds = |OBJs|, we have µs = ⌈d1/2s ⌉ and νs = ⌈d1/ns ⌉.

1 2 3 4 5

1 (v1,101,1) (v2,102,2) (v3,103,3) (v4,104,4) (v5,105,5)

2 (v6,106,6) (v7,107,7) (v8,108,8) (v9,109,9) (v10,110,10)

3 (v11,111,11) (v12,112,12) (v13,113,13) (v14,114,14) (v15,115,15)

4 (v16,116,16) (v17,117,17) (v18,118,18) (v19,119,19) (v20,120,20)

5 (v21,121,21) (v22,122,22) (v23,123,23) (v24,124,24)

ln
cn

(v12,112,12) (v13,113,13) (v14,114,14) (v15,115,15)

Fig. 3: Illustrative example of verifiable matrix Ms.
Definition 4 ((n−1)-Face). An n-integer coordinate system Zn

is composed of a set of (n− 1)-faces, denoted by {Fi,j}i∈[n],j∈Z,
where Fi,j as the j-th face at the i-th dimension contains a set of
points represented by coordinates {(x1, x2, . . . , xn)}xi=j .

Definition 5 (Verifiable Hypercube). Each key ks ∈ KEY is
associated with a νs × · · · × νs︸ ︷︷ ︸

n

verification hypercube Qs, where

each element corresponds to an n-dimensional integer coordinate
(x1, . . . , xn) for xi ∈ [νs] and i ∈ [n]. The element at coordinate
(x1, . . . , xn), denoted by Qs[x1, . . . , xn] is defined as:

Qs[x1, . . . , xn] =

 ROs.X, if x1 +
n∑

i=2
(xi − 1) · νi−1

s ≤ ds

⊥, Otherwise

where X = x1+
∑n

i=2(xi−1) ·νi−1
s . The set of elements located

at face Fi,j is denoted by Qs[i, j], where i ∈ [n] and j ∈ [νs].

The details of the improved construction are shown in
Protocol 2, where the hypercube sizes {νs}Ns=1 are assumed
publicly known. The main difference from the strawman
construction is that the ADS summarizes the verifiable
hypercube for each key, so that result soundness and com-
pleteness can be verified by testing if query results belong to
the hypercube or not. As for range query Q = (ks, [tl, tu]),
the result located at Qs[x1, . . . , xn] is error, if the verification
regarding faces F1,x1

, . . . ,Fn,xn
fails.

ADS Generation. Once the verifiable hypercube Qs is
built based on Def. 5, the data owner calculates ∆s =
{δFi,j}i∈[n],j∈[νs] as the digest set of key ks, where δFi,j =
acc(Qs[i, j]) summarizes the elements located in face Fi,j

of Qs. The on-chain ADS is set as ADS = {∆s}Ns=1.
VO Construction. The SP first runs Alg. 1 to obtain the

query results R = SR ∪ BR and constructs a verifiable
hypercube Qs according to Def. 5. Then, the SP takes R, d =
νs, and n > 2 as the input of Alg. 2 to get (F, {Zi,j}(i,j)∈F),
i.e., the set of faces F of hypercube Qs covered by the query
results R, and the subsect Zi,j of R locating at face Fi,j of
Qs, s.t. (i, j) ∈ F . Specifically, for each ranked object e ∈ R,
Alg. 2 calculates which (n−1)-faces of hypercube Qs object
e locates in according to Def. 5, then inserts the face number
(i, j) into set F , and put object e into set Zi,j . Given the
output of Alg. 2, the SP computes {πFi,j

}(i,j)∈F to form the
VO, where πFi,j

= acc(Qs[i, j] − Zi,j) is the proof for the
results belonging to face Fi,j of hypercube Qs.

Verification. If the query results R meet the complete-
ness requirement described in the strawman construction,
the user runs VerProof(Zn,j , πFn,j , δFn,j) for (n, j) ∈ F to
authenticate the elements in Zn,j . Due to the security of
RSA accumulator, algorithm VerProof outputs 1 only when
Zn,j ⊆ Qs[n, j]. If the n-th dimensional faces in F pass the
validation, this means that the query results R are authentic,
validating result soundness. Otherwise, the fake results can

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2024.3359173

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on May 16,2024 at 00:52:41 UTC from IEEE Xplore. Restrictions apply.

6

Protocol 2 The Improved Construction
ADS Generation (by the data owner)
Input: Key/objects (ks,OBJs)
Output: Digest set ∆s

1: Construct a ranked object set ROs according to Def. 1
2: Construct a νn

s hypercube Qs according to Def. 5
3: for i = 1 to n do
4: for j = 1 to νs do
5: δFi,j ← GenAcc(Qs[i, j])
6: ∆s ← {δFi,j}i∈[n],j∈[νs]

VO Construction (by the SP)
Input: Query Q = (ks, [tl, tu]), key/objects (ks,OBJs)
Output: Search results SR, verifiable object VO

1: (SR,BR)← Query(ks,OBJs,Q); {ΠL,ΠC} ← ∅
2: Construct a νn

s hypercube Qs according to Def. 5
3: (F, {Zi,j}(i,j)∈F)← SetConstruct(SR ∪ BR, νs, n)
4: for each (n, j) ∈ F do
5: πFn,j ← GenProof(Zn,j ,Qs[n, j]); ΠL ← ΠL ∪ πFn,j

6: for each (i, j) ∈ F ∧ i < n do
7: πFi,j ← GenProof(Zi,j ,Qs[i, j]); ΠC ← ΠC ∪ πFi,j

8: VO ← (BR,ΠL,ΠC)

Verification (by the user)
Input: Search result SR, verifiable object VO, digest set ∆s

1: Parse VO as (BR,ΠL,ΠC); (EL,EC)← ∅
2: flag ← 0 ▷ 0 indicates query verification fails
3: (F, {Zi,j}(i,j)∈F)← SetConstruct(SR ∪ BR, νs, n)
4: for each (n, j) ∈ F do
5: if VerProof(Zn,j , πFn,j , δFn,j) = 0 then
6: EL← EL ∪ (n, j)
7: if EL = ∅ then
8: flag ← 1
9: else

10: for each (i, j) ∈ F ∧ i < n do
11: if VerProof(Zi,j , πFi,j , δFi,j) = 0 then
12: EC← EC ∪ (i, j)
13: VR ← (flag,EL,EC)

be located by using the set of faces failed validation, i.e.,
0← VerProof(Zi,j , πFi,j , δFi,j) for (i, j) ∈ EL ∪ EC.

Example. Let us return to the sample data stream
of key ks, i.e., OBJs = {(vi, i + 100)}24i=1. Taking
n = 3 and νs = 3 as input, the verifiable hyper-
cube Qs is constructed as shown in Fig. 4. Given a
query Q = (ks, [113, 114]), the search results SR =
{(ks, v13, 113, 13), (ks, v14, 114, 14)} and the boundary re-
sults BR = {(ks, v12, 112, 12), (ks, v15, 115, 15)} locate at
faces F1,1, F1,2, F1,3, F2,1, F2,2, F3,2 of hypercube Qs

(covered by blue rectangle). The subsets of SR ∪ BR are
{Z1,1, Z1,2, Z1,3, Z2,1, Z2,2, Z3,2}. If the SP returns fake re-
sults SR′ = {(ks, v′13, 113, 13), (ks, v14, 114, 14)}, algorith-
ms VerProof(Z1,1, πF1,1

, δF1,1
), VerProof(Z2,2, πF2,2

, δF2,2
),

and VerProof(Z3,2, πF3,2
, δF3,2

) will output 0, and the
user will know that the results located at Qs[1, 2, 2]
is fake. If the SP returns incomplete results SR′ =
{(ks, v14, 114, 14)} and forges fake boundary results BR′ =
{(ks, v13, 112′, 13), (ks, v15, 115, 15)}, the user can still know
that the object located at Qs[1, 2, 2] is fake since the verifica-
tion regarding to faces F1,1, F2,2, and F3,2 fails. Compared
with the strawman construction, the size of digest set ∆s

is reduced from 10 to 9. When the data size ds increases to
1 million, the improved version reduces the size of digest
set from 2, 000 to 300, achieving a savings of 85% storage
spaces compared with the strawman construction.

Fig. 4: Illustrative example of verifiable hypercube Qs.

5 THE GAS-EFFICIENT MPV SCHEME

5.1 Main Idea

Our main idea is to trade higher off-chain computational
costs for lower storage costs on the blockchain. The gas-
efficient version is extended from the basic MPV scheme.
For ease of illustration, we first provide a basic construction,
denoted by MPV0-GE, based on the verifiable matrices de-
fined in Def. 2, and then we present an improved construc-
tion, denoted by MPV+-GE, based on the n-dimensional
verifiable hypercube defined in Def. 5. At a high-level
view, for the verifiable matrix/hypercube of key ks, the
data owner uploads the digest of the digest set ∆s, i.e.,
δs = acc(∆s), to the blockchain. In this way, the digest size
of key ks is reduced from O(2µs) or O(n·νs) to O(1). Instead
of retrieving the line/column digests {(δLi

, δCj
)}i,j∈[µs] or

the face digests {δFi,j}i∈[n],j∈[νs] from the blockchain, the
user obtains these information from the VO returned by the
SP. By combining the on-chain ADS and the off-chain VO,
the user performs the following two-stage verification:
• Digest Verification. The user authenticates whether all

the digests returned by the SP are real or not.
• Query Verification. If the digest verification passes,

the user authenticates query results as before; Otherwise,
the query process is considered incredible.

5.2 The Detailed Construction of MPV0-GE

As shown in Protocol 3 (excluding the boxed codes), MPV0

-GE is built based on the strawman construction MPV0.
ADS Generation. The on-chain ADS is constructed as

ADS = {δs}Ns=1, where δs = acc(∆s) is the digest of
the digest set ∆s and ∆s = {(δLi

, δCj
)}i,j∈[µs] contains the

line/column digests of the verifiable matrix Ms.
VO Construction. Compared with MPV0, the VO ad-

ditionally includes {(δLi , δCj)}i∈I,j∈J , the digests for the
lines/columns of matrix Ms covered by the query results
and relative proofs {(πi, πj)}i∈I,j∈J , where πi = acc(∆s −
δLi) and πj = acc(∆s − δCj). Note that, once the digest
sets {∆s}Ns=1 are computed, the SP can locally keep them to
avoid repetitive calculations later.

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2024.3359173

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on May 16,2024 at 00:52:41 UTC from IEEE Xplore. Restrictions apply.

7

Verification. The verification process consists of two
stages: digest verification and query verification. At the
first stage, the user runs algorithm VerProof(δLi

, πi, δs) and
algorithm VerProof(δCj

, πj , δs) for i ∈ I and j ∈ J to verify
if the digests returned by the SP are authentic. Due to the
security of RSA accumulator, algorithm VerProof outputs
1 only when δLi

⊆ ∆s and δCj
⊆ ∆s. If the first-stage

validation passes, the user further authenticates the query
results in the same way as the strawman construction.

5.3 The Detailed Construction of MPV+-GE
Based on MPV+, the detailed algorithms of MPV+-GE are
shown in Protocol 3 (including the boxed codes).

ADS Generation. The on-chain ADS is constructed as
ADS = {δs}Ns=1, where δs = acc(∆s) is the digest of the
digest set ∆s and ∆s = {δFi,j

}i∈[n],j∈[νs] contains the face
digests of the verifiable hypercube Qs.

VO Construction. Compared with MPV+, the VO
additionally includes ({δFn,j

}(n,j)∈F , {δFi,j
}(i,j)∈F∧i<n),

the digests for the (n − 1)-faces of hypercube Qs

covered by the query results and relative proofs
({πn,j}(n,j)∈F , {πi,j}(i,j)∈F∧i<n), where πi,j = acc(∆s −
δi,j). Similarity, the SP can locally keep the digest sets
{∆s}Ns=1 to save computational overheads.

Verification. The verification process consists of two
stages: digest verification and query verification. At the
first stage, the user runs algorithm VerProof(δFi,j

, πi,j , δs)
for (i, j) ∈ F to verify if the digests returned by the
SP are authentic. Due to the security of RSA accumulator,
algorithm VerProof outputs 1 only when δFi,j

⊆ ∆s. If the
first-stage validation passes, the user further authenticates
the query results in the same way as MPV+.

5.4 Constant On-Chain Storage Costs
In both MPV0-GE and MPV+-GE, each key is associated
with a constant-size digest δs, and the on-chain ADS is of
size O(N) that is linear with the number of keys. By further
refining the digests associated with the universal keys, the
gas-efficient MPV scheme can be improved to achieve an
constant-size on-chain ADS in the following way:

Let MPV∗ denote the constant-cost MPV scheme, and
let UD = {δs}Ns=1 denote the universal digest set. In ADS
generation, the data owner uploads ADS = δU to the
blockchain, where δU = acc(UD) is the digest of the uni-
versal digest set UD. Given a query Q = (ks, [tl, tu]) the SP
needs to return the digest δs and a proof πs = acc(UD− δs)
besides the VO constructed in Protocol 3, so that the user
first authenticates δs by running VerProof(δs, πs, δU) before
performing the two-stage verification process. Therefore, the
constant-size on-chain ADS is achieved by the sacrifice of
verification efficiency. In other word, the smaller the size of
ADSs, the higher the verification costs.

To illustrate the differences of on-chain storage costs
among our proposed constructions, we provide the sample
ADS generation processes for MPV0, MPV0-GE, and MPV∗

in Fig. 5. Assume that the outsourced dataset is in the form
of D = {(ks,OBJs)}3s=1 with |OBJs| = 4, and µs = 2. In
MPV0, the data owner first constructs three ranked object
sets, {ROs}3s=1, according to Def. 1, and then constructs
three 2 × 2 verification matrixes, {Ms}3s=1, according to
Def. 2. For each line/column of verification matrix Ms, the

Protocol 3 The GAS-Efficient MPV Scheme
ADS Generation (by the data owner)
Input: Key/objects (ks,OBJs)
Output: Digest of digest set δs

1: Execute lines 1-5 of ADS Generation in Protocol 1 to obtain
a digest set ∆s = {(δLi , δCj)}i,j∈[µs]

Execute lines 1-6 of ADS Generation in Protocol 2 to obtain
a digest set ∆s ← {δFn,j}i∈[n],j∈[νs]

2: δs ← GenAcc(∆s)

VO Construction (by the SP)
Input: Query Q = (ks, [tl, tu]), key/objects (ks,OBJs)
Output: Search results SR, verifiable object VO

1: Execute lines 1-7 of VO Construction in Protocol 1 to obtain
(SR,BR,ΠL = {πLi}i∈I ,ΠC = {πCj}j∈J)

2: Execute lines 1-5 of ADS Generation of Protocol 1 to obtain
a digest set ∆s = {(δLi , δCj)}i,j∈[µs]; (ΠI ,ΠJ)← ∅

3: for each i ∈ I do
4: πi ← GenProof(δLi ,∆s); ΠI ← ΠI ∪ (δLi , πi)
5: for each j ∈ J do
6: πj ← GenProof(δCj ,∆s); ΠJ ← ΠJ ∪ (δCj , πj)

Execute lines 1-7 of VO Construction in Protocol 2 to obtain
(SR,BR,ΠL = {πFn,j}(n,j)∈F ,ΠC = {πFi,j}(i,j)∈F∧i<n)

Execute lines 1-6 of ADS Generation of Protocol 2 to obtain
a digest set ∆s ← {δFi,j}i∈[n],j∈[νs]

for each (n, j) ∈ F do
πn,j ← GenProof(δFn,j ,∆s); ΠI ← ΠI ∪ (δFn,j , πn,j)

for each (i, j) ∈ F ∧ i < n do
πi,j ← GenProof(δFi,j ,∆s); ΠJ ← ΠJ ∪ (δFi,j , πi,j)

7: VO ← (BR,ΠL,ΠC,ΠI ,ΠJ)

Verification (by the user)
Input: Search result SR, verifiable object VO, digest δs
Output: Verification report VR

1: Parse VO as (BR,ΠL,ΠC ,ΠI ,ΠJ); (EL,EC)← ∅
2: for each (δLi , πi) ∈ ΠI do
3: if VerProof(δLi , πi, δs)=0 then
4: EL← EL ∪ i
5: for each (δCj , πj) ∈ ΠJ do
6: if VerProof(δCj , πj , δs)=0 then
7: EC← EC ∪ j

for each (δFn,j , πn,j) ∈ ΠI do
if VerProof(δFn,j , πn,j , δs) =0

EL← EL ∪ (n, j)

for each (δFi,j , πi,j) ∈ ΠJ do
if VerProof(δFi,j , πi,j , δs) =0

EC← EC ∪ (i, j)
8: if EL = ∅ ∧ EC = ∅ then
9: Execute lines 2-13 of Verification in Protocol 1

Execute lines 2-13 of Verification in Protocol 2
10: else
11: VR ← (−1,EL,EC) ▷-1 indicates digest verification fails

data owner runs algorithm GenAcc to generate a digest.
That is to say, MPV0 generates 4 line/column digests for
each key ks, i.e., ∆s = {(δLi , δCj)}i,j∈[2], and it will gener-
ates 12 digests in total, i.e., {∆s}3s=1. In MPV0-GE, the data
owner first generates the digest sets, {∆s}3s=1, in the same
way as MPV0. Then, for each digest set ∆s, it performs algo-
rithm GenAcc to generate a digest δs. Therefore, MPV0-GE
will generate 3 digests in total, i.e., UD = {δs}3s=1. In MPV∗,
the data owner first generates the digest set UD = {δs}3s=1

in the same way as MPV0-GE. Then, for the digest set UD,
it performs algorithm GenAcc to generate a digest δU . In
this example, the number of digests in MPV0, MPV0-GE,

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2024.3359173

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on May 16,2024 at 00:52:41 UTC from IEEE Xplore. Restrictions apply.

8

1 2

1 RO
1
.1 RO

1
.2

2 RO
1
.3 RO

1
.4

ln

cn

RO
1
.3 RO

1
.4

RO
1
.1 RO

1
.2

1 2

1 RO
2
.1 RO

2
.2

2 RO
2
.3 RO

2
.4

ln

cn
1 2

1 RO
3
.1 RO

3
.2

2 RO
3
.3 RO

3
.4

ln

cn

RO
3
.3 RO

3
.4

RO
3
.1 RO

3
.2

RO
2
.3 RO

2
.4

RO
2
.1 RO

2
.2

MPV0

MPV0-GE

MPV*

Fig. 5: Illustrative example of ADS generation processes.

and MPV∗ is 12, 3, and 1, respectively. As the scale of
datasets increases, the differences of on-chain storage costs
will be even greater. For example, for an outsourced dataset
D = {(ks,OBJs)}10

3

s=1 with |OBJs| = 104 and µs = 100, the
number of on-chain digests in MPV0, MPV0-GE, and MPV∗

will be 2× 105, 103, and 1, respectively.

6 SECURITY ANALYSIS

6.1 Security Analysis of Basic MPV Scheme
As MPV0 is a special case of MPV+ (when the number of
dimensions is set to 2), its security can be derived from
that of MPV+. Therefore, the following security analysis will
focus on MPV+.

Definition 6 (Security of MPV+). MPV+ is considered secure
if the probability for any probabilistic polynomial-time (PPT)
adversary A to succeed in the following experiment is negligible:

• Run the ADS generation algorithm in Protocol 2 to con-
struct ADS, {∆s}Ns=1, and send corresponding dataset
D = {(ks,OBJs)}Ns=1 to an adversary A.

• A outputs a tuple of query Q = (ks, [tl, tu]), result R =
SR ∪ BR, and VO = (BR,ΠL,ΠC).

• A succeeds if VO passes the verification and satisfies the
condition: {e′ /∈ ROs∧e′ ∈ R} ̸= ∅∨{e ∈ Q(ROs)∧
e /∈ R} ̸= ∅, where Q(ROs) stands for the genuine
search result on ROs.

The above definition guarantees that the probability, for
a malicious SP in MPV+ to convince the user with fake or
incomplete results, is negligible. We now show that MPV+

indeed satisfies the desired security requirement.

Theorem 1. MPV+ achieves result soundness and completeness,
if hash functions are collision resistant, the RSA accumulator is
secure, and the blockchain integrity is ensured.

Proof. The security of MPV+ is proven by contradiction.
Case 1: {e′ /∈ ROs ∧ e′ ∈ R} ̸= ∅. This means that ad-

versary A forges query results R′ by replacing an element e
in query results R = SR∪BRwith a fake element e′ outside
the ranked object set ROs to compromise result soundness.
Suppose that e′ locates at face Fn,x of the hypercube Qs.
Let Z ′

n,x denote the subset of fake query results R′ locating
at face Fn,x of the hypercube Qs. The adversary needs
to forge a proof π′

Fn,x
so that VerProof(Z ′

n,x, π
′
Fn,x

, δFi,j
)

outputs 1. Note that H(e) ̸= H(e′) when e ̸= e′ due to the
collision resistance of hash functions, and that the on-chain

ADS, {δFi,j
}i∈[n],j∈[νs], is synchronized with the blockchain

network. Therefore, a forged VO that makes the user accept
the fake result, i.e., enabling algorithm VerProof to output 1,
contradicts with the security of RSA accumulator.

Case 2: {e ∈ Q(ROs) ∧ e /∈ R} ̸= ∅. This means that ad-
versary A forges query results R′ by skipping an element
e in query results R = SR ∪ BR to compromise result
completeness. Before the verification, the user will check if
the query results R = SR ∪ BR meet the requirement of
completeness: (1) The objects in R have continuous version
numbers; (2) The objects in SR satisfy the query condition;
(3) The objects in BR have the smallest and largest version
numbers compared with those in SR; (4) The objects in BR
are outside the query range. To meet the above require-
ments, adversary A needs to add a fake element outside
the ranked object set ROs to make the version numbers
in query results R′ continuous. As proven in Case 1, it is
impossible for the adversary to forge fake result passing
soundness verification, validating result completeness.

6.2 Security Analysis of GAS-Efficient MPV Scheme

Like basic scheme, we will focus on the security analysis of
MPV+-GE since MPV0-GE is a special case of MPV+-GE.

Definition 7 (Security of MPV+-GE). MPV+-GE is considered
secure if the probability for any PPT adversary A to succeed in
the following experiment is negligible:

• Run the ADS generation algorithm in Protocol 3 to
construct ADS, {δs}Ns=1, and send corresponding dataset
D = {(ks,OBJs)}Ns=1 to an adversary A.

• A outputs a tuple of query Q = (ks, [tl, tu]), result R =
SR ∪ BR, and VO = (BR,ΠL,ΠC ,ΠI ,ΠJ).

• A succeeds if VO passes the verification and satisfies the
condition: {(δ′Fn,j

, π′
n,j) ∈ ΠI ∧ δ′Fn,j

/∈ ∆s} ̸= ∅ ∨
{(n, j) ∈ F ∧ (δFn,j

, πn,j) /∈ ΠI} ̸= ∅∨ {e′ /∈ ROs ∧
e′ ∈ R} ̸= ∅ ∨ {e ∈ Q(ROs) ∧ e /∈ R} ̸= ∅, where
Q(ROs) stands for the genuine search result on ROs.

The above definition guarantees that the probability, for
a malicious SP in MPV+-GE to convince the user with fake
or incomplete digests/results, is negligible. We now show
that MPV+-GE satisfies the desired security requirement.

Theorem 2. MPV+-GE achieves result soundness and complete-
ness, if hash functions are collision resistant, the RSA accumula-
tor is secure, and the blockchain integrity is ensured.

Proof. MPV+-GE built based on MPV+ consists of a two-
stage verification process, where the query verification pro-
cess is performed in the same way as MPV+. Thus, the
impossibility of Case 1 ({e′ /∈ ROs∧e′ ∈ R} ̸= ∅) and Case
2 ({e ∈ Q(ROs) ∧ e /∈ R} ̸= ∅) can be proven according
to the same processes in Case 1 and Case 2 of Theorem 1,
respectively. Next, we focus on the security of the digest
verification process that can also be proven by contradiction.

Case 3: {(δ′Fn,j
, π′

n,j) ∈ ΠI ∧ δ′Fn,j
/∈ ∆s} ̸= ∅. This

means that adversary A forges set Π′
I by replacing a

digest/proof pair (δ′Fn,j
, π′

n,j) ∈ ΠI with a forged pair
(δ′Fn,j

, π′
n,j). Note that the digests {δs}Ns=1 of the digest

sets {∆s}ns=1 are stored as the on-chain ADS, which is
synchronized with the blockchain network. Due to the

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2024.3359173

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on May 16,2024 at 00:52:41 UTC from IEEE Xplore. Restrictions apply.

9

collision resistance of hash functions, H(δFn,j
) ≠ H(δ′Fn,j

)
when δFn,j ̸= δ′Fn,j

. The forged digest/proof pair enabling
algorithm VerProof(δ′Fn,j

, π′
n,j , δs) to output 1 implies a

collision to the security of RSA accumulator.
Case 4: {(n, j) ∈ F ∧ (δFn,j , πn,j) /∈ ΠI} ̸= ∅. This

means that adversary A forges a set Π′
I by removing a

valid digest δFn,j
from ΠI . In this condition, the digest

verification are passed since the returned digest/proof pairs
are authentic. However, the query results originally located
at face Fn,j need to be removed as δFn,j

is omitted from
ΠI . That is, in the query verification process, adversary A
needs to replace the elements located at Fn,j with some
fake elements to make the version numbers in query results
continuous. As proven in the Case 1 of Theorem 1, it is
impossible for the adversary to forge fake result passing
soundness verification, thereby proving that incomplete
digests cannot pass the two-stage verification.
7 DISCUSSIONS

7.1 How to Support Dynamic Updates
Let {(ks,OBJs)}Ns=1 and {(ks,OBJ′s)}Ns=1 denote the current
outsourced dataset and the newly collected data, respec-
tively where |OBJs| = ds and |OBJ′s| = d′s. To ensure the SP
faithfully updates the outsrouced dataset, the data owner
needs to update the on-chain ADS appropriately. In MPV+,
the ADS is in the form of ADS = {∆s}Ns=1. To update the
digest set ∆s, the data owner sorts objects in OBJ′s by the
ascending order of their timestamps and constructs a new
ranked object set RO′

s = {ROs.(ds+1), . . . ,ROs.(ds+d′s)},
where ROs.(ds + i) is the i-th version in OBJ′s for i ∈ [d′s].
Then, the data owner runs algorithm SetConstruct to obtain
a set of faces F of hypercube Qs covered by these new
ranked objects RO′

s, and the subset Zi,j of RO′
s locating

at face Fi,j of Qs, s.t. (i, j) ∈ F . After retrieving the
original digests {δFi,j}(i,j)∈F from the blockchain (if the
digest is calculated for the first time, δFi,j is set to the group
generator), the data owner generates the updated digests as

δ′Fi,j
← δ

∏
x∈Zi,j

P(H(x))

Fi,j
mod N for (i, j) ∈ F .

MPV0 is a special case of MPV+, where the ADS can be
updated in a similar way except that algorithm SetConstruct
is run to obtain a set of lines I and a set of columns J of
matrix Ms covered by the new ranked objects RO′

s and the
subsets Li and Cj of RO′

s that locate at the i-th line and the
j-th column of matrix Ms, respectively, s.t. i ∈ I and j ∈
J . Given the on-chain digests {(δLi

, δCj
)}i∈I,j∈J , the data

owner updates the digests as δ′Li
← δ

∏
x∈Li

P(H(x))
Li

mod N

and δ′Ci
← δ

∏
x∈Cj

P(H(x))

Ci
mod N for i ∈ I and j ∈ J .

The gas-efficient version is built based on the basic
MPV scheme. The ADS is in the form of ADS = {δs}Ns=1,
where δs as the digest of the digest set ∆s can be updated
as follows: The data owner performs in the same way
as MPV0 (resp. MPV+) to obtain (I, J, {Li}i∈I , {Cj}j∈J)
(resp. (F, {Zi,j}(i,j)∈F)), and then retrieves the digests
{(δLi

, δCj
)}i∈I,j∈J (resp. {δFi,j

}(i,j)∈F) from the SP while
getting the digest δs from the blockchain. Once all the
digests returned by the SP pass validation, the data
owner calculates the updated digests {(δ′Li

, δ′Cj
)}i∈I,j∈J or

{δ′Fi,j
}(i,j)∈F as the basic scheme, and update the digest as:

δ′s = δy/x mod φ(N)
s mod N. (1)

For MPV0-GE, y =
∏

i∈I P(H(δ′Li
)) ·

∏
j∈J P(H(δ′Cj

)) and
x =

∏
i∈I P(H(δLi

)) ·
∏

j∈J P(H(δCj
)); For MPV+-GE, y =∏

(i,j)∈F P(H(δ′Fi,j
)) and x =

∏
(i,j)∈F P(H(δFi,j

)).

7.2 How to Ensure Freshness Authentication
As for the outsourced key-value store subjected to continu-
ous updates, each key is associated with multiple versions of
objects, thus it is essential to ensure result freshness, besides
result soundness and completeness. Specifically, we mainly
consider the most commonly studied query type: freshness
query Q = (k, [∗, tu]) or Q = (k, [∗]) that retrieves the
most recent object for key k as of tu or so far. Since the
freshness query produces only one matched result, the user
only needs to verify result soundness and freshness with-
out requiring error locating. Note that the freshness query
Q = (k, [∗, tu]) is actually a special case of the range query
Q = (k, [tl, tu]) (a range query without lower boundary).
Hence, result freshness is assured or violated, depending
on if query results pass completeness validation or not. As
result soundness can be achieved by directly using our MPV
schemes, we concentrate on authenticating result freshness
for query Q = (k, [∗]) and provide the following definition:

Definition 8 (Fresh Version Set). Each key ks ∈ KEY is
associated with a fresh version number ds. The fresh version set
is defined as FV = {(ks, ds)}Ns=1, where (ks, ds), denoted by
FV.s, means the latest version number of ks is ds.

Our main idea is to incorporate the digest of the fresh
version set, i.e., δF = acc(FV), into the on-chain ADS so
that the user can authenticate result freshness by testing
if the version number in search results belongs to set FV
or not. Specifically, in ADS generation, the data owner
generates the digest by calculating δF ← GenAcc(FV). In
VO construction, given a queryQ = (ks, [∗]), the SP puts the
latest element (ks, vds

, tds
, ds) in the ranked object set ROs

into the search result SR, and generates a proof by calculat-
ing πF ← GenProof((ks, ds),FV). In verification, the user
retrieves the digest δF from the blockchain and authenti-
cates result freshness by running VerProof((ks, d′s), πF , δF),
where d′s is the version number in SR. Due to the security of
RSA accumulator, algorithm VerProof outputs 1 only when
(ks, d

′
s) ⊆ FV. This means that d′s = ds is the fresh version

number of key ks, validating result freshness.
Complexity. Let α be the size of query results and let

Fn be the set of n-th dimensional faces at which the query
results locate in hypercube Qs. The computational cost for
the data owner to generate a constant-size digest δF is
O(N). As for a freshness query, there are only one search
result and one or zero boundary result. Therefore, we have
|I| ≤ 2, |Fn| ≤ 2, and α = 2 when Q = (ks, [∗, tu]) and
|I| = 1, |Fn| = 1, and α = 1 when Q = (ks, [∗]). For
the first case, MPV0 requires the SP to calculate a proof
for each covered line, incurring computational costs O(2µs);
MPV+ needs to calculate a proof for the covered face at the
n-th dimension incurring computational costs O(2νn−1

s);
MPV0-GE and MPV+-GE requires an extra proof for the
digest associated with each covered line and each covered
face incurring computational costs O(4µs) and O(4νn−1

s),
respectively. By contrast, the second case requires the SP
to calculate an extra proof for the fresh version number,
incurring computational costs O(µs + N), O(νn−1

s + N),

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2024.3359173

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on May 16,2024 at 00:52:41 UTC from IEEE Xplore. Restrictions apply.

10TABLE 3: Performance Comparison of MPV Schemes

MPV0 MPV+ MPV0-GE MPV+-GE

Data owner O(2
∑N

s=1 ds) O(n ·
∑N

s=1 ds) O(2
∑N

s=1(ds + µs)) O(n ·
∑N

s=1(ds + νs))

SP O((|I|+ |J |) · µs − 2α) O(|F | · νn−1
s − n · α) O(2(|I|+ |J |) · µs − 2α) O(2|F | · νn−1

s − n · α)
User O((|I|+ |J |) · µs) O(|F | · νn−1

s) O((|I|+ |J |) · (µs + 1)) O(|F | · (νn−1
s + 1))

ADS Size O(2
∑N

s=1 µs) O(n ·
∑N

s=1 νs) O(N) O(N)
VO Size O(|I|+ |J |) O(|F |) O(2|I|+ 2|J |) O(2|F |)

α is the size of query results; ds is the data size of key ks; N is the number of keys; n is the number of dimensions; α is the size of query
results; µs and νs are the sizes of matrix Ms and hypercube Qs, respectively; I and J are the set of lines and columns of Ms covered by the
query results, respectively; F is the set of faces of Qs covered by the query results.

O(2µs+N), and O(2νn−1
s +N) in MPV0, MPV+, MPV0-GE

and MPV+-GE, respectively. In both cases, the VO size as
well as the verification cost incurred in all our schemes are
constant.

Handling Updates. To update the on-chain digest δF ,
the data owner first requests the fresh version set FV =
{(ks, ds)}Ns=1 from the SP and tests if acc(FV) = δF or not.
If so, this means that all the elements in set FV are correct.
The data owner then calculates ds ← ds + d′s, constructs a
new fresh version set FV′ = {(ks, ds)}Ns=1, and generates
the updated digest as δ′F ← GenAcc(FV′).

8 EVALUATION

8.1 Performance Analysis
The performance is analyzed in terms of computational
and communication costs incurred at different stages of our
MPV schemes. As for computational costs, we only consider
the expensive group operations related to RSA accumulator.
Specifically, algorithm GenAcc requires performing power
operations for |X| times to generate a digest for a set X ;
Algorithm GenProof requires performing power operations
for |X − Y | times to generate a proof for the subset Y of set
X ; Algorithm VerProof requires performing power opera-
tions for |Y | times to verify if Y ⊆ X . As for communication
costs, we mainly consider the sizes of on-chain ADS and off-
chain VO. The comparison results are shown in Table 3.

ADS Generation. In MPV0 and MPV+, the data owner
generates a digest set for the verifiable matrix/hypercube
associated with each key, incurring the total computational
costs O(2

∑N
s=1 ds) and O(n ·

∑N
s=1 ds), respectively. Com-

pared with the basic MPV scheme, the gas-efficient version
requires calculating an extra digest for the digest set asso-
ciated with each key. Thus, the total computational costs
in MPV0-GE and MPV+-GE are O(2

∑N
s=1(ds + µs)) and

O(n ·
∑N

s=1(ds + νs)), respectively. The ADS sizes in MPV0,
MPV+, and the gas-efficient version are O(2

∑N
s=1 µs),

O(n ·
∑N

s=1 νs), and O(N), respectively, s.t. µs ≈ ν
n/2
s .

VO Construction. For a range query that produces
α matched results, MPV0 requires the SP to calculate a
proof for each covered line/column, incurring computa-
tional costs O((|I|+ |J |) ·µs−2α) and VO size O(|I|+ |J |);
MPV+ needs to calculate a proof for each covered face
incurring computational costs O(|F | · νn−1

s − n · α) and VO
size O(|F |); Without considering the computational costs
of digest sets, MPV0-GE requires an extra proof for the
digest associated with each covered line/column incurring
computational costs O(2(|I| + |J |) · µs − 2α) and VO size
O(2|I| + 2|J |); MPV+-GE requires an extra proof for the
digest associated with each covered face incurring compu-
tational costs O(2|F | · νn−1

s − n · α) and VO size O(2|F |).
Verification. For a range query with α matched results,

the user needs to authenticate query results and locate

errors, incurring the total computational costs O((|I|+ |J |) ·
µs) and O(|F | · νn−1

s) in MPV0 and MPV+, respectively.
MPV0-GE and MPV+-GE require the user to perform the
two-stage verification, resulting in computational costs are
O((|I|+ |J |) · (µs+1)) and O(|F | · (νn−1

s +1)), respectively.

8.2 Parameter Settings and Datasets

In our evaluation, the SP is simulated at a server with an
Intel Xeon Gold 2.30GHz CPU and 128GB RAM. The data
owner and user are set up on a portable laptop with an Intel
Core i7 2.30GHz CPU and 8GB RAM. The experiment codes
are implemented by Java, and the Ethereum test network3

with smart contracts is used to simulate the process of up-
loading on-chain ADSs. For the cryptographic algorithms,
we set the security parameter λ to 256, and apply SHA-256
to implement hash functions. Besides, the JPBC library is
employed for group and bilinear pairing calculations. When
implementing RSA accumulator with JPBC library, the costs
of group-related operations mainly come from mapping
accumulative values to integers, and thus the execution time
incurred on each entity is determined by the running times
of relevant algorithms. To verify the effectiveness of MPV,
we select two real datasets for performance evaluation:
• Smart home dataset with weather information (HC

for short)4. This dataset contains the readings of house
appliances from a smart meter during 350 days and the
weather conditions of the particular region. The data scale is
about 100, 000 rows and each object is represented as (key,
[electricity consumption, temperature], timestamp).
• Temperature IoT on Google cloud platform (TIG for

short)5. This dataset contains 1, 050, 000 rows of raw tem-
perature data streaming from different sensors. Each object
is represented as (key, [temp f, temp c, device id], timestamp).

According to the analysis results in section 8.1, we can
get that the number of keys N and the data size d of each
key are two important parameters for the performance of
our schemes. To test the parameter N , we preprocess the
datasets so that each key contains 1,000 data and set N to
{20, 40, 60, 80, 100} in HC and {200, 400, 600, 800, 1, 000} in
TIG, respectively. To show the impact of parameter d, we
preprocess the datasets and set the range of the data size for
a single key to [2 × 104, 105] in HC, and [2 × 105, 106] in
TIG. Meanwhile, the number of dimensions in MPV+ and
MPV+-GE is set to n = 3; the query ratio τ = α/d means
the ratio of the result size α to the data size d and is set to
{5%, 10%, 15%, 20%, 25%}; the error rate of query results is
fixed to 1%. The performance is evaluated by the following

3. https://rinkeby.etherscan.io/
4. https://www.kaggle.com/datasets/taranvee/smart-home-

dataset-with-weather-information
5. https://www.kaggle.com/datasets/mattpo/temperature-iot-on-

gcp

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2024.3359173

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on May 16,2024 at 00:52:41 UTC from IEEE Xplore. Restrictions apply.

11

(a) HC (b) TIG (c) HC (d) TIG

Fig. 6: The ADS generation time on the data owner side.

(a) HC (b) TIG (c) HC (d) TIG

Fig. 7: The storage costs on the blockchain.

(a) HC, d = 2 × 104 (b) TIG, d = 2 × 105 (c) HC, τ=10% (d) TIG, τ=10%

Fig. 8: The time of building VO on the SP side.

(a) HC, d = 2 × 104 (b) TIG, d = 2 × 105 (c) HC, τ=10% (d) TIG, τ=10%

Fig. 9: The size of VOs transmitted from the SP to the user.

metrics: (1) ADS generation time; (2) The storage cost on
blockchain; (3) VO construction time; (4) VO size; (5) Query
authentication time; (6) Error locating time. The 1st metric
is performed on the data owner side, and the 2nd metric
is the on-chain storage overhead. The 3th and 4th metrics
are executed on the SP side, and the 5th and 6th metrics
are executed on the user side. To minimize deviation, each
metric is run at least 100 times to obtain the average values.

8.3 Experimental results

ADS Generation. From Fig. 6, we can see that the ADS
generation time of all schemes increases as the parameters
N and d increase. The reason is obvious, the bigger values
of N and d means that the more data needs to be processed
to generate the ADSs, hence incurring more execution time.
For the same reason, the ADS generation time of all schemes
on TIG is longer than that on HC under the same parameter
settings. In terms of four schemes, MPV+ performs the
best, and MPV0-GE performs the worst. For example, when
d = 4 × 104, the ADS generation time of MPV0, MPV+,
MPV0-GE, and MPV+-GE on HC is 113.3s, 36.1s, 113.8s,
and 36.5s, respectively. The reason is that MPV0 runs the
GenAcc algorithm more times to generate a larger-size
ADS than MPV+. As for MPV0-GE, it requires the extra
calculations to get accumulative values of digest sets than
MPV0, and hence it costs the most time in ADS generation.

Fig. 7 shows the storage costs on blockchain. From Fig. 7-
(a),(b), we can know that the storage costs of all schemes are
positively impacted by parameter N . For example, the ADS
size of MPV0 on TIG increases from 97KB to 484KB as N

increases from 200 to 1, 000. This is because the more num-
ber of keys means the more number of matrices, cubes, or
accumulative values need to be generated, hence resulting
in larger-size ADSs. For the same reason, the storage costs
on TIG are bigger than those on HC. From Fig. 7-(c),(d), we
can see that the storage costs of MPV0 and MPV+ increase
as the value of d increases, while MPV0-GE and MPV+-GE
incur constant costs. This is because for a single key, MPV0

and MPV+ generate a verifiable matrix and a verifiable
cube as the ADS, respectively, but the gas-efficient versions
generate only a fixed-size accumulative value. Since the
sizes of matrix and cube are positively affected by the data
size d, the bigger value of d means a larger size of ADSs
in both MPV0 and MPV+. In terms of four schemes, MPV0

generates the largest size of ADSs, while the gas-efficient
versions produce the smallest on-chain ADSs.

VO Construction. As discussed in Section 8.1, the VO
construction and verification costs are mainly affected by
parameters τ and d, and thus their performance is evaluated
with varying values of τ and d. From Fig. 8, we can see
that MPV+ and MPV0-GE consume the least and the most
VO construction time under the same settings. For example,
when τ = 10% and d = 2 × 104, the VO construction time
of MPV0, MPV+, MPV0-GE, and MPV+-GE on HC is 25.8s,
17.5s, 47.8s, and 25.4s, respectively. This is because MPV+

runs algorithm VerProof less times to generate a smaller-size
VO, but MPV0-GE requires generating extra proofs in the
two-stage verification compared with MPV0. From Fig. 8-
(a),(b), we know that parameter τ has little influences on
the VO construction time of MPV0 and MPV+. The main

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2024.3359173

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on May 16,2024 at 00:52:41 UTC from IEEE Xplore. Restrictions apply.

12

(a) HC, d = 2 × 104 (b) TIG, d = 2 × 105 (c) HC, τ=10% (d) TIG, τ=10%

Fig. 10: The query authentication time on the user side.

(a) HC, d = 2 × 104 (b) TIG, d = 2 × 105 (c) HC, τ=10% (d) TIG, τ=10%

Fig. 11: The error locating time on the user side.

(a) CPU time on data owner (b) CPU time on SP (c) Query authentication time (d) Error locating time

Fig. 12: The comparison results between CUBE and our solutions on HC dataset (τ=10%).

reason is that the query results cover all the matrix columns
in MPV0 and all the 2-faces of cube in MPV+ for all the
query ratios. From Fig. 8-(c),(d), we can see that the VO
construction time of all schemes is positively impacted by
parameter d. This is because under a fixed query ratio, the
larger d means the more rows or faces covered by the query
results, incurring larger VO construction time.

From Fig. 9, we can see the VO size in MPV+ is smaller
than that in MPV0 under the same settings. For example,
when τ = 10% and d = 2 × 105, the VO size of MPV0

and MPV+ on TIG is 3.8KB and 1.0KB, respectively. This is
because the number of faces covered by the query results in
MPV+ is less than the number of covered lines and columns
in MPV0. Compared with MPV0, MPV0-GE needs to gener-
ate a proof for each digest in addition, hence incurring the
biggest VO size. Besides, we can see that the VO sizes of all
schemes on both datasets are positively impacted by both
parameters τ and d. The reason is that when either of τ and
d grows, the size of query results α = τ ·d increases, making
the number of covered lines/columns or faces increase.

Verification. The verification process consists of query
authentication and errors locating. From Fig. 10, we can find
that the query authentication time of all schemes increases
as the parameters τ and d increase. This is because the big-
ger τ or d means the more data needed to be verified hence
incurring more time. Under the same settings, MPV0-GE
and MPV+ require the most and the least verification time,
respectively. For example, when τ = 5% and d = 2×105, the
query authentication time of MPV0, MPV+, MPV0-GE, and
MPV+-GE on TIG is 9.9s, 7.4s, 17.5s, and 9.3s, respectively.
This is because MPV+ runs algorithm VerProof less times,
but MPV0-GE requires extra performing digest verification,
compared with MPV0. For the same reason, Fig. 11 shows
the similar trends as Fig. 10.

Comparison with Prior Work. As our work is the
first attempt to support fine-grained query authentication
in the HSB environment, we compare our MPV schemes
with a secure cloud storage scheme CUBE [23] that also

supports error locating based on three-dimensional cubes
and bilinear pairing [36]. The reason for choosing CUBE as
the comparative scheme is that both CUBE and our MPV
schemes focus on identifying the corrupted data retrieved
from an untrusted server by error locating. The main dif-
ference is that CUBE does not support range/fresheness
queries, and verifies outsourced data through a challenge-
response phase. For a fair comparison, we assume that the
size of challenged data in CUBE is the same as the size of
query results in our schemes.

From Fig. 12-(a), we can see that CUBE incurs the most
execution time on the data owner side among all schemes.
For example, when d = 4 × 104, the time executed on the
data owner side of MPV0, MPV+, MPV0-GE, MPV+-GE, and
CUBE is 113.3s, 36.1s, 113.8s, 36.5s and 358.9s, respectively.
The main reason is that the bilinear pairing operations as
the cryptographic basis of CUBE are more expensive than
the RSA accumulator operations used in our schemes. As
for the execution time on the SP side shown in Fig. 12-(b),
MPV0, MPV+, and MPV+-GE always perform better than
CUBE, and MPV0-GE performs better than CUBE when the
data size d is large enough. For example, the time executed
on the SP side of MPV0-GE and CUBE increases from 47.8s
to 83.3s and from 28.3s to 85.6s, respectively, as d increases
from 2 × 104 to 6 × 104. This is because CUBE needs to
generate a proof for each challenged data and aggregate all
of them together, while MPV0-GE generates a proof for each
row and column covered by the query results. Therefore, the
data size d has a greater impact on CUBE than MPV0-GE.
From Fig. 12-(c), we can see that the query authentication
time of CUBE is the least among all schemes. For example,
when τ = 10% and d = 2 × 104, the query authentication
time of MPV0, MPV+, MPV0-GE, MPV+-GE and CUBE is
3.2s, 1.8s, 5.1s, 2.7s, and 1.3s, respectively. The reason is that
CUBE uses global verification to authenticate the integrity
of all challenged results at once. However, CUBE performs
the worst among all schemes in the error location phase
as illustrated in Fig. 12-(d). For example, under the same

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2024.3359173

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on May 16,2024 at 00:52:41 UTC from IEEE Xplore. Restrictions apply.

13

settings (τ = 10% and d = 2×104), the error locating time of
of MPV0, MPV+, MPV0-GE, MPV+-GE, and CUBE is 12.9s,
4.9s, 21.1s, 8.5s, and 27.7s, respectively. This is because
CUBE needs to perform multiple rounds of verification over
a cube-based hierarchical structure to screen out error data.

9 CONCLUSION

In this paper, we propose two MPV schemes to achieve fine-
grained query authentication in the HSB environment. In
both schemes, a user not only can effectively verify the data
retrieved off-chain, but also can distinguish authentic data
from falsified results to gain high data utility. Compared
with the basic MPV scheme, the gas-efficient version gener-
ates a constant-size on-chain ADS and thus is more suitable
for a super-large scale dataset. The empirical study vali-
dates the effectiveness of our schemes. As discussed in the
article, our MPV schemes support authenticated freshness
queries over data streams updated dynamically. As part
of our future work, we will try to extend the fine-grained
authentication solutions to support other complex queries,
such as skyline queries and boolean queries.

ACKNOWLEDGMENTS

This work was supported in part by the National Key
Research and Development Program of China under Grant
2022YFE0201400, in part by the NSFC Grants 62272150,
62372121, U20A20181, 62272162, 62172159, and 61872133,
in part by the Natural Science Foundation of Guangdong
Province of China under Grant 2023A1515012358; and in
part by the Hunan Provincial Natural Science Foundation
of China under Grants 2021JJ30294, 2023JJ30267, 2020JJ3015.
Yu Peng and Mingzuo Xu contributed to the work equally
and should be regarded as co-second authors.

REFERENCES

[1] Y. Miao, Z. Liu, H. Li, K. K. R. Choo, and R. H. Deng,
“Privacy-preserving byzantine-robust federated learn-
ing via blockchain systems,” IEEE Transactions on Infor-
mation Forensics and Security, 2022.

[2] Y. Zhang, K. Gai, J. Xiao, L. Zhu, and K. K. R. Choo,
“Blockchain-empowered efficient data sharing in inter-
net of things settings,” IEEE Journal of Selected Areas in
Communications, 2022.

[3] E. Zhou, Z. Hong, Y. Xiao, D. Zhao, Q. Pei, S. Guo, and
R. Akerkar, “MSTDB: A hybrid storage-empowered
scalable semantic blockchain database,” IEEE Transac-
tions on Knowledge and Data Engineering, 2022.

[4] Q. Liu, Y. Peng, H. Jiang, J. Wu, T. Wang, T. Peng, and
G.Wang, “SlimBox: Lightweight packet inspection over
encrypted traffic,” IEEE Transactions on Dependable and
Secure Computing, 2022.

[5] B. Zhang, B. Dong, and W. H. Wang, “Integrity au-
thentication for SQL query evaluation on outsourced
databases: A survey,” IEEE Transactions on Knowledge
and Data Engineering, 2021.

[6] C. Xu, C. Zhang, and J. Xu, “vChain: Enabling verifi-
able boolean range queries over blockchain databases,”
in Proc. of SIGMOD, 2019.

[7] C. Zhang, C. Xu, J. Xu, Y. Tang, and B. Choi, “GEMˆ2-
Tree: A gas-efficient structure for authenticated range
queries in blockchain,” in Proc. of ICDE, 2019.

[8] M. Narasimha, and G. Tsudik, “Authentication of out-
sourced databases using signature aggregation and
chaining,” in Proc. of DASFAA, 2006.

[9] J. Wang, X. Chen, X. Huang, I. You, and Y. Xiang,
“Verifiable auditing for outsourced database in cloud
computing,” IEEE Transactions on Computers, 2015.

[10] Q. Liu, Y. Peng, Q. Xu, H. Jiang, J. Wu, T. Wang,
T. Peng, G. Wang, and S. Zhang, “MARS: Enabling
verifiable range-aggregate queries in multi-source envi-
ronments,” IEEE Transactions on Dependable and Secure
Computing, 2023.

[11] Z. Xu, Y. Lin, V. Sandor, Z. Huang, X. Liu, “A
lightweight privacy and integrity preserving range
query scheme for mobile cloud computing,” Computers
& Security, 2019.

[12] S. Wu, Q. Li, G. Li, D. Yuan, X. Yuan, and C. Wang,
“ServeDB: Secure, verifiable, and efficient range queries
on outsourced database,” in Proc. of ICDE, 2019.

[13] Q. Meng, J. Weng, Y. Miao, K. Chen, Z. Shen, F. Wang,
and Z. Li, “Verifiable spatial range query over en-
crypted cloud data in VANET,” IEEE Transactions on
Vehicular Technology, 2021.

[14] B. Zhang, B. Dong, and W. H. Wang, “CorrectMR: Au-
thentication of distributed SQL execution on MapRe-
duce,” IEEE Transactions on Knowledge and Data Engi-
neering, 2021.

[15] C. Xu, Q. Chen, H. Hu, J. Xu, and X. Hei, “Authenticat-
ing aggregate queries over set-valued data with con-
fidentiality,” IEEE Transactions on Knowledge and Data
Engineering, 2018.

[16] P. Gupta, Y. Li, S. Mehrotra, N. Panwar, S. Sharma,
and S. Almanee, “Obscure: Information-theoretically
secure, oblivious, and verifiable aggregation queries
on secret-shared outsourced data,” IEEE Transactions on
Knowledge and Data Engineering, 2022.

[17] H. Jin, K. Zhou, H. Jiang, D. Lei, R. Wei, and C. Li,
“Full integrity and freshness for cloud data,” Future
Generation Computer Systems, 2018.

[18] J. Zhu, Q. Li, C. Wang, X. Yuan, Q. Wang and K. Ren,
“Enabling generic, verifiable, and secure data search
in cloud services,” IEEE Transactions on Parallel and
Distributed Systems, 2018.

[19] Y. Hu, X. Yao, R. Zhang, and Y. Zhang, “Freshness
authentication for outsourced multi-version key-value
stores,” IEEE Transactions on Dependable and Secure Com-
puting, 2022.

[20] Y. Mu, Q. Liu, J. Zhou, K. Xie, and G. Wang, “Achieving
flow-oriented reliable services in cloud computing,” in
Proc. of ISPA/IUCC, 2017.

[21] A. Kittur, S. Kauthale and A. Pais, “Bad signature
identification in a batch using error detection dodes,”
in Proc. of ISEA-ISAP, 2019.

[22] C.-T. Li, M.-S. Hwang, and S. Chen, “A batch verify-
ing and detecting the illegal signatures,” International
Journal of Innovative Computing, Information and Control,
2010.

[23] G. Xu, Z. Sun, C. Yan, and Y. Gan, “A rapid detection
algorithm of corrupted data in cloud storage,” Journal
of Parallel and Distributed Computing, 2018.

[24] H. Yuan, X. Chen, G. Xu, J. Ning, J. K. Liu, and R. H.
Deng, “Efficient and verifiable proof of replication with

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2024.3359173

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on May 16,2024 at 00:52:41 UTC from IEEE Xplore. Restrictions apply.

14

fast fault localization,” in Proc. of INFOCOM, 2021.
[25] H. Wang, C. Xu, C. Zhang, J. Xu and Z. Peng,

“vChain+: Optimizing verifiable blockchain boolean
range queries,” in Proc. of ICDE, 2022.

[26] X. Dai, J. Xiao, W. Yang, C. Wang, J. Chang, R. Han, and
H. Jin, “LVQ: A lightweight verifiable query approach
for transaction history in bitcoin,” in Proc. of ICDCS,
2020.

[27] Y. Peng, M. Du, F. Li, R. Cheng, and D. Song, “Fal-
conDB: Blockchain-based collaborative database,” in
Proc. of SIGMOD, 2020.

[28] M. S. Rahman, I. Khalil, N. Moustafa, A. P. Kalapaak-
ing, and A. Bouras, “A blockchain-enabled privacy-
preserving verifiable query framework for securing
cloud-assisted industrial internet of things systems,”
IEEE Transactions on Industrial Informatics, 2021.

[29] Y. Zhu, Z. Zhang, C. Jin, A. Zhou, and Y. Yan, “SEBDB:
Semantics empowered blockchain database,” in Proc. of
ICDE, 2019.

[30] Q. Pei, E. Zhou, Y. Xiao, D. Zhang, and D. Zhao, “An
efficient query scheme for hybrid storage blockchains
based on merkle semantic trie,” in Proc. of SRDS, 2020.

[31] H. Wu, Z. Peng, S. Guo, Y. Yang, and B. Xiao,
“VQL: Efficient and verifiable cloud query services for
blockchain systems,” IEEE Transactions on Parallel and
Distributed Systems, 2021.

[32] C. Zhang, C. Xu, H. Wang, J. Xu, and B. Choi, “Au-
thenticated keyword search in scalable hybrid-storage
blockchains,” in Proc. of ICDE, 2021.

[33] C. Zhang, Y. Xu, Y. Hu, J. Wu, J. Ren, and Y. Zhang,
“A blockchain-based multi-cloud storage data auditing
scheme to locate faults,” IEEE Transactions on Cloud
Computing, 2022.

[34] J. Camenisch and A. Lysyanskaya, “Dynamic accumu-
lators and application to efficient revocation of anony-
mous credentials,” in Proc. of CRYPTO, 2002.

[35] R. Gennaro, S. Halevi, and T. Rabin, “Secure hash-and-
sign signatures without the random oracle,” in Proc. of
EUROCRYPT, 1999.

[36] F. Zhang, R. Safavi-Naini, and W. Susilo, “An efficient
signature scheme from bilinear pairings and its appli-
cations,” in Proc. of PKC, 2004.

Qin Liu received her B.Sc. in Computer Sci-
ence in 2004 from Hunan Normal University,
China, received her M.Sc. in Computer Science
in 2007, and received her Ph.D. in Computer
Science in 2012 from Central South University,
China. She has been a Visiting Student at Tem-
ple University, USA. Her research interests in-
clude security and privacy issues in cloud com-
puting. Now, she is an Associate Professor in
the College of Computer Science and Electronic
Engineering at Hunan University, China.

Yu Peng is working toward the PhD degree
with the College of Computer Science and Elec-
tronic Engineering, Hunan University, Chang-
sha, China. His research interests include the
security and privacy issues in cloud computing,
networked applications, and blockchain.

Mingzuo Xu received his B.Sc. in Materials
Science and Engineering in 2019 from Hunan
University, China. Currently, he is studying for
a Master’s degree in the College of Computer
Science and Electronic Engineering at Hunan
University, China. His research interests include
cloud computing security and blockchain.

Hongbo Jiang received the PhD degree from
Case Western Reserve University, in 2008. Af-
ter that, he joined the faculty of the Huazhong
University of Science and Technology as a full
professor. Now, he is a full professor with the
College of Computer Science and Electronic
Engineering, Hunan University. His research
concerns computer networking, especially algo-
rithms and protocols for wireless and mobile
networks. He is serving as an editor for the
IEEE/ACM Transactions on Networking, asso-

ciate editor for the IEEE Transactions on Mobile Computing, and as-
sociate technical editor for the IEEE Communications Magazine.

Jie Wu is the Chair and a Laura H. Carnell Pro-
fessor in the Department of Computer and Infor-
mation Sciences at Temple University, Philadel-
phia, PA, USA. Prior to joining Temple Univer-
sity, he was a Program Director at the National
Science Foundation and a Distinguished Pro-
fessor at Florida Atlantic University. His current
research interests include mobile computing and
wireless networks, network trust and security,
and routing protocols. Dr. Wu has regularly pub-
lished in scholarly journals, conference proceed-

ings, and books. He serves on several editorial boards, including IEEE
Transactions on Services Computing, and Journal of Parallel and Dis-
tributed Computing. Dr. Wu is a CCF Distinguished Speaker and a
Fellow of the IEEE. He is the recipient of the 2011 China Computer
Federation (CCF) Overseas Outstanding Achievement Award.

Tian Wang received his BSc and MSc degrees
in Computer Science from the Central South
University in 2004 and 2007, respectively. He
received his PhD degree in City University of
Hong Kong in 2011. Currently, he is a professor
at the Institute of Artificial Intelligence and Fu-
ture Networks, Beijing Normal University & UIC,
China. His research interests include internet of
things and edge computing.

Tao Peng received the B.Sc. in Computer Sci-
ence from Xiangtan University, China, in 2004,
the M.Sc. in Circuits and Systems from Hunan
Normal University, China, in 2007, and the Ph.D.
in Computer Science from Central South Uni-
versity, China, in 2017. Now, she is an Asso-
ciate Professor of School of Computer Science
and Cyber Engineering, Guangzhou University,
China. Her research interests include network
and information security issues.

Guojun Wang received his Ph.D. degree in
Computer Science, at Central South University,
China in 2002. He is a Pearl River Scholarship
Distinguished Professor of Higher Education in
Guangdong Province, and a Doctoral Supervisor
of School of Computer Science and Cyber Engi-
neering, Guangzhou University, China. He has
been listed in Chinese Most Cited Researchers
(Computer Science) by Elsevier in the past eight
consecutive years (2014-2021). His research in-
terests include artificial intelligence, big data,

cloud computing, Internet of Things (IoT), and blockchain. He is a
Distinguished Member of CCF, a Member of IEEE, ACM and IEICE.

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2024.3359173

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on May 16,2024 at 00:52:41 UTC from IEEE Xplore. Restrictions apply.

