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Abstract—Intrusion detection systems (IDS) primarily rely on
signature-based approaches, which can fail to detect novel or
sophisticated attacks. This paper addresses the underutilized
potential of leveraging a multi-modal approach that combines
packet capture (PCAP) and log data for anomaly detection.
To enhance detection capabilities, we propose an interpretable
hybrid neural network architecture, TransIDS, that integrates
a packet-based transformer with an efficient transformer-based
language model for log messages. The proposed framework ex-
tracts semantic vectors from raw log messages and concatenates
them with packet embeddings. An attention-based classification
model then detects anomalies by determining the importance of
each log message and packet for the neural network’s decision. By
fusing spatial features from PCAP data with temporal features
from log data, TransIDS utilizes this multi-modal data fusion
to identify anomalies that might be missed by conventional
systems. This approach not only leverages the strengths of
two distinct transformer-based architectures but also provides
a more comprehensive analysis of network traffic, leading to
more effective detection of previously undetected attacks and
strengthening overall network security. We use a real testbed
for our experiments to validate the effectiveness of our proposed
approach.

Index Terms—Intrusion Detection System(IDS), Natural Lan-
guage Processing, Multi-Modality, PCAP, Transformer-based IDS

I. INTRODUCTION

Intrusion Detection Systems (IDS) play a crucial role in
maintaining the security and integrity of networks [1]. These
systems are designed to monitor network traffic for suspicious
activity and potential threats, such as unauthorized access
attempts, malware, and other forms of cyberattacks. By an-
alyzing data packets, an IDS can detect patterns that suggest
malicious activity, allowing network administrators to take
prompt action to mitigate risks [2], [3]. One of the key outputs
of IDS is the generation of logs, which are detailed records
of events and activities observed within the network [4]. In
service and system management, logs play an essential role in
serving as a vital tool to capture significant events and runtime
information [5].

Traditional log anomaly detection methods typically depend
on techniques like keyword matching or regular expressions to
identify abnormal log entries. However, these approaches can

Fig. 1: Log-based intrusion detection.

struggle to detect attacks or anomalies involving logs from
various systems or logs with differing formats and structures.
Effective anomaly detection from system logs faces several
significant challenges including understanding the intricate
attributes present in event logs, extracting complex contextual
relationships among events, and providing clear explanations
to human analysts regarding detected anomalies. As a result,
there is a critical need for efficient and automated anomaly
detection systems capable of rapidly identifying and resolving
potential issues in network infrastructures through log analysis.

Log-based intrusion detection [6] involves a systematic
process to identify malicious activities within a network by
analyzing log files. As depicted in Fig. 1, this process begins
with the collection of various log files from various sources.
These log files undergo pre-processing to standardize and
organize the data, making them ready for further analysis.
Following preprocessing, feature extraction is conducted using
an improved transformer model, which identifies relevant
features and patterns indicative of potential security threats.
The extracted features are then used for classification, enabling
the detection of anomalies and intrusions. In addition, feature
scores are generated to improve the interpretability of the
detection outcomes.

Transformers [7], initially designed for natural language
processing (NLP) tasks, are highly effective at capturing long-
term relationships in data and efficiently processing long
sequences without extensive pre-processing. This ability to
model extended sequences with greater efficiency has made
transformers a powerful tool not only in NLP but also in
time-series anomaly detection. Typically, transformers are pre-



trained on extensive text corpora and subsequently fine-tuned
on smaller, task-specific datasets. Beyond NLP, transformers
have proven computationally efficient and scalable, extending
their utility to computer vision, particularly in image clas-
sification. By leveraging the capabilities of the Transformer
encoder [8], [9], we can extract both time series and global
features from the data, resulting in significant improvements
in classification performance. In light of the above, this
paper introduces a log-based IDS that combines multiple
transformers for effective attack detection. By leveraging
both log and PCAP data, the system implements a multi-
modal [10] approach, utilizing the strengths of each data type.
Our multi-modal Transformer-based framework employs an
attention mechanism to determine the significance of each log
message and packet in the decision-making process, ensuring
greater transparency in detection outcomes. To further enhance
interpretability, feature scores are generated, offering deeper
insights into the detection process.

The main contributions of this work are as follows:
• We propose a multi-modal Transformer-based framework

that uses the computational efficiency and scalability of
different types of Transformers to detect attacks.

• We develop a log-based IDS by utilizing a packet-
based transformer that outperforms the traditional CNN-
Transformer combination.

• To enhance the system’s capability to detect unknown
attacks and minimize false alarms, we employ two dis-
tinct types of input: log and PCAP data, leveraging the
strengths of a multi-modal approach.

• Our approach provides interpretability by using an
attention-based mechanism to determine the importance
of each log message and packet for the system’s decision-
making.

II. RELATED WORK AND BACKGROUND

In this section, we delve into various approaches and
methodologies employed in the field of log-based attack de-
tection, deep learning-based attack detection, and log anomaly
detection based on Transformer models.

A. Log-based Attack Detection

IDSs generate output in the form of logs, which are es-
sential for documenting various events and activities within
a network. These logs provide detailed records of network
traffic, including alerts about potential security incidents. By
analyzing log entries, anomalies can be identified, and alerts
can be triggered for early notification of potential issues. Logs
serve as valuable resources for the timely detection of system
anomalies, with output logs offering a potential means to
identify abnormal system states [11]–[14].

Traditional log anomaly detection relies on domain exper-
tise, manual checks, and rule-based systems, which are costly,
inflexible, and limited by expert knowledge. Machine learning
models also struggle, as they focus on simple features and fail
to capture complex log patterns, limiting their effectiveness.
To overcome these limitations, more advanced techniques such

as deep learning and NLP are being explored. For instance,
LogRobust employs an attention-based Bi-LSTM network to
detect anomalies in unstable log data [15]. Anomaly detec-
tion methods based on logs are classified into graph model-
based, probability analysis-based, and machine learning-based
approaches. Graph model-based methods capture sequence
relationships, association relationships, and log text content.
Probability analysis-based methods utilize correlation analysis
and comparison to calculate the correlation probability be-
tween logs and anomalies. Machine learning-based methods
often employ LSTM models to infer the abnormality of logs
by examining sequential relationships [16].

B. Deep Learning-based Attack Detection

In sequence-level anomaly detection, employing RNN-
based deep learning models like LSTM and GRU is a common
approach [17]–[20]. The Transformer model was initially
created to handle sequence-to-sequence tasks, such as lan-
guage translation. It operates by taking in a sequence of any
length, applying a self-attention mechanism to understand the
context, and generating an output sequence based on this
learned context. The process begins with encoding, where the
model grasps the significance of the input sequence. Then, it
decodes this learned context into the output sequence. This
study focuses solely on utilizing the transformer encoder as a
substitute for LSTM in the context of anomaly detection [7].

Transformers have gained traction for attack detection,
with studies combining them with CNNs to detect DDoS
attacks [21] or leveraging their self-attention mechanism for
robust intrusion detection solutions [22]. The original Trans-
former model comprises both an encoder and a decoder.
However, for intrusion detection tasks, which predominantly
involve classification, this module exclusively utilizes the
encoder component. Transformers, known for their ability to
model contextual dependencies, have also been applied to log
anomaly detection tasks. HitAnomaly, for example, employs
a hierarchical Transformer structure to encode log sequences
and parameter values [23].

Approaches like DeepLog focus on achieving high accuracy
in streaming fashion for log anomaly detection, using LSTM
to capture latent patterns from normal log sequences [16],
[24]. Similarly, LogAnomaly utilizes LSTM to capture nor-
mal patterns while introducing a novel template2Vec method
to represent log templates [12]. TRANSLOG, a unified
Transformer-based framework, comprises a pretraining stage
and an adapter-based tuning stage for log anomaly detec-
tion [25]. In contrast, Loader utilizes the Transformer encoder
for semi-supervised log anomaly detection, exclusively relying
on normal log sequences for training .Additionally, Loader
introduces a flexible and robust top-p algorithm for candidate
set determination during detection [26].

In contrast, our proposed multi-modal Transformer-based
framework addresses these gaps by combining both log and
PCAP data, thus providing a more comprehensive analysis of
network anomalies. Furthermore, our framework introduces an
attention-based mechanism that improves interpretability by



Fig. 2: TransIDS framework with DistillBERT and packet-based Transformer.

determining the importance of each log message and packet
for the decision-making process, a feature often missing in
prior methods.

III. METHODOLOGY

PCAP file contains network traffic information and is used
to assess the underlying data exchange between servers.
However, such data is noisy and does not carry meaningful
semantics for the detection system. We can integrate some
auxiliary information to preserve actual semantics. To integrate
network traffic with the alert messages of the IDS, we need
to merge the two types of input data: the PCAP file and the
log file. The IDS monitors all network traffic and generates
logs including alerts. The IDS analyzes the behavior of each
traffic flow. Simultaneously, traffic data values are fed to the
framework to aid in traffic behavior analysis. Consequently,
our framework can detect attacks based on both the attack
behavior and its impact. The selected traffic data should be
within the same time window as the duration of the attack
detection, which is typically a very short period.

We utilized transformer-based models for processing both
log contents and packets within a PCAP file, as shown
in Fig. 2. Transformers consist of sequential blocks, each
applying a transformation to the input sequences. The at-
tention mechanism within Transformers captures long-range
dependencies, semantic (contextual) dependencies in logs and
spatial in packets which leads to more accurate classifier. By
computing the relevance between different parts of a sequence,
attention allows the model to focus on critical components.
Attention computes the relevance between different parts of a
sequence. The multi-head self-attention applies multiple self-
attention functions to its input in parallel, each of which is
called a head, then concatenates all heads’ outputs and projects
them to the same d-dimensional space as the input. The results
obtained by each head are concatenated together to construct
the final result. This mechanism enables the model to focus on
different positions and provides multiple representation sub-
spaces for the attention layer.

Compared to previous works that primarily use CNNs to
capture patterns from packets, we opted for a packet-based
transformer inspired by vision transformer. This approach
allows us to obtain an embedding for each packet and assess
its importance through an attention mechanism. In contrast,
CNNs tend to lose local information about each packet as
they focus on extracting global patterns.

We combined two transformer-based models, DistilBERT
and the Packet-based Transformer, to create a hybrid and
interpretable model named TransIDS, designed to achieve
superior performance compared to traditional deep learning
models and conventional hybrid approaches. TransIDS auto-
matically learns spatio-temporal features of network traffic
using deep neural networks, making it well-suited for inter-
pretable anomaly detection. The pre-processed traffic sequence
serves as the input for Transformer NIDS. A structural diagram
of the proposed model is shown in Fig. 2.

• Module 1: (Data Preprocessing) The goal of this mod-
ule is ensuring that both data modalities are prepared
for passing through the deep learning models to obtain
meaningful embeddings.

• Module 2: (BERT-based embedding for log sequence)
The goal of this module is to provide a vector represen-
tation for log content with the help of the BERT model.

• Module 3: (Transformer-based embedding for PCAP
sequence) The goal of using transformer is to provide
the temporal and structural patterns features in the packet
data and derive their embeddings.

• Module 4: (Decoder) Attention mechanism integrates the
representations of log events and PCAP data. The goal is
to focus on the most relevant parts of the sequence and
determine the importance of each modality (PCAP or log
sequence) and specific segments within the log sequence
for the classification task.

A. Data Preprocessing

Raw log messages are unstructured, which contain many
different format texts. The original transformer model does
not consider a special feature of the raw log template but only
considers the self-attention relationship matrix of the raw log
sequence itself making a lot of important information ignored,
which may lead to false alarm.

Data preprocessing includes Log Parsing and PCAP Pars-
ing. We applied regex to extract various entities from the
raw log messages, creating a more structured and organized
format. In order to tackle log parsing errors or information
loss problems, this paper preprocesses the raw log message
data without log parsing to delete non-character parameters
and obtain the log content ℓ. We will then tokenize the
log message and feed it into a BERT-based model, which
will be explained in the next section. Additionally, we must
preprocess the associated PCAP format for each log message.



Algorithm 1 TransIDS

1: Input (X,Y ): Dataset where each X contains a PCAP
and a Log message

2: Output Trained classifier with parameters Θ
3: Initialize trainable parameters

Θ = {W1,W2, L, V,Packet-Transformer parameters}

4: Freeze pretrained DistilBERT parameters
5: Ltotal ← 0 ▷ Initialize total loss
6: while Accuracy is improving do
7: for each (PCAP,Log, Y ) in dataset (X,Y ) do
8: L← DistilBERT(Log)
9: P ← Packet-Transformer(PCAP)

10: P ′ ← P ·W
11: H ←

[
P ′;Z

]
▷ Concatenate embeddings

12: B ← tanh(H · V )
13: A← softmax(B ·W ) ▷ Find importance weights
14: D ← AT ·H
15: Pi ← Sigmoid(⟨L,D⟩)
16: Ltotal ← Ltotal + CrossEntropy(Pi, Y )

17: Update Θ using Adam optimizer to minimize Ltotal

During this step, we format the packets to make them suitable
for the model and apply normalization to the packet data.
This step ensures that both data modalities are prepared for
passing through the deep learning models to obtain meaningful
embeddings (vector representations).

B. BERT-based Embedding

We apply DistilBERT [27], a lightweight version of BERT
model, on preprocessed log sequence to obtain a vector
representation for log sequence. We leverage the capabil-
ities of Bidirectional Encoder Representations from Trans-
formers (BERT), a powerful language model that excels in
understanding text semantics. BERT is utilized to analyze
the semantic similarity between different alert messages. This
process involves converting the alert messages into rich em-
beddings through several steps: tokenization, initial embedding
via the embedding layer, positional embedding, multi-head
attention, and feed-forward layers to capture the sequential
nature of the data.

1) Tokenization and Vector Representation: BERT pro-
cesses an input sequence by tokenizing it using WordPiece [28]
and adding special tokens, such as [CLS] at the beginning
of each sequence. Each token is then converted into a dense
vector representation through WordPiece embeddings , using
a vocabulary of 30,000 tokens.

2) Positional Embedding: The BERT model utilizes the
transformer architecture [7], which is permutation invariant,
meaning the order of input tokens does not affect the model’s
output. To provide the model with information about the posi-
tion of each token, BERT employs positional encoding. This
technique incorporates the position of tokens using sinusoidal

functions, defined as:

PE(pos, 2i) = sin
( pos

100002i/d

)
(1)

PE(pos, 2i+ 1) = cos
( pos

100002i/d

)
, (2)

where pos is the position of the token, i is the dimension
index and d is the dimension of the embeddings. Obtained
embeddings from the first two steps are fed into BERT’s
architecture, enabling it to capture rich contextual relationships
within the text.

3) Multi-Head Attention: The multi-head attention mecha-
nism allows the model to focus on different parts of the alert
message simultaneously. We denote the obtained embedding
of one alert message from the first two steps by X ∈ RL×d,
where L is the sequence length and d is the embedding dimen-
sion. BERT consists of multiple layers of multi-head attention,
in which a new embedding for each token is obtained. We
denote the final embedding for layer l as E(l). In each head
of the first multi-head attention layer, initially three different
representations of X are obtained, called Q (Query), K (Key),
and V (Value), through linear projection using three trainable
matrices WQ

i ,WK
i ,WV

i with dimensions Rd×dk as follows:

Q = XWQ
i , K = XWK

i , V = XWV
i . (3)

Then, for each head:

headi = softmax
(
(QWQ

i )(KWK
i )T /

√
dk

)
VWV

i . (4)

Next, the heads are concatenated and multiplied by another
trainable matrix WO:

MultiHead = Concat(head1, head2, . . . , headh)WO. (5)

In order to obtain the final embedding, residual connec-
tion [29], layer normalization (LN) [30] and Feed Forward
Neural Network (FNN) have been utilized as follows:

E(1) = LN(FNN(out) + out), (6)

where E(1) is the final embedding for the first multi-head
attention layer and out = LN(MultiHead + X). This new
embedding will then serve as the input for the second multi-
head attention layer, and so on. Now we need to elabo-
rate on how DistilBERT is distilled from BERT. Knowledge
distillation is a compression technique in which a compact
model—the student—is trained to reproduce the behavior of
a larger model—the teacher. The student is trained with a
distillation loss over the soft target probabilities of the teacher.
The final training objective is a linear combination of the
distillation loss Lce with the supervised training loss, in our
case the masked language modeling loss.

C. Transformer-based Embedding for PCAP

The packet-based Transformer component for analyzing log
files in the TransIDS framework starts with the PCAP file,
which contains network packet data in binary form. Network
traffic flow is defined as the volume of data transmitted
between two communication nodes over a specific period.



Each network flow comprises sequential packets. Each packet,
regardless of the network protocol it follows, includes one or
more headers and payloads of certain bytes. Since a network
flow consists of several bytes, it is analogous to a pixel in a
grayscale image. This insight led us to transform network flow
data into grayscale images, where each byte of the network
flow represents a single pixel in the resulting image-like data.

We propose a novel encoding method called Grayscale
Flow to convert network flow data into a grayscale image-like
representation. Since the encoded data resembles grayscale
images, we use a 1D byte array to represent a single packet
and append each 1D array, corresponding to packets belonging
to the same flow, in chronological order to construct a 2D
representation. In other words, we arrange the content of each
packet as a row in the output matrix.

The PCAP data is transformed into an image-like repre-
sentation, where each packet is depicted as a matrix with
a specific height (16) and width (256). Each row in this
matrix corresponds to a feature vector extracted from the
packet. The packet images are fed into a transformer model
inspired by vision transformer model, which consists of mul-
tiple layers of processing. After the transformer layers, the
packets (Packet1, Packet2, ..., PacketM ) are combined with
positional embeddings, which encode the position of each
packet in the sequence. The obtained embedding for the
packets are then projected using a matrix (W ) to transform
the features into a new space, similar to the embedding size
in BERT’s embedding space, resulting in the vectors WP1,
WP2, ..., WPM .

D. Attention Mechanism and Classification

The attention mechanism is designed to focus on the most
relevant parts of the input data when making a prediction.
It assigns different levels of importance (weights) to various
features, packet and log token embeddings, allowing the model
to prioritize critical information.

The attention mechanism takes as input two sets of features.
The first set of features comes from the DistilBERT model,
which processes log file data. The second set comes from
the Packet-based Transformer, which processes the packet
data from PCAP files. The attention mechanism processes the
features from the DistilBERT output (log file features) and
the Packet-based Transformer (packet features) by computing
relevance scores for each feature in relation to the entire
sequence of features. The attention mechanism then creates
a weighted combination of these features, where the weights
are determined by the computed relevance scores. Features
with higher relevance scores will contribute more to the
final combined feature set. The output is a single, combined
feature set that integrates information from both the log files
and the packet data. This combined feature set captures the
most critical patterns and interactions between the log and
packet data. We provide a detailed mathematical explanation
of attention mechanism in Section III-E.

Subsequently, the unified embeddings will be passed
through a Feedforward Neural Network (FNN) to obtain a

probability distribution over all log templates, indicating the
likelihood of each template appearing after the input log
sequence. The FNN is a type of neural network where the
data moves in one direction, from input to output, through
multiple layers of processing. The FNN consists of several
layers, where each layer applies a series of transformations
to the input data, such as linear combinations and nonlinear
activation functions. These transformations help the network
learn complex patterns and relationships within the data. The
final layer of the FNN is connected to a Sigmoid activation
function. The sigmoid function is used because it squashes the
output into a range between 0 and 1, making it suitable for
binary classification tasks (e.g., distinguishing between normal
and malicious traffic). The sigmoid output can be interpreted
as a probability score. For example, a score close to 1 might
indicate a high likelihood of an attack, while a score close
to 0 suggests normal behavior. The model’s final output is the
probability that the input data (both log files and packet data)
belongs to a certain class (e.g., an attack or normal traffic).
This probability is then used to make a classification decision.

E. Model Formulation

In this section, we present a precise mathematical for-
mulation of our model, detailing the various modules that
constitute our methodology. This formulation will clarify the
structure and interactions between the components, providing
a comprehensive understanding of how each part contributes
to the overall approach. For each data point, we have an
associated log message and a PCAP file. The log, after
tokenization, consists of N tokens with each token having a
dimensionality of h. We denote the tokenized log as follows:

L =
[
tokCLS , tok2, . . . , tokN

]
∈ RN×h (7)

The PCAP file comprises M packets, each of size 256 bytes,
which we represent as:

PCAP =
[
p1, p2, . . . , pM

]
∈ RM×256 (8)

The tokenized log L is then fed into the DistilBERT model,
while the PCAP file is input into a Packet-based Transformer.
The resulting embeddings for the log tokens and packets are
computed as follows:

Z = DistilBERT(L) ∈ RN×E (9)

P = Packet-Transformer(PCAP) ∈ RM×E′
, (10)

where E and E′ denote the embedding dimensions produced
by the DistilBERT and Packet-based Transformer models,
respectively. To align the embedding space of the packets and
log tokens and ensure they share the same dimensionality, we
project the packet embeddings using a trainable matrix W1:

P ′ = PW1 ∈ RM×E (11)

We then concatenate the projected packet embeddings P ′

and the log token embeddings Z:

H =
[
P ′;Z

]
∈ R(M+N)×E (12)



Next, the concatenated embeddings H are passed through
an attention mechanism. The attention mechanism computes
the importance weights A as follows:

B = tanh(HV ) ∈ R(M+N)×E (13)

A = softmax(BW2) ∈ R(M+N)×1 (14)

Here, V and W2 are trainable matrices. The i-th element of A
represents the importance of each log token and packet, and the
softmax operation normalizes these importance scores to form
a distribution across all tokens and packets. The weighted sum
of the matrix H , based on the importance weights A, yields
a specific representation D = ATH ∈ RE .

Finally, the representation D is used to predict the proba-
bility Pi of the flow being classified as an attack:

Pi = sigmoid(⟨L,D⟩), (15)

where L is a trainable vector and ⟨·, ·⟩ denotes the inner
product. Based on a predefined threshold θ, we can assign
a label to the flow. This label indicates whether the flow is
classified as normal or as an attack.

IV. EVALUATION

In this section, we evaluate our model’s performance in
binary and multi-class attack classification, as well as in zero-
day attack scenarios, comparing it against several baselines.
Additionally, we assess the interpretability of our model by
demonstrating how it focuses on different parts of the input
modalities for some representative flows. We conducted our
experiments on a system equipped with an Intel(R) Xeon(R)
W-2225 CPU @ 4.10GHz, featuring an x86 64 architecture
with 8 CPUs, each with 2 threads per core and 4 cores
per socket, reaching a maximum frequency of 4.6 GHz. The
system is also equipped with a NVIDIA GeForce RTX 2080
SUPER graphics card. We conduct each experiment multiple
times and then calculate the average to present the results.
All experiments were conducted using PyTorch. Seed values
were fixed to ensure reproducibility of the results. Training was
primarily performed on the GPU to leverage its computational
efficiency. We conducted a grid search to tune the learning
rate, batch size, and number of attention heads. The optimal
configuration was selected based on the highest validation
accuracy. The model was optimized using binary cross-entropy
loss with the Adam optimizer, with a learning rate of 5×10−5.
Regarding the packet-based transformer, the hidden dimension
was set to E′ = 256, and we used 2 layers with 4 attention
heads per layer. The ReLU activation function was employed
throughout the model, which was trained in batches of 32
samples. To prevent overfitting, early stopping was applied.
Training was halted after 400 epochs if the validation error
failed to improve.

Fig. 3 illustrates the process of converting network traffic
data from a PCAP file into an image format for analysis. It
starts with a PCAP file, which contains packets of network
data. Each packet includes a header with metadata and a
payload with the actual data. These packets are extracted and

Fig. 3: Converting PCAP data to image.

converted into binary sequences of 0s and 1s, representing the
entire content of each packet. Next, these binary sequences are
organized into a grid to create an image. The patterns formed
by the sequences of 0s and 1s generate a visual representation
of the network traffic, which can be analyzed for patterns,
anomalies, or other insights.

Log messages were tokenized using the DistilBERT tok-
enizer provided by the transformers library. This tokenizer is
specifically designed to convert raw text into a sequence of
tokens that can be effectively processed by the DistilBERT
model, ensuring that the semantic meaning of the log messages
is accurately captured. The tokenization process involved
splitting the log messages into smaller units, such as words and
subwords, and converting them into corresponding numerical
representations that align with the pretrained vocabulary of
DistilBERT. On the other hand, PCAP files, containing raw
network packet data, were preprocessed to extract individual
packets. The raw byte data was transformed into a format
suitable for the packet-based transformer.

A. Dataset and Customized Rule Sets

We evaluate TransIDS on CICIDS 2018 dataset [31]. This
dataset captures a wide array of network traffic over a five-
day period, including a diverse set of malicious behaviors,
with key attack vectors such as BruteForce, DoS, DDoS, and
web-based attacks. We employed Snort 2.9, configured with
both the Community rule set and the Emerging Threat rule
set to ensure comprehensive detection coverage across a wide
range of known threats, including both standard and emerging
attack vectors. Additionally, we implemented customized rules
to minimize false positive rates as much as possible. Some of
the customized rules are as follows:

• DoS-Slowloris:
alert tcp any any -> any any
(msg:"Possible Slowloris
attack detected"; flags:S;
detection_filter:track by_src, count
5, seconds 60; sid:1000010; rev:2;)

• BruteForce:
alert tcp any any -> any HTTP_PORTS
(msg:" [+]Login Attempt
Detected On Web Login Page !";
content:"login.php"; sid:1000003;
rev:1;)

• DDoS-LOIC-HTTP:
alert tcp any any -> any 80 (msg:"LOIC



TABLE I: Performance metrics of different methods

Method Individual Classes Accuracy Overall

DDoS BruteForce DoS Bot Accuracy Recall F1-score

DistilBERT 0.7484 0.8119 0.7555 0.6975 0.7534 0.5073 0.6731
CNN-Packet 0.8662 0.9000 0.8950 0.8307 0.8784 0.8458 0.8745

Packet-based Transformer 0.9047 0.9250 0.9175 0.8537 0.9122 0.8776 0.8986
TransIDS 0.9365 0.9700 0.9642 0.8975 0.9424 0.8948 0.9389

Fig. 4: Multi-class classification. Fig. 5: BERT vs DistilBERT TransIDS. Fig. 6: Few-shot learning.

HTTP DDoS Attack Detected";
flow:to_server, established;
content:"User-Agent|3a| LOIC";
http_header; classtype:attempted-dos;
sid:100001; rev:1;)

• DDoS-LOIC-UDP:
alert udp any any -> any
any (msg:"LOIC UDP DDoS Attack
Detected"; dsize:<=32; threshold:type
both, track by_src, count 20,
seconds 2; classtype:attempted-dos;
sid:100002; rev:1;)

Snort was meticulously configured to generate a complete
version of the log data, capturing detailed information about
each detected event. Snort was configured to provide detailed
log data corresponding to the detected attacks, including
timestamps, attack types, and relevant network information.

B. Evaluation of TransIDS vs. Baselines

Table I presents a comprehensive comparison between our
proposed methodology and the baseline models: 1) Distill-
BERT (processes only log messages without considering the
packet data), 2) CNN-based model, and 3) Packet-based Trans-
former(operates exclusively on packet data without utilizing
log messages). Results show that DistillBERT performs rela-
tively poorly across all classes, with the lowest accuracy, re-
call, and F1-score. CNN-Packet shows moderate performance,
particularly excelling in BruteForce and DoS attacks but
struggling with BruteForce and Bot attacks. The Packet-based
Transformer outperforms both, but the highest performance is
achieved by TransIDS, which integrates multiple data types.
TransIDS achieves superior effectiveness in handling various
attack types by leveraging its multi-modal approach.

C. Multi-class Attack Classification

We aimed to develop a deep learning-based IDS capable
of not only detecting attacks but also classifying the specific
type of attack. To evaluate the effectiveness of TransIDS,
we compared it against several baseline models: DistilBERT,
CNN-Packet, and Transformer-Packet. The accuracy results for
each model are presented in Fig. 4. Results show that TransIDS
model significantly outperforms the baselines, achieving the
highest accuracy of 0.91. This demonstrates the superiority
of our methodology in handling the multi-class classification
task, where distinguishing between various types of attacks is
crucial for effective threat mitigation.

D. Efficiency of BERT vs. DistilBERT

This section presents a comparison of the performance
of TransIDS using BERT and TransIDS using DistilBERT
on 10,000 testing flows with a batch size of 512, focusing
on accuracy and processing time, highlighting the trade-off
between the two models. The results in Fig. 5 indicate that
both versions of TransIDS achieve an identical accuracy of
0.94. However, DistilBERT significantly outperforms BERT
in terms of processing time, requiring only 3.90 seconds
compared to BERT’s 7.33 seconds, making it a more efficient
choice in time-sensitive scenarios. This demonstrates that by
incorporating DistilBERT, we can maintain the same level of
accuracy while significantly reducing inference time.

E. Model Interpretability

We employed an attention mechanism in our model to assess
the relative importance of each modality (PCAP and the log
sequence). We assess the importance of individual segments
within each modality for the classification task. In this section,
we focus on specific examples to analyze the decisions made
by TransIDS and to examine the importance assigned to each



(a) Flow 1 (b) Flow 2

Fig. 7: Model Explainability for Flow 1 and Flow 2 related to DoS Attacks. (a) Flow 1 consists of 5 packets. It is detected
by the log-based (signature-based IDS) as “Possible SYN DoS, Possible DoS attack detected”. (b)Flow 2 contains 6 packets.
It was not detected by the log-based system and identified as “It is a normal traffic”.

segment of the log sequence and packet data. Fig. 7 presents
the results. The inner circle in this figure illustrates the model’s
attention distribution between log tokens and packets, while
the outer circle highlights the specific importance of individual
log tokens and packets (P1, P2, etc.) in the decision-making
process. We analyzed two flows, both of which represent DoS
attacks. Flow 1 was successfully detected by our signature-
based IDS. Flow 2 resulted in a false negative, meaning it went
undetected by the traditional signature-based system. However,
our TransIDS model was able to identify both flows as attacks.

As depicted in Fig. 7, for Flow 1, our model predominantly
focuses on the log message, particularly on specific tokens
such as “DoS” and “Attack,” which are critical for identifying
the nature of the threat. Additionally, the model assigns
varying levels of importance to different packets within the
flow, demonstrating its ability to weigh multiple factors in its
decision-making process. In the case of Flow 2, which was a
false negative for the signature-based IDS, our model adapts
by primarily focusing on the packet data rather than the log
tokens. This shift in focus highlights the model’s capacity to
learn from instances where traditional methods fail, utilizing
packet-level information to correctly classify the flow as an
attack. The attention distribution in this scenario underscores
the importance of integrating both log and packet data and
interpretability of our model.

F. Zero-day Attacks

In this section, we evaluate the knowledge transferability
of our model in detecting zero-day attacks by comparing its
performance across various attack types. Fig. 8 visualizes this
comparison, illustrating that the model performs exceptionally
well when tested on the same attack type it was trained on,
as shown by the high values in diagonal cells, often near or

equal to 1.00. This indicates a strong performance in detecting
familiar attack types. However, when the model is tested
on different attack types from those it was trained on, its
generalization ability varies significantly. For instance, a model
trained on BruteForce attacks achieves moderate accuracy in
detecting DDoS attacks (0.64), but its performance drops when
tested on more distinct attack types, such as DDoS evaluated
on Bot (0.54), highlighting weaker generalization. We also
observe high accuracy when transferring between DoS and
DDoS attacks, likely due to their similarities, resulting in less
distributional shift.

Fig. 8 also includes rows labeled “All” and “Leave-One-
Out”, representing the model’s performance when trained on
a combination of all attack types or using a leave-one-out
strategy, where the model is trained on all tasks except the
one being tested. These strategies generally lead to improved
performance across different attack types, suggesting they
enhance the model’s ability to detect a broader range of zero-
day attacks. Thus far, we have primarily focused on zero-shot
learning. Next, we examined two scenarios with the lowest
accuracy in Fig. 8 which are “BruteForce to Bot” and “DoS to
BruteForce”. We applied few-shot learning by further training
the pretrained model on a limited number of samples from the
target task, as shown in Fig. 6. The results demonstrate that
even with a minimal number of samples, high accuracy can
be achieved in both scenarios.

V. CONCLUSION

Efficient log anomaly detection is vital for effective service
management and maintenance. However, existing methods
often focus on a single type of anomaly, and fully utilizing
log messages remains challenging. In this paper, we introduce
TransIDS, a hybrid attention-based transformer framework for



Fig. 8: Results on Zero-day Attacks

log anomaly detection, which incorporates a preprocessing
stage to handle two different input types. Our extensive
experiments show that TransIDS is stable across various hy-
perparameters and achieves excellent performance on diverse
datasets and attack types. Additionally, using the Transformer
enhances anomaly detection speed without sacrificing accu-
racy, meeting the demands of timely diagnosis in log streams.
Future work could involve adding more stages to enhance
anomaly extraction and evaluating the model on a wider range
of datasets with varying traffic sizes and novel attacks.
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