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Abstract—Federated Learning (FL) is an emerging privacy-
preserving distributed computing paradigm that enables nu-
merous clients collaboratively to train machine learning models
without the need of transmitting the private datasets of clients
to the FL server. Unlike most existing researches where the local
datasets of clients are considered to be unchanging over time
during the whole FL process, we consider such scenarios in
this paper that the local datasets of clients need to be updated
periodically, and the server can stimulate clients to use as fresh
as possible datasets to train their local models. Our objective
is to determine a client selection strategy to minimize the loss
of global model for the FL with a limited budget. To this
end, we leverage the concept of Age of Information (AoI) to
quantify the freshness of local datasets and theoretically analyze
the convergence bound of our AoI-aware FL system. Based on
the convergence bound, we formalize our problem as a restless
multi-armed bandit problem. Then, we devise a Whittle’s-Index-
based Client Selection algorithm, called WICS, to tackle the client
selection problem. Extensive simulations show that the proposed
algorithm can reduce the training loss and improve the learning
accuracy compared to those state-of-the-art algorithms.

Index Terms—Federated Learning, Age of Information, Rest-
less Multi-Armed Bandit, Whittle’s Index.

I. INTRODUCTION

Federated Learning (FL) [1] is an emerging and promis-
ing distributed machine learning paradigm, which enables a
potentially large number of clients to collaboratively train a
global model under the coordination of a central server. A
standard FL procedure usually consists of a certain number
of rounds until a satisfactory global model is obtained. In
each round, clients train local models on their local datasets,
typically by means of Stochastic Gradient Descent (SGD).
Then, the central server aggregates these local models to obtain
the global model, which is transferred back to each client
for the next round of local training. On one hand, FL can
efficiently preserve clients’ privacy by allowing the training
datasets to remain at local. On the other hand, since only local
model parameters rather than local datasets are sent to the
server, FL can greatly reduce the communication costs. Due
to the above advantages, there have been various industrial
applications of FL, e.g., WeBank for data analysis in finance
and insurance [2], Owkin for biomedical data analysis [3],
MELLODDY for drug discovery [4], etc. Meanwhile, much
effort has also been devoted to investigating different FL issues
[17], [18], including the convergence rate [5]–[7], accuracy
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[8]–[10], [13], security [11], [12], resource allocation [14]–
[16], and so on.

In most existing works, each client is assumed to hold a
dataset in advance and will always use the same dataset to
train its local model during the whole FL process. However,
in many real-world applications, especially in streaming data
scenarios, data are continuously generated along with the time.
Clients usually prefer to update their datasets periodically
rather than keeping their local datasets unchanging. When
participating in FL, clients are encouraged to use as fresh
datasets as possible to train local models since fresh data
can more accurately characterize the model parameters. For
example, a server coordinates some clients to jointly train
an object identification model through FL, e.g., recognizing
formulas on literatures, identifying traffic signs on photos,
etc., where clients can adopt the crowdsourcing technique to
periodically recruit mobile users to generate labeled datasets.
Intuitively, the fresher the labeled datasets, the more users have
participated in the data labelling, and thus the labeled datasets
will be more precise. In such kind of FL scenarios, clients will
inevitably spend some extra costs in providing fresh datasets,
but the total budget from the server is generally limited. Thus,
an important problem that needs to be dealt with is how to
select clients to use as fresh datasets as possible for the model
training in each round of FL under the limited budget, and the
server can minimize the loss of global model.

In this paper, we use the well-known “Age-of-Information”
(AoI [19]) metric to indicate the freshness of datasets, which
is defined as the elapsed time of data from being collected to
being trained for updating local models by clients. The smaller
the AoI value of a dataset, the fresher the corresponding data,



and thus the more precise the trained local models. Accord-
ingly, the above-mentioned problem is actually instantiated as
determining a client selection strategy to minimize the loss
of the global model under a given budget, while taking the
AoI values of the datasets into consideration. Unlike most
traditional optimal selection issues with budget constraints,
such a problem has two following special challenges. First,
although the server can reduce the loss of global model by
selecting some clients in each round of FL to update their
local datasets and reduce the AoI values, there is no obviously
quantitative relationship between the loss of global model and
the decrease of the AoI values of clients’ datasets. Second,
the AoI value of each client’s dataset will increase along
with the rounds of local training and will return to zero
until it is selected to update the dataset. This means that the
client selections and the corresponding AoI values are not
independent with each other across different rounds of FL.
Both of them make the client selection problem much more
challenging, especially under the budget constraint.

To address the above challenges, we first derive a con-
vergence upper bound for the novel AoI-aware FL system.
The upper bound shows that the loss of global model is
positively correlated to the freshness of local datasets, i.e.,
inversely correlated to the AoI values of local datasets. On
this basis, we transform the optimal client selection problem
to minimize the loss of global model to the problem of
optimal client selection with minimum average AoI value.
Furthermore, we model the problem as a Rsetless Multi-
Armed Bandit (RMAB) problem, where each client is seen
as an arm and the AoI values of clients’ local datasets are
regarded as the corresponding rewards. By solving the RMAB
problem, we propsed a Whittle’s-Index-based Client Selection
algorithm, called WICS, in which we calculate the Whittle’s
Index for each client in each round of FL and then adopt
a greedy strategy based on Whittle’s Index to select clients
while ensuring the budget no larger than the given threshold.
More specifically, the major contributions are summarized as
follows:

• We introduce an AoI-aware FL system, where the server
can select some clients to provide fresh datasets for local
model training so as to minimize the loss of global model
under a budget constraint. To the best of our knowledge,
this is the first FL work that takes into consideration the
freshness of the local datasets for client selection.

• We derive a convergence upper bound for the novel AoI-
aware FL system, whereby we analyze the relationship
between the training loss of global model and the AoI
values of clients’ local datasets. Based on the analysis,
we model the client selection problem as a restless multi-
armed bandit problem to be solved.

• We deduct the RMAB problem into a decoupled model
and theoretically derive the corresponding optimal strat-
egy, based on which, we propose the WICS algorithm
by applying the Whittle’s Index methodology. Moreover,
we prove that WICS can achieve nearly optimal client

selection performance.
• We conduct extensive simulations to verify the perfor-

mance of our proposed algorithm using two popular
datasets MNIST and FMNIST. The results show that the
performance of WICS is better than those of state-of-the-
art algorithms.

The remainder of the paper is organized as follows. In
Section II, we introduce our model and problem formulation.
We carry on the convergence analysis of AoI-aware FL system
in III. The detailed design of the WICS algorithm is elaborated
in Section IV. Then we present the performance evaluations in
Section V. After reviewing the related works in Section VI, we
conclude the paper in Section VII. Some complicated proofs
of theorems are moved to Appendix.

II. SYSTEM OVERVIEW AND PROBLEM FORMULATION

A. Federated Learning with Data Collection

We consider an AoI-aware FL system, as shown in Fig.1,
which is composed of a central server and a set of clients,
denoted by N = {1, 2, · · · , N}. In conventional FL systems,
the local dataset of each client is generally given in advance
and will keep unchanged during the FL process. Unlike these
systems, the clients in our system can update their local
datasets by spending some costs and use fresh data to train
local models. More fresher the local datasets provided by
clients, more accurate global model will be obtained by the
FL system. Besides, the time is devided into T equivalent-
length timeslots, in each of which the server will conduct a
round of federated learning under a budget. For simplicity, we
assume the server has the same budget in each round, denoted
by B, which can be extended to the case with heterogeneous
budgets. Specifically, the whole FL system works as follows.

First, the server selects a subset of clients Nt (⊆ N ) to
update their local datasets at the beginning of each timeslot
t ∈ T = {1, · · · , T}. For each client i ∈ Nt, we denote its
local dataset as Di

t, which can be regarded as the data collected
from some fixed Point of Interests (PoIs) or purchased from
some preferred data owners by client i. The dataset might be
updated on-demand by the client, so that it might vary over
different timeslots. For simplicity, we assume that the datasets
across different timeslots remain the same size (otherwise, we
can randomly sample the same number of data items from
different size of datasets), i.e., |Di

t| = |Di
t′ | = ni, for any

two time slots t, t′ ∈ T , where ni denotes the size of Di
t and

Di
t′ . Since each client might spend some costs in obtaining its

local dataset, the server will pay a reward, denoted by pi, to
client i as the compensation. Meanwhile, the server publicizes
global model parameters, denoted by ωt−1, to all clients for
their local trainings. Here, ωt−1 is the result of the (t− 1)-th
round of federated learning. Specially, ω0 represents the initial
global model parameter.

Second, each client i (∈ N ) performs local training after
receiving the global model parameter ωt−1 from the server.



Denote the loss function of local training as

Ft,i(ω;Di
t) =

1

|Di
t|

∑
x∈Di

t

f(ω;x), (1)

where ω is the model parameter, Di
t is the local training

dataset, and f(·) is a server-specified loss function, e.g., mean
absolute loss, mean squared loss, or cross entropy loss. Then,
based on the received global model parameter ωt−1, client i
performs τ steps of mini-batch stochastic gradient descent to
compute its local model parameter ωi

t as follows

ωi,k+1
t = ωi,k

t − ηt∇Ft,i(ω
i,k
t ; ξi,kt ), (2)

where k = 0, · · · , τ − 1, ξi,kt is the mini-batch sampled from
Di

t, ηt is the learning rate in t-th round, ωi,τ
t = ωi

t and ωi,0
t =

ωt−1. Finally, client i uploads ωi
t to the server and receives a

payment from the server as the compensation of local training,
denoted by qi.

Third, the server aggregates the received local model pa-
rameters to obtain the global model parameter ωt by

ωt =

N∑
i=1

ni

n
ωi
t, (3)

where n =
∑N

i=1 ni is the total number of training data in each
timeslot. Then, the server sends the updated global model ωt

back to each client for the next round of local training.
Overall, the global loss function is defined as follows

F (ω) , 1

T

T∑
t=1

N∑
i=1

ni

n
Ft,i(ω;Di

t). (4)

The goal of the whole FL system is to obtain the optimal
model parameter vector ω∗ so as to minimize F (ω), i.e.,

ω∗ = argmin
ω

F (ω). (5)

B. Problem Formulation

In this paper, we focus on the data freshness in FL systems.
Inspired by sensing systems, we utilize the concept of AoI to
indicate the freshness of local dataset, which is defined by the
elapsed time since the local data was generated. Specifically,
let the current round of federated learning be in the t timeslot
and ui(t) be the latest update time slot of client i’s local
dataset Di

t. Then, the AoI value of Di
t (hereafter called client

i’s AoI, for simplicity of presentation) is represented as

∆i(t) = t− ui(t). (6)

Especially, ∆i(0) = 0 for all clients. Further, the dynamics of
client i’s AoI can be described as follows

∆i(t) =

{
∆i(t− 1) + 1 , i /∈ Nt,

0 , otherwise.
(7)

It is worth noting that different client selection strategies
will lead to various local data freshness even for the same
client. Furthermore, different client selection strategies will
also influence the loss of global model since local data

TABLE I
DESCRIPTION OF MAJOR NOTATIONS

Variable Description
i, t the index of client and time slot, respectively.

N , T the set of clients and time slots, respectively.
Nt the set of selected clients to in time slot t.

Di
t, |Di

t| the dataset of client i in time slot t and its size.
F (ω) the global loss function.
Ft,i(ω) the loss function of client i in time slot t.
ω∗ the optimal model parameter that minimizes F (ω).
ωt the global model parameter in time slot t.
ωi
t the local model parameter of client i in time slot t.
τ the number of local iterations.
ηt the learning rate in time slot t.
η̄, η̃ the min and max of learning rate, respectively.
pi the payment of client i for local training.
qi the payment of client i for obtaining fresh data.
B the budget of server per time slot.

∆i(t) the AoI value of client i in time slot t.
∆ the average AoI value of federated learning system.

freshness affects the quality of local training. Our goal is to
minimize the loss of global model after the whole FL process
by selecting the optimal Nt for each time slot t ∈ T under the
limited budget B. The client selection strategies considered in
this paper are non-anticipative, i.e. strategies that do not use
future knowledge in selecting clients. Let Π be the class of
non-anticipative strategies and π ∈ Π be an arbitrary admissi-
ble strategy. Specifically, we use Aπ(t) = [aπ1 (t), · · · , aπN (t)]
(t ∈ T ) to indicate whether each client is selected in the i-th
timeslot, i.e., ai(t) = 1 means i ∈ Nt; otherwise, ai(t) = 0.
Then, we can formalize the problem as follows:

P1 : min
π∈Π

E[F (ωT )]− F ∗, (8)

s.t. aπi (t) ∈ {0, 1}, ∀i ∈ N , ∀t ∈ T , (8a)
∆i(t) = 1{aπ

i (t)=0} [∆i(t− 1) + 1] , (8b)
N∑
i=1

qi + aπi (t)pi ≤ B, ∀t ∈ T . (8c)

Here, ωT in Eq. (8) is the aggregated global model after T
rounds and E[F (ωT )] − F ∗ is the gap between the expected
global loss after T rounds and the optimal global loss. Nat-
urally, the closer E[F (ωT )] − F ∗ is to zero, the better is the
performance of ωT ; Eq. (8a) represents that each client can
only be selected at most once by the server for updating its
local dataset in each timeslot; Eq. (8b) is the reformulation of
Eq. (7), i.e., the dynamics of each client’s AoI, where 1{·} is
an indicator function; and Eq. (8c) indicates that the budget
constraint in each round of FL. For ease of reference, we list
major notations in Table I.

III. CONVERGENCE ANALYSIS

To identity how each client’s AoI affects the global model,
we conduct a rigorous convergence analysis of our AoI-aware
FL system. We start with several assumptions on the local loss
function Ft,i(ω).



Assumption 1 : For all t ∈ {1, 2, · · · , T}, i ∈
{1, 2, · · · , N}, Ft,i is β-smooth, that is, for ∀ ω1, ω2,
Ft,i(ω2)− Ft,i(ω1) ≤ ⟨∇Ft,i(ω1), ω2 − ω1⟩+ β

2 ∥ω2 − ω1∥2.
Assumption 2 : For all t ∈ {1, 2, · · · , T}, i ∈
{1, 2, · · · , N}, Ft,i is µ-strongly convex, i.e., for ∀ ω1, ω2,
Ft,i(ω2)− Ft,i(ω1) ≥ ⟨∇Ft,i(ω1), ω2 − ω1⟩+ µ

2 ∥ω2 − ω1∥2.
Assumption 3 : For all t ∈ {1, 2, · · · , T}, i ∈

{1, 2, · · · , N}, the stochastic gradients of loss function is
unbiased, i.e., Eξ[∇Ft,i(ω; ξ)] = ∇Ft,i(ω).
Assumption 4 : For all t ∈ {1, 2, · · · , T}, i ∈
{1, 2, · · · , N}, the expected squared norm of stochastic gra-
dients is bounded, i.e. Eξ∥∇Ft,i(ω; ξ)∥2 ≤ G2

i +∆i(t)σ
2
i .

Assumptions 1-3 are widely-used assumed in many existing
convex FL works [7], [20], [21], which ensure that the gradient
of Ft,i(ω) does not change arbitrarily quickly or slowly with
respect to ω and the stochastic gradients sampled from local
datasets are unbiased. It is noteworthy that models with convex
loss functions, such as Logistic Regression (LR [22]) and
Support Vector Machines (SVM [23]), satisfy Assumption 2.
The evaluation results in Section VI show that our algorithm
can also work well for the models (e.g., CNN [24]) whose
loss functions are non-convex.

Assumption 4, however, is a novel assumption we made for
our AoI-aware FL systems. Different from the assumptions
made in other FL systems, where those works have assumed
that Eξ∥∇Ft,i(ω; ξ)∥2 is bounded by G2

i , we take into account
the impact of clients’s AoI on model training. Specifically,
we assume the upper bound of Eξ∥∇Ft,i(ω; ξ)∥2 is positively
correlated with ∆i(t), and the coefficient σ2

i represents the
sensitivity of client i’s local dataset to freshness. The potential
insight is that a smaller AoI value means a fresher local
dataset and better models can be trained, which is consistent
with that a smaller gradient norm indicates a better model
performance when the loss function is convex. In particular,
if client i is selected by the server to update its local dataset
in round t, i.e., ∆i(t) = 0, then Assumption 4 will degrade to
Eξ∥∇Ft,i(ω; ξ)∥2 ≤ G2

i , which is the same as the assumptions
in [7], [20], [21].

Theorem 1 (Convergence Upper Bound). For ease of expres-
sion, we define η̄ = mint{ηt} and η̃ = maxt{ηt}. Suppose
Assumptions 1 to 4 hold, and the step size η̄ < 2

µ . Then, the
FL training loss after the initial global model ω0 is updated
by Eq. (3) for T rounds satisfies:

E[F (ωT )]− F ∗ ≤ β

2
(1− µη̄

2
)T ∥ω0 − ω∗∥2

+
β

2

T∑
t=1

N∑
i=1

αi

[
G2

i +∆i(t)σ
2
i

]
. (9)

where αi =
η̃ni

µn +Nη̃
(
τ2η̃ + 2(τ−1)2

µ
n2
i

n2

)
.

Theorem 1 clearly presents the relationship between various
factors and global loss in our AoI-aware FL system.

IV. PROBLEM DEDUCTION AND ALGORITHM DESIGN

In this section, we propose the client selection algorithm
WICS. First, we use the convergence upper bound to convert

the optimization objective of Problem P1 to minimize the
average AoI value, followed by modeling the AoI minimiza-
tion problem as a RMAB problem. Next, we relax the RMAB
problem and obtain its optimal strategy by using Whittle’s
approach. Finally, we derive the closed-form expresson for
Whittle’s Index and present the detailed algorithm.

A. Using the Convergence Bound to Convert Problem

According to Theorem 1, we obtain the convergence bound
of the global model after T rounds. Then, we convert the
objective of Problem P1 using this convergence bound as
follows

E[F (ωT )]− F ∗ ≤ β

2
(1− µη̄

2
)T ∥ω0 − ω∗∥2

+
β

2

T∑
t=1

N∑
i=1

αiG
2
i +

1

TN

T∑
t=1

N∑
i=1

ϕi∆i(t) (10)

where ϕi =
αiσ

2
i βNT
2 . Neglecting the constant term, the

objective of Problem P1 can be converted to

min
π∈Π

1

TN

T∑
t=1

N∑
i=1

ϕi∆i(t), (11)

In addition, the total reward paid by the server to the clients
for their local training in each timeslot, i.e.,

∑N
i=1 qi, is fixed.

Therefore, by defining B′ = B −
∑N

i=1 qi, we can simplify
Eq. (8c) as follows

N∑
i=1

ai(t)pi ≤ B′. (12)

As a result, we can convert the original Problem P1 to the
following AoI minimization problem:

P2 : min
π∈Π

1

TN

T∑
t=1

N∑
i=1

ϕi∆i(t), (13)

s.t. aπi (t) ∈ {0, 1}, ∀i ∈ N , ∀t ∈ T , (13b)
∆i(t) = 1{aπ

i (t)=0} [∆i(t− 1) + 1] , (13c)
N∑
i=1

aπi (t)pi ≤ B′, ∀t ∈ T . (13d)

B. RMAB Modeling and Solution

To solve Problem P2, we cast it as a Restless Multi-Armed
Bandit (RMAB) problem [25] by means of the stochastic
control theory. Different from classic MAB problems, where
the unused arms neither yield rewards nor change states and
the states of all arms are known at any time, the arms in
RMAB might continue to change states according to different
transition rules even if they are not being pulled. In this paper,
we regard each client as a restless bandit and the AoI value
as its state since the AoI value changes in every timeslot even
if the cilent is not selected. However, the RMAB problem is
usually PSPACE-hard [25]. To this end, we adopt the Whittle’s
methodology to solve this problem [26].



First, we relax Problem P2 by replacing the constraint Eq.
(14d) with a relaxed version as follows

P3 : min
π∈Π

1

TN

T∑
t=1

N∑
i=1

ϕi∆i(t), (14)

s.t. aπi (t) ∈ {0, 1}, ∀i ∈ N , ∀t ∈ T , (14b)
∆i(t) = 1{aπ

i (t)=0} [∆i(t− 1) + 1] , (14c)

1

TN

T∑
t=1

N∑
i=1

aπi (t)pi ≤
B′

N
, ∀t ∈ T . (14d)

Second, after the relaxation, we apply the Lagrangian ap-
proach to decouple the RMAB problem (P3) into multiple
sub-problems. The Lagrange dual function is given by

L(π, λ) = 1

TN

T∑
t=1

N∑
i=1

[ϕi∆i(t) + λaπi (t)pi]−
λB′

N
. (15)

Then, our goal turns to find a client selection strategy that min-
imizes L(π, λ). Notice that L(π, λ) is separable and thus can
be solved for each individual client. The problem associated
with each client is called the decoupled model, whose goal
is to determine whether or not the client should be selected
for updating its local dataset in each round. Specifically, we
formalize the decoupled model over an infinite-horizon as the
following problem

P4 : min
π∈Π

{
lim

T→+∞

1

T

T∑
t=1

[
ϕi

pi
∆i(t) + λaπi (t)

]}
(16)

s.t. aπi (t) ∈ {0, 1}, ∀i ∈ N , ∀t ∈ T , (16b)
∆i(t) = 1{aπ

i (t)=0} [∆i(t− 1) + 1] , (16c)

λ ≥ 0. (16d)

Here, Eq. (16) is actually the decoupled version of Eq. (14).
Third, to address Problem P4, we formulate the Decoupled

Model as a Markov Decision Process (MDP), which consists
of the AoI state ∆i(t), the control variable aπi (t), the state
transition functions P(·), and the cost function Ci(·). Specifi-
cally, the state transition from time slot t to time slot t+1 in
MDP is deterministic as follows

P(∆i(t+ 1) = ∆i(t) + 1|aπi (t) = 0) = 1;

P(∆i(t+ 1) = 0|aπi (t) = 0) = 0;

P(∆i(t+ 1) = ∆i(t) + 1|aπi (t) = 1) = 0;

P(∆i(t+ 1) = 0|aπi (t) = 1) = 1; (17)

Moreover, we can see the objective of Problem P4 as the cost
function of MDP. The cost function on the transition from
timeslot t to timeslot t+ 1 is defined as

Ci(∆i(t), a
π
i (t)) ,

ϕi

pi
∆i(t) + λaπi (t), (18)

where the first part is associated with the resulting AoI value
in timeslot t and λ can be regarded as the service charge,
which is generated only when aπi (t) = 1.

Finally, we derive the optimal strategy of this MDP and
prove that it is a special type of deterministic strategy.

Algorithm 1: Whittle’s Index based Client Selection
Input: AoI value of each client {∆1(t), · · · ,∆N (t)},

weight of each client {ϕ1, · · · , ϕN}, payment of each
client {p1, · · · , pN}, budget B′

Output: The index set of selected clients Nt+1

1: for each client i in N do
2: Calculates its WI value WIi,t according to Eq.(20)

and sends it to the server
3: end for
4: The server sorts the clients into (i1, i2, · · · , iN ) such

that WIi1,t ≥WIi2,t ≥ · · · ≥WIiN ,t, and initializes an
empty set Nt+1, an initial index k = 1

5: while
∑

i∈Nt+1
pi + pik < B′ do

6: Nt+1 ← Nt+1 ∪ {ik}, k = k + 1
7: end while
8: return the index set Nt+1 of the selected clients

Theorem 2 (Optimal Strategy for Problem P4). Consider the
decoupled model over an infinite time-horizon. The optimal
strategy π∗ is selecting client i in each timeslot t to update
its local dataset only when ∆i(t) > H − 1, where

H =

⌊
−1

2
+

√
1

4
+

2λpi
ϕi

⌋
. (19)

Note that the threshold H is a function of λ. Intuitively, we
expect that the server selects client i when ∆i(t) is high to
reduce the AoI value and does not select client i when ∆i(t)
is low, so as to avoid the service charge λ.

C. The WICS Algorithm

Based on the optimal strategy given in Theorem 2 for
Problem P4, we design the WICS algorithm for Problem P2
by applying the Whittle’s Index methodology as follows.

First, we show that Problem P2 is indexable and thus
applicable to define Whittle’s Index for it. Let P(λ) = {∆i ∈
N|∆i < H} be the set of AoI states in which client i will not
be selected by the optimal strategy given in Theorem 2. Then,
the indexability analysis of Problem P2 is as follows.

Definition 1 (Indexability [27]). The decoupled model is
indexable if the set P(λ) increases monotonically from ∅ to
N when λ increases from 0 to ∞. Moreover, Problem P2 is
indexable if the decoupled model is indexable for each client.

Theorem 3 (Indexability of Problem P2). Problem P2 is
indexable.

Proof. Obviously, the threshold H in Eq. (19) is monotoni-
cally increasing with λ. Specifically, substituting λ = 0 yields
H = 0, which implies P(λ) = ∅, and λ→∞ gives H →∞,
which suggests P(λ) = N. Therefore, the decoupled model
for each client is indexable, which also implies that Problem
P2 is indexable according to Definition 1.

Next, we define Whittle’s Index (WI) for Problem P2 as
the infimum service charge λ that makes both of the decisions



on selecting client i or not equally desirable. Specifically,
we use λi(∆i(t)) to denote the Whittle’s Index of client i
in state ∆i(t), where λ is extended as a function on ∆i(t).
According to Theorem 2, to make both selection decisions
equally desirable in state ∆i(t), the threshold should satisfy
H = ∆i(t) + 1. Substituting Eq. (19), we can solve this
equation to derive a closed-form expression for λi(∆i(t)), i.e.,
the Whittle’s Index of client i, as follows:

WIi,t ,λi(∆i(t)) =
(∆i(t) + 1)(∆i(t) + 2)ϕi

2pi
. (20)

Now, based on the Whittle’s Index, we can design the WICS
algorithm for Problem P2. The basic idea is to select the
clients with higher WI values in each timeslot, while ensuring
that the budget is not exceeded. As shown in Algorithm 1, we
first calculate the WI value for each client according to Eq.(20)
and then sort all clients in N into the set (i1, i2, · · · , iN ) such
that WIi1,t ≥ WIi2,t ≥ · · · ≥ WIiN ,t (Steps 1-3). Next,
we greedily select the clients into a winning set Nt and give
the corresponding payments for the winning clients until the
remaining budget cannot afford the next client (Steps 4-6).

Finally, we analyze the performance of the WICS algo-
rithm. Obviously, the computational complexity of WICS is
dominated by the sorting operation on clients’ WI values, i.e.,
O(N logN). In addition, we define the ratio ρπ , Uπ

B

LB
to

indicate the performance of strategy π, where LB is a lower
bound to the optimal performance of Problem P2 and Uπ

B

is an upper bound to the performance of Problem P2 under
strategy π, and say that strategy π is ρπ-optimal. Then, the
WICS algorithm satisfies the following theorem.

Theorem 4 (Approximate Optimality). The solution produced
by the WICS algorithm to the Problem P2 over an infinite
time-horizon is ρWI -optimal, where

ρWI =

2

[
1
N

∑N
i=1(
√
2ϕi +

√
ϕi

2 )

]2
− 1

N

∑N
i=1 ϕi

1
2NM

[∑N
i=1

√
ϕi

]2
− 1

2N

∑N
i=1 ϕi

, (21)

M =
⌊

B′

pmin

⌋
, and pmin = mini{pi}.

Note that the objective of Problem P2 (i.e., Eq.(13)) is de-
rived from the objective of Problem P1 (i.e., Eq.(8)) according
to the convergence bound analysis. Thus, the WICS algorithm
is at least ρWI -optimal for Problem P1.

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of with exten-
sive simulations on real world datasets.

A. Evaluation Methodology

1) Simulation Setup: We conduct extensive simulations on
two widely used real datasets MNIST [28] and Fashion-
MNIST (FMNIST [29]). The MNIST dataset contains 60,000
handwritten digits for training and 10,000 for the test, while
the Fashion-MNIST dataset contains 60,000 fashion clothes
for training and 10,000 for the test. We adopt both the

convex model (i.e., LR) and the non-convex model (i.e., CNN).
The CNN consists of two 5 × 5 convolution layers (32, 64
channels), each of which is followed by 2 × 2 max pooling,
two fully-connected layers with 3136 and 512 units, and a
ReLU layer with 10 units. We first let the number of clients
N = 10 and the number of time slots T = 200. Next, we
generate the simplified budget in each time slot (i.e., B′) from
{25, 40, 55, 70}. Then, we determine the cost pi. We assume
that the cost pi is proportional to the number of local data
and let the cost for each client not exceed [5, 15]. For all
experiments, we initialize our model with ω0 = 0 and use an
SGD batch size of b = 16. Without loss of generality, we set
the learning rate of LRas ηt = 0.005 and the learning rate of
CNN as ηt = 0.01 for all time slots and each client performing
τ = 10 local iterations. After that, we can appropriately set
the weight ϕi ∈ (0, 1) according to Eq. (10), which is similar
to the method in [41]. In order to reflect the impact of AoI
on the local data, we mislabel some local data of each client
according to its AoI value in each time slot. Specifically, we
will mislabel more data if the client has a larger AoI value.

2) Algorithms for Comparison: Since WICS consider the
freshness of local datasets in FL, there are no existing al-
gorithms that can be directly applied to our problem. To
the best of our knowledge, the closest algorithm that can
be adapted to our setting is the ABS algorithm proposed by
[30], which is also an index based strategy. However, since
the ABS algorithm considers the age-of-update (AoU) rather
than AoI, we need to modify it to deal with the AoI in our
model. More specifically, the modified ABS index of client
i in timeslot t is given by ∆i(t)ϕi

pi
. Similar to our WICS

strategy, the ABS algorithm greedily selects clients with larger
modified ABS index values while ensuring that the budget
is not exceeded in each timeslot. Moreover, we implement
the MaxPack algorithm [31] and the Random algorithm for
better comparison. The MaxPack algorithm is the comparison
algorithm of ABS algorithm in [30].

B. Evaluation Results

In this section, we train different models (i.e., LR, CNN)
on both MNIST and FMNIST to compare the performance
of different algorithms. Notably, we conduct experiments with
variant budget B′, which show a similar performance. Due to
the limited space, we only illustrate the result of B′ = 40 in
the paper.

First, we exhibit the performance of different algorithms for
LR on MNIST and FMNIST in terms of both accuracy and
loss, as shown in Fig.2 and Fig.3, respectively. In Fig.2, we
can observe that the achieved accuracy of all four algorithms
rises along with the increase of rounds, while the achieved loss
of all four algorithms descends with the increase of rounds.
Moreover, the performance of WICS in terms of both accuracy
and loss is better than the three compared algorithms. In
Fig.3, we conduct the same experiments of LR on FMNIST
and obtain the similar results. We see that WICS can also
achieve the best results in all algorithms. This means that
WICS is effective for models with convex loss function, which



(a) Accuracy of LR on MNIST (b) Loss of LR on MNIST

Fig. 2. Performance of LR on MNIST

(a) Accuracy of LR on FMNIST (b) Loss of LR on FMNIST

Fig. 3. Performance of LR on FMNIST

(a) Accuracy of CNN on MNIST (b) Loss of CNN on MNIST

Fig. 4. Performance of CNN on MNIST

(a) Accuracy of CNN on FMNIST (b) Loss of CNN on FMNIST

Fig. 5. Performance of CNN on FMNIST

(a) N=10 (b) N=20
Fig. 6. Loss vs. the number of clients N

(a) N=30 (b) N=40
Fig. 7. Loss vs. the number of clients N

(a) N=10 (b) N=20
Fig. 8. Average AoI vs. the number of clients N

(a) N=30 (b) N=40
Fig. 9. Average AoI vs. the number of clients N

matches with the theoretical convergence bound. To verify the
effectiveness of WICS when the loss function is non-convex,
we further train CNN on MNIST and FMNIST. Figs.4-5 show
that the performances of WICS are still better than other
algorithms when the loss function does not satisfy the convex
assumption.

Furthermore, we analyze the influence of different budget
B′ on all four algorithms in terms of loss, where we set the
number of clients N = 10. We take WICS as an example,
and display the results in Figs.6-7. The figures indicate that
whether the loss function of the model is convex or not, the
larger B′ is, the smaller loss of model can be achieved. This
can be explained by the reason that a larger B′ allows more
clients to update their local datasets in each time slot, so as
to make the local datasets more fresh and get better learning
performance, which also matches with the convergence upper
bound analysis.

Finally, we evaluate the performance of all four algo-
rithms in terms of average AoI, which is computed by
∆ = 1

NT

∑T
t=1

∑N
i=1

ni

n ∆i(t). The evaluation results are

depicted in Figs.8-9, where we scale B′ from 25 to 70 with
an increment of 15 and evaluate the effects of N . The figures
show that WICS can achieve the lowest weighted average
AoI in all four algorithms. More specifically, ABS, MaxPack
and WICS are far better than Random algorithm and the
performance of ABS is the closest algorithm compared to
WICS. In addition, the weighted average AoI exhibits an
uptrend with the increasing of N . This is because when we
keep the budget fixed, the number of clients who are not
selected by the server in each timeslot will increase with N ,
i.e., the increment of AoI values in each time slot will become
larger. Hence, the weighted average AoI is also increasing with
the increment of N .

VI. RELATED WORK

We review the related work from the following two aspects:
Client Selection for FL: Client selection has been widely

investigated in the literatures of FL [1], [32]–[34], considering
various facets of the system, such as statistical heterogeneity
and system heterogeneity. Different optimization objectives



like importance sampling and resource-aware optimization-
based approaches have also been considered. For example,
existing works use clients local gradient [32], [33] or local
loss [34] information to measure the importance of clients
local data, and then select the clients according to the data
importance. In addition, resource-aware optimization-based
approaches, such as CPU frequency allocation [35], commu-
nication bandwidth allocation [36] and straggler-aware client
scheduling [37], select the clients to optimize the different
aspects of the federated learning system.

Age of Information: AoI is a novel application-layer metric
for measuring freshness that was initially conceived by [19].
Since its inception, there has been active research on AoI (see
an online bibliography in [38]), which includes a wide range
of problems. An important class of problems that has attracted
much attention is how to design schedulers to minimize AoI
[39], [40]. For instance, [39] studies how to minimize the
average AoI of the deployed sensor nodes in data collection by
mobile crowdsensing. [40] studies the problem of minimizing
AoI in general single-hop and multihop wireless networks.

VII. CONCLUSION

In this paper, we introduce a novel AoI-aware FL systems,
where clients might use fresh datasets to perform local model
training and the server try to select some clients to provide
fresh datasets in each timeslot but constrained by a limited
budget. We use AoI to indicate the freshness of datasets and
theoretically analyze the convergence upper bound of the AoI-
aware FL system. On this basis, we model the corresponding
client selection issue as a restless multi-armed bandit problem,
and propose a Whittle’s-Index-based client selection algo-
rithm, i.e., WICS, to solve this problem. Moreover, we prove
that the WICS can achieve nearly optimal performance on
client selection. Finally, we also conduct extensive simulations
on two real datasets and the simulation results demonstrate the
effectiveness of our algorithm.
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IX. APPENDIX

A. Proof of Theorem 1

Proof. First, we analyze how the difference between E[F (ωt)]
and F ∗ (i.e., F (ω∗)) changes in each round. Due to β-smooth

and by using the fact that ∇F (ω∗) = 0, we have

Ωt = Ωt−1 +
E ∥

N∑
i=1

ni

n
(ωi

t − ωt−1)∥2︸ ︷︷ ︸
A1

+
2E

〈
ωt−1 − ω∗,

N∑
i=1

ni

n
(ωi

t − ωt−1)

〉
︸ ︷︷ ︸

A2

. (22)

For A1, we can bound it by using the AM-GM inequality and
the Cauchy-Schwarz inequality:

A1 = ∥ −
N∑
i=1

niηt
n

τ−1∑
k=0

∇Ft,i(ω
i,k
t ; ξit)∥2

≤ Nτ

N∑
i=1

n2
i η

2
t

n2

τ−1∑
k=0

∥∇Ft,i(ω
i,k
t ; ξit)∥2. (23)

Further, according to Assumption 4, it follows:

E[A1] ≤ Nτ2η2t

N∑
i=1

n2
i

n2

[
G2

i +∆i(t)σ
2
i

]
. (24)

For A2, we have:

A2 =

〈
ωt−1 − ω∗,−

N∑
i=1

niηt
n
∇Ft,i(ωt−1; ξ

i
t)

〉
︸ ︷︷ ︸

B1

+

〈
ωt−1 − ω∗,−

N∑
i=1

niηt
n

τ−1∑
k=1

∇Ft,i(ω
i,k
t ; ξit)

〉
︸ ︷︷ ︸

B2

. (25)

Next, we bound E[B1] and E[B2], respectively. Using the µ-
strongly convex of Ft,i(·) and the fact that F ∗

t,i ≤ Ft,i(ωt−1),
we can bound E[B1] as follows:

E[B1] =

N∑
i=1

niηt
n
− ⟨ωt−1 − ω∗,∇Ft,i(ωt−1)⟩

≤
N∑
i=1

niηt
n

(
Ft,i(ω

∗)− Ft,i(ωt−1)−
µ

2
E∥ωt−1 − ω∗∥2

)
≤

N∑
i=1

niηt
n

[
Ft,i(ω

∗)− F ∗
t,i

]
− µηt

2
Ωt−1

≤
N∑
i=1

niηt
2nµ
∥∇Ft,i(ω

∗)∥2 − µηt
2

Ωt−1

≤
N∑
i=1

niηt
2nµ

[
G2

i +∆i(t)σ
2
i

]
− µηt

2
Ωt−1 (26)



For E[B2], we have:

E[B2] ≤
µηt
4

E∥ωt−1 − ω∗∥2

+
1

µηt
E∥

N∑
i=1

niηt
n

τ−1∑
k=1

∇Ft,i(ω
i,k
t ; ξit)∥2

≤ µηt
4

Ωt−1 +
Nηt(τ − 1)2

µ

N∑
i=1

n2
i

n2

[
G2

i +∆i(t)σ
2
i

]
. (27)

Combining (22)-(26), we can obtain that:

Ωt ≤ (1− µηt
2

)Ωt−1 +
ηt
µ

N∑
i=1

ni

n

[
G2

i +∆i(t)σ
2
i

]
+Nηt

(
τ2ηt +

2(τ − 1)2

µ

) N∑
i=1

n2
i

n2

[
G2

i +∆i(t)σ
2
i
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≤ (1− µη̄

2
)Ωt−1 +

N∑
i=1
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[
G2

i +∆i(t)σ
2
i

]
. (28)

Then, by induction, we can prove:

ΩT ≤ (1− µη̄

2
)TΩ0 +

T∑
t=1

N∑
i=1

αi

[
G2

i +∆i(t)σ
2
i

]
(29)

Therefore, the theorem holds.
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