
Active Sensing for Transformer Model in Sparse
Mobile CrowdSensing

Deran Hao1, En Wang1, Wenbin Liu1,∗, Weiting Liu1, Jiang Yuan1, Yongjian Yang1, and Jie Wu2
1College of Computer Science and Technology, Jilin University, Changchun, China

2Department of Computer and Information Sciences, Temple University, Philadelphia, USA
haodr21@mails.jlu.edu.cn, {wangen,liuwenbin}@jlu.edu.cn,

liuwt20@mails.jlu.edu.cn, 1733519754@qq.com, yyj@jlu.edu.cn, jiewu@temple.edu

Abstract—With the popularization of mobile devices and the
development of 5G networks, Mobile Crowd-Sensing (MCS) has
emerged as a new paradigm for data collection. As its variant,
Sparse MCS is favored by researchers because of its practicality
and low costs, which only needs to select a few sub-areas and
then infer the entire map. To achieve good performance on the
complex sensing tasks, Sparse MCS has to utilize the powerful
deep learning methods, e.g., Transformer, which actually has high
requirements for training data sets. However, most existing works
randomly select spatiotemporal positions to sense training data,
which not only ignores the importance of the spatiotemporal
positions but also may lead to unbalance sensing data distribution
and affect the training of the model. Consequently, in this paper,
we propose an active sensing method in Sparse MCS for the
Transformer-like models. First, we consider the data correlation
at different spatiotemporal positions and use it to evaluate the
representativeness of each spatiotemporal position. Secondly, we
assess the informativeness of each spatiotemporal position by
using the newly proposed spatiotemporal attention mechanism.
Then we use these two aspects to evaluate the importance of each
spatiotemporal position. Finally, we evaluate the performance of
our proposed method through two typical urban sensing tasks
with three real-world datasets.

Index Terms—Mobile crowdsensing, Active Learning, Trans-
former

I. INTRODUCTION

With the popularization of mobile devices and the devel-
opment of 5G technology, Mobile CrowdSensing (MCS) [1],
[2], a new data collection paradigm, has garnered significant
attention and played a pivotal role in environmental monitoring
[3], traffic monitoring [4], etc. Due to the cost constraints
and practical factors such as geography, as a variant of MCS,
Sparse MCS [5], [6] has become a more practical approach to
data collection. In Sparse MCS, only a few sub-areas of the
entire sensing map are sensed. Based on this limited data,
inference algorithms or complex neural networks are used
to infer the whole sensing map. In addition, various deep
learning models with powerful learning capabilities have been
proposed to solve various spatiotemporal sequence prediction
problems. Benefiting from their powerful ability on inference,
prediction, and other sensing problems, deep learning models
are gradually being integrated with Sparse MCS to handle var-
ious complex sensing tasks. Among the various deep learning
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Fig. 1. Random selection of spatiotemporal positions may ignore impor-
tant spatiotemporal positions and affect model accuracy. The importance of
spatiotemporal positions generally includes two aspects: firstly, the potential
spatiotemporal correlation with others, and secondly, the importance of the
data at each spatiotemporal position to the model.

models, the large-scale model Transformer [7] and its variants
such as Informer [8] perform great in handling time series
tasks and are particularly effective for long time series.

However, for Sparse MCS oriented to deep learning models,
most existing works have focused on designing models and
constructing neural networks while ignoring another important
issue: how to select the spatiotemporal areas to be sensed.
In general, training deep learning models often requires a
large amount of data. However, with a limited budget, only a
few spatiotemporal positions can be sensed. It is important to
note that different spatiotemporal positions may have different
importance. For example, in traffic flow data, measurements
taken during weekday morning and evening peak hours often
represent the maximum traffic volume of the day in many
regions, conveying additional information compared to mea-
surements at other hours. However, as shown in Fig.1, previous
works usually select spatiotemporal sub-areas in a random
way, which is inefficient and costly. This is because random
selection may ignore the more important spatiotemporal po-
sitions and may also lead to an unbalanced distribution of
training data, thereby negatively affecting the training accu-
racy. Although a few existing works [9]–[11] have explored



active selection methods for spatiotemporal positions, they
only consider the impact of data at spatiotemporal positions on
training results, ignoring the diversity and representativeness
of spatiotemporal positions, which is not a comprehensive
consideration. To address this issue, we combine the data
collection in Sparse MCS with model training by actively
selecting spatiotemporal positions to sense data for model
training under a fixed sensing budget to improve the perfor-
mance of the model.

For this goal, how to actively select different spatiotemporal
positions is the key issue of this paper. First, the correlation
between spatiotemporal data is one of the most typical char-
acteristics of spatiotemporal data. When we actively select
spatiotemporal positions, we should consider the impact of
data correlations implied between them. However, this cor-
relation is affected by factors such as cycles, holidays, and
characteristics of the sub-area (such as population density and
geographical environment within the area), which is complex
and difficult to measure. Therefore, how to evaluate the corre-
lation of spatiotemporal data between different spatiotemporal
positions is the first challenge. Secondly, data at different
spatiotemporal positions have different importance for the
model. Due to the data correlation, actively selecting some
spatiotemporal positions to sense the training data may provide
extra help for the model to characterize other spatiotemporal
data, which can be described as the informativeness of the
spatiotemporal positions. Then, as a large-scale model with
complex neural networks, how to evaluate the informativeness
of the spatiotemporal positions for the Transformer-like model
is our second challenge.

In response to the above challenges, we introduce the Active
Learning (AL) into Sparse MCS to select the best data to sense
for large-scale models. AL is a research branch of machine
learning that aims to reduce the training cost of models by
actively selecting samples to label to participate in model
training. Similar to selecting samples in the sample pooling
in AL, Sparse MCS actively selects a few spatiotemporal sub-
areas in the entire sensing map. In addition, sensing data
at selected subareas is also similar to labeling the selected
samples in AL. Therefore, we can refer to the sample se-
lection criteria in AL and use them in Sparse MCS. In AL,
the sample selection strategy generally follows three criteria:
informativeness, representativeness, and diversity. The detailed
definition can be found in Section II. Referring to these
criteria, we propose an evaluation standard for the importance
of spatiotemporal positions in Sparse MCS to actively select
more important spatiotemporal positions to sense data for the
training of large-scale models.

For the first challenge, we link the representativeness in
AL and the correlation between spatiotemporal data by using
the similarity of spatiotemporal positions. Then we provide
a quantization formula for the similarity of spatiotemporal
positions using the dot product operation in mathematics. For
the second challenge, during the research, we discovered that
the self-attention mechanism plays a crucial role in the Trans-
former and its variants, which can reduce the loss of network

signals in the traveling and help the model better extract the
dependencies between data. Consequently, to better extract
the informativeness of spatiotemporal positions, we propose
spatiotemporal attention and design a standard for evaluating
the importance of spatiotemporal positions for models based
on spatiotemporal attention.

Our work has the following contributions:
• We apply AL to Sparse MCS and propose an active

sensing method. As far as we know, this is the first active
sensing method for the Transformer model in Sparse
MCS.

• We introduce the representativeness in AL to Sparse
MCS by the data correlation at different spatiotemporal
positions and provide a quantization formula for the
representativeness of spatiotemporal positions.

• We propose the spatiotemporal attention mechanism to
extract the information of spatiotemporal positions to the
model. Based on spatiotemporal attention, we evaluate the
importance of spatiotemporal positions for the model.

• We evaluate our active sensing method on two typical
urban sensing tasks with three real-world data sets, which
shows that our work can improve the accuracy of the
Transformer-based model.

II. RELATED WORK

A. Sparse MCS

Mobile Crowd-Sensing [1], [2], as a new data collection
paradigm, uses mobile devices carried by users to perform
large-scale urban sensing tasks. Based on the collected data,
various sensing tasks [12] have been solved. Limited by its cost
and various factors in the real world (such as geographical
factors), a more practical paradigm, Sparse Mobile Crowd-
Sensing [5], [6] has been proposed. Sparse MCS only needs
to sense the data in a few areas, and then data inference is
used to infer the data that are not sensed. In recent years,
many Sparse MCS systems [13], [14] have been developed
for urban sensing. Meanwhile, with the development of deep
learning, Sparse MCS has started to use deep learning models
to solve various complex sensing tasks with high quality. For
instance, Wang et al. [15] proposed a deep learning-enabled
industrial sensing, and prediction scheme based on Sparse
MCS, to achieve high-precision prediction of future moments
under the hypothesis of sparse historical data.

However, most existing works have only focused on data
inference and data prediction, and only a few works consider
the selection of spatiotemporal positions. Wang et al. [9]
proposed a deep reinforcement learning-based Cell selection
mechanism for Sparse MCS that used a reinforcement learning
method to select area-aware data. Xie et al. [10] proposed an
Active Sparse MCS scheme that included a bipartite-graph-
based sensing scheduling scheme to actively determine the
sampling positions in each upcoming timeslot. Wang et al.
[11] used Query By Committee to select cells to be sensed in
Sparse MCS. These existing works only consider the impact
of spatiotemporal data on the model or algorithm, ignoring



the correlation between spatiotemporal data. Liu et al. [16]
proposed a cell selection method in Sparse MCS based on AL
which considered the similarity of data. But it is only for air
pollution monitoring which is not suitable for other complex
sensing tasks.

B. Transformer and its variants

With the development of deep learning, Sparse MCS is grad-
ually being integrated with deep learning models to achieve
good performance on the complex sensing tasks. Transformer
[7], a large-scale deep learning model, was born in the NLP
field. With its powerful performance advantages, Transformer
has produced many variants and developed into various re-
search fields. When dealing with time series prediction tasks,
Transformer and its variants are still outstanding. Autoformer
[17] is an upgraded version of the Transformer, which opti-
mizes the original Transformer according to the feature of time
series problems. Pyraformer [18] proposes a tree-structured
Transformer to solve the prediction problem of long-period
time series. Informer [8] optimizes the Transformer from the
perspective of efficiency for long-period time series prediction.
However, these deep learning models need a large number of
complete time series as training data to train the model, which
means a high cost in MCS.

C. Active Learning

In supervised learning, to obtain more accurate learning
models, a large number of labeled data are often required
to participate in the training of learning models. However,
in many fields, obtaining labeled data is usually difficult,
time-consuming, and expensive. To save the cost of labeling
and get a high-accuracy learning model, AL [19], [20] is
proposed to maximize the performance of the learning model
by actively selecting more valuable samples in the unlabeled
sample set for labeling. As the most important part of AL, the
design of the sampling algorithm generally considers three
criteria: informativeness [21], [22], representativeness [23],
and diversity [24]. The informativeness means that the selected
sample should contain rich information, so labeling it will
greatly benefit the training of the model. Representativeness
means that the selected samples can represent a group of
unlabeled samples to participate in training. Diversity means
that the selected samples should be distributed throughout
the sample space, rather than concentrated in one place. The
combination of the three standards constitutes various sample
selection algorithms in AL.

III. SYSTEM MODEL AND OVERVIEW

A. System Model

In this paper, we combine the Sparse MCS with the training
of the Transformer. To obtain a high-accuracy model, we
need to collect fine-grained data at a limited budget from the
large-scale target sensing map to train the model. First, we
randomly collect training data to obtain an initialization model.
To further improve the accuracy of the model, we continue to
collect data from the sensing map and train the model.

Limited by the sensing budget, after the training model is
initialized, there are B sensing cycles to collect the sensing
data and train the model. We divide the sensing map into
s subareas, and each sensing cycle has t timeslots to be
sensed. Due to the budget constraints, only b spatiotemporal
positions can be selected in one sensing cycle to sense the
data. Therefore, in the k-th sensing cycle, we denote the
spatiotemporal positions matrix Xk ∈ Rt×s where if we select
the spatiotemporal position at the j-th subareas in the i-th
timeslot, xk

ij = 1, otherwise xk
ij = 0. Similarly, the Ŷk ∈ Rt×s

denotes the ground truth at each spatiotemporal position. Then
we get the spatiotemporal data series matrix Yk ∈ Rt×s in the
k-th sensing cycle:

Yk = Xk • Ŷk (1)

where • represents the element-wise product. Each row of the
Yk represents a timeslot, and each column of the Yk represents
a subarea.

After collecting the sensing data, we use the data to train
the model. We consider a loss function l(ẑ, fY(y)) where y is
the input of the model and z = f(y) is the output from the
model f , which is trained by the spatiotemporal data series
matrix Y and ẑ is the ground truth. Then in the k-th sensing
cycle, the actively selecting spatiotemporal positions to sense
the training data for the model can be defined as finding the
selected spatiotemporal positions matrix Xk:

Xk = argminEy∈Ytest [l(ŷ, fY′∪(Xk•Ŷk)(y))]

s.t.
t∑

i=1

s∑
j=1

xk
ij = b

(2)

where Ytest is the test set, and Y′ ∪ (Xk • Ŷk) means that we
use both the historical data Y′ collected in previous cycles and
the new data (Xk • Ŷk) to train the model.

In this paper, we focus on f being Transformer and its
variants and propose a heuristic algorithm that considers
the influence of the representativeness and informativeness of
the spatiotemporal positions to actively select more important
spatiotemporal positions to sense the data and train the model.

B. Overview

We now provide an example to describe the details of
data collection and model training. Assume that we have
a deep learning model to be trained, and Sparse MCS is
used for collecting the training data. Users are recruited to
sense data used for model training. Before actively selecting
the spatiotemporal positions, we first randomly selected the
spatiotemporal positions to collect training data Y0 used for
initialization.

When we get the initial model, according to the active
sensing method, we will actively select the spatiotemporal
positions in the next B sensing cycles and retrain the model.
In each sensing cycle, there are t timeslots and s subareas
forming s × t spatiotemporal positions. The active sensing
method is to select b important spatiotemporal positions to
sense data for training limited by the budget. As shown in
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Fig. 2. The details of the sensing cycles that spatiotemporal positions are selected by the active sensing method. In each sensing cycle, we first use the active
sensing method to evaluate the importance of each spatiotemporal position. Then more important spatiotemporal positions will be selected. Users will go to
these spatiotemporal to sense data. Finally, all collected data will be used for training the model again. And this new model will affect the active sensing
method in the next sensing cycle.

Fig.2, in the first sensing cycle, affected by the initial model,
the active sensing method actively selects b spatiotemporal
positions. Then sensed by recruited users, we get the spa-
tiotemporal series matrix Y1. Y0 and Y1 are used to re-train
the model. Then, in order to make the model more accurate,
we start the second sensing cycle limited by the budget. In
the second sensing cycle, we first utilize the training model
and our proposed method to select spatiotemporal positions to
be sensed at Tt+1 to T2t. Then users will go to the selected
spatiotemporal positions to sense data. Using these collected
data Y0, Y1, and Y2, we train the model again. Similarly,
this model will affect the active sensing method to select the
spatiotemporal positions in the next sensing cycle. After total
B sensing cycles, we get a high-accuracy model trained by
Y0 ∪ Y1 ∪ ... ∪ YB .

IV. METHOD
In this section, we describe the proposed active sensing

method in detail. The main goal of our method is to select
more important spatiotemporal positions in the sensing cycles.
We evaluate the importance of the spatiotemporal positions
and then choose more important positions to sense the data.
The evaluation of a spatiotemporal position includes two parts:
Representativeness and Informativeness.

A. Representativeness

The correlation between spatiotemporal data is one of the
most typical characteristics of spatiotemporal data. Therefore,
when actively sensing spatiotemporal positions, we first con-
sider the impact of data correlations implied between them.
There are many types of data correlation, such as continuity,
similarity, positive correlation, negative correlation, and so
on. Quantifying all these correlations can be difficult and
time-consuming, especially if the data are high-dimensional
or complex. Moreover, not all correlations may be relevant

or important for a particular task or analysis. For example,
in some cases, it may be sufficient to only focus on the
strongest or most significant correlations rather than trying
to quantify all correlations. Among these correlations, the
similarity is always present in various sensing tasks and plays
an important role. First, if the high-dimensional features of two
spatiotemporal positions are similar, then their corresponding
values tend to be similar as well. In addition, the similarity
between samples plays an important role in AL, which is used
for evaluating the representativeness of samples. In AL, when
a sample has good representativeness, it can often represent a
group of other samples, which is mathematically expressed as
being closer to other samples in the feature space. When this
sample is selected, in some aspects, other samples similar to
it can also be regarded as having participated in model train-
ing. Therefore, considering the data correlations, we describe
representativeness as the similarity between spatiotemporal
positions. Then we should solve the problem of how to
evaluate the similarity between two spatiotemporal positions.

To solve this problem, we first need to obtain the high-
dimensional feature vectors of each spatiotemporal posi-
tion. Generally, we can get it through the encoder of the
Transformer. However, for spatiotemporal positions, the per-
formance of traditional Transformer embedding is limited.
Therefore, we have abandoned the traditional structure of
position embedding. Instead, as shown in Fig.3, we expand
the embedding layer with spatiotemporal position embedding
and spatiotemporal feature embedding to help the Transformer
better extract the information of spatiotemporal positions.
Moreover, when we use the encoder to get high-dimensional
features of spatiotemporal positions, the value embedding will
be discarded. Then for the spatiotemporal position (t, s), we
have the embedding Epos(t, s):

Epos(t, s) = Tpos(t) + Tfeat(t) + Spos(s) + Sfeat(s) (3)
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position embedding for the physical spatiotemporal position and the feature
embedding for additional feature information on the spatiotemporal position.

where Tpos(t) and Spos(t) are the position embedding for
the physical spatiotemporal position, Tpos(t) and Tpos(t) are
the feature embedding for additional feature information like
vacations, seasons, and so on. To get the feature of the spa-
tiotemporal position, we enter the embedding result of position
to the encoder of the Transformer. For the spatiotemporal
position (t, s), we have its feature Ft,s:

Ft,s = Encoder(Epos(t, s)) (4)

where Encoder(·) represents the encoder of Transformer. The
details of the encoder will be introduced in the next subsection.

When we get the features of spatiotemporal positions, we
measure the similarity of each other. Here, in order to have the
same scale as the subsequent informativeness, we use the dot
product that is also applied in the self-attention mechanism
to measure the similarity of the features. Assume that N is
a set that includes all spatiotemporal positions, and Fi and
Fj are the d-dimension feature vectors of the spatiotemporal
position Fti,si and Ftj ,sj . According to the dot product results
of spatiotemporal position i and all other spatiotemporal
positions, we get the representative score Rep(i):

Rep(i) =
∑

i ̸=j,j∈N

FiFT
j√
d

(5)

where the product of F(i) and F(j) describes the similarity
of i and j. By summing F(i) and the product of features
at all other positions, we obtain the representativeness of the
spatiotemporal position i.

B. Informativeness

In AL, the informativeness describes the importance of
the sample to the model, which is often closely related to
the model itself. Therefore, in order to better evaluate the
informativeness of the spatiotemporal positions, we focus on

𝑄

𝐾

Fig. 4. The heat map of the attention scores, which is the sum of the attention
scores from all heads at the first layer of the encoder. The more the area tends
to black, the smaller the value of the area is. The more the area tends to red,
the bigger the value of the area is.

the self-attention mechanism, which is a key component of
the Transformer. For spatiotemporal data, in order to help the
model extract more spatiotemporal information, we propose a
spatiotemporal attention based on the traditional self-attention
mechanism.

1) Spatiotemporal Attention: Self-attention is a particular
implementation of the attention mechanism, which is used
in Transformer to extract dependencies between input data.
For spatiotemporal data, to better extract information between
them, combined with the spatiotemporal embedding proposed
in the previous subsection, we used a spatiotemporal attention
mechanism. When the spatiotemporal series X passes through
the embedding layer as shown in Fig.3, we get Xfeed ∈
RT×S×d:

Xfeed = V alue(X) + Epos(Xt,Xs) (6)

In the multi-head attention layer, for the i-th head, Xfeed is
mapped into three vectors: the query vector Qi, the key vector
Ki, and the value vector Vi through three learnable weight
matrices Wq

i , Wk
i , Wv

i :

Qi,Ki,Vi = Xfeed(Wq
i ,Wk

i ,Wv
i ) (7)

After that, we use the formula of Scaled Dot-Product Atten-
tion to calculate the attention scores Si:

Si = softmax(
QiK

T
i√

dk
) (8)

where the multiplication of Qi and Ki is to obtain the similarity
between spatiotemporal data and then is divided by

√
dk

to prevent the result of the softmax function from being
unbalanced caused by the too large product. Then we use the
score Si to enhance the representation of the spatiotemporal
data:

Attentioni(Qi,Ki,Vi) = SiVi (9)

After all heads are computed, we concatenate the results into
a matrix and multiply it with a learnable weight matrix W .



Algorithm 1: Actively Collection for Model Training

Input: B, b,Y0,X
Output: f

1 initialize: Initial model f is trained by Y0, k = 1;
2 Ytrain = Y0;
3 while k ≤ B do
4 Xk = X[k];
5 for Xi ∈ Xk do
6 Si =Importance Evaluation(Xi,Xk, f )
7 end
8 for n = 1 to b do
9 i = argmax S;

10 Xk
i = 1, Si = 0;

11 end
12 sense data Yk with Xk;
13 Ytrain = Ytrain ∪ Yk;
14 train f by Ytrain;
15 k = k + 1
16 end

After n encoder layers, we get high-dimensional feature vector
Feature(X) from the encoder:

Feature(X) = Concat(h1, h2, ..., hk)W (10)

hi = Attentioni(Qi,Ki,Vi) (11)

where we ignore the previous encoder layers for simplification.
2) Informativeness Evaluation: To evaluate the informa-

tiveness of the spatiotemporal positions, we are focused on
the self-attention mechanism, which plays an important role in
Transformer. As mentioned before, when we get the attention
score of the data, it will be used to enhance the representation
of the spatiotemporal data. If the result of multiplying the
vector qi of the data i and the vector kj of the data j is a big
value after the softmax() function, the data j will have a high
weight in the enhanced representation of i, which means great
information for the model to represent i. So when we get the
true value of j, the representation of i will be more accurate.

Meanwhile, it is found in Informer [8] that the attention
score presents a long-tail distribution, and it applies to spa-
tiotemporal data. As shown in Fig.4, for a real-world data set
about PM2.5, we get the heat map of the attention scores,
which is the sum of the attention scores from all heads at the
first layer of the encoder. The few bright verticals indicate that
the multiplications of query vector q of many spatiotemporal
data and key vector k of a few spatiotemporal data have high
scores, which means the corresponding spatiotemporal data to
the key vector k is very helpful for the model to represent
the high-dimensional feature. Therefore, the attention score
reflects the informativeness of spatiotemporal data in the
model. Based on the informativeness of the spatiotemporal
data, we evaluate the informativeness of the spatiotemporal
positions. Because before sensing we don’t know the true value
of spatiotemporal data, we don’t use the value embedding.

Algorithm 2: Importance Evaluation

Input: Xi,Xk, f
Output: s

1 initialize: inf = 0, rep = 0, s = 0;
2 Q,K,F, scale, l = f(Xk) ;
3 for Xj ∈ Xk do
4 if i ̸= j then
5 inf = inf + Qj · KT

i /scale/l ;
6 rep = rep+ Fi · FT

j /scale ;
7 end
8 end
9 s = inf + rep;

We input the spatiotemporal positions to the encoder of the
Transformer trained in the previous sensing cycle. When the
spatiotemporal position i reach the attention layer, we have its
informativeness Inf(i):

Inf(i) =
∑
l

∑
i̸=j,j∈N

qjkT
i√

dk ∗ l
(12)

where N is the set of all spatiotemporal positions, and l is the
number of encoder layers. The reason for dividing by l is to
have the same scale as Rep(i).

C. Actively Select

Now we get the evaluation of the importance of the spa-
tiotemporal positions, that is:

S(i) = Rep(i) + Inf(i) (13)

At first, we randomly collect the spatiotemporal data to initial-
ize the model. Then, we use the encoder of the Transformer
trained in the previous sensing cycle to evaluate the impor-
tance of the spatiotemporal positions by (13). After getting
the importance scores, we actively select the spatiotemporal
positions with the top b importance scores and recruit users
to sense training data. Then we retrain the model with the
collected data. Algorithm 1 and 2 show the process in detail
where B is the number of sensing cycles, b is the sensing
budget for one sensing cycle, Y0 is the initial data set to train
the initial model f , and X is a list that contains all positions
for all sensing cycles. Finally, we get a high-accuracy model
f .

D. Incremental Training

As the sensing cycle increases, more and more training data
is collected and involved in model training. If the model is
retrained by using all collected data in each training stage, a
huge training cost will be incurred. For this, we propose an
incremental training method that uses the parameters of the
previous training stage to warm start the new training stage.
Inspired by [25], [26], we first set the learning rate to a big
value to help the model jump out of the local optimum and
then gradually decrease the value like [25] to enter another
local optimum.



TABLE I
STATISTICS OF THREE EVALUATION DATA SETS

Task Type Urban Environment Urban traffic

Data Sets Sensor-Scope U-air Traffic Volume Viewer

City Lausanne(CHE) BJ(CHN) NSW(AUS)

Data Humidity PM2.5 Traffic flow

Subareas 57 subareas 36 subareas 30 checkpoints

Cycle 0.5h 1h 1d

Duration 7d 11d 1y

Mean 84.52 79.11 19095.73

Std. Dev. 6.32 81.21 26750.79

Unit % µg/m3 n

V. EXPERIMENTS

A. Data Set

To evaluate the performance of the active sensing method
we proposed, we determine the learning model as the
Transformer-based data inference model in Sparse MCS and
conduct experiments on three real-world data sets. These data
sets include the Sensor-Scope and U-Air about the urban
environment sensing and the Taxi-Speed about the urban traffic
sensing. We show the main information in Table I with more
details as follows:

• The Sensor-Scope1 is an environmental data set, includ-
ing temperature, humidity, and other variables. This data
set collects data regularly through a lot of static sensors
deployed on the EPFL campus. We use humidity data to
evaluate our proposed method.

• The U-Air2 is an air quality data set, which includes
PM2.5, SO2, and other variables. It collects data from
monitor stations deployed in Beijing, China.

• The Traffic Volume Viewer3 is a set of traffic flow
information, which is collected by sensors deployed at the
traffic collection station in New South Wales, Australia.
It monitors traffic flow, such as the number or type of
vehicles at more than 60 stations.

It is worth noting that some of these data sets are collected
from static sensors, but in fact, we can use mobile devices
or social media to collect these data dynamically. In addition,
these data sets are typical urban MCS tasks. Therefore, it is
effective and reasonable to use these data sets for evaluation.

B. Experimental Settings

1) Data Inference Model: To evaluate the performance of
our proposed method, we determine the learning model as
the Transformer-based data inference model in Sparse MCS.
In order to better extract the dependency between spatiotem-
poral data, we change the embedding layer in the traditional

1http://sensorscope.epfl.ch/network code
2https://www.microsoft.com/en-us/research/project/urban-computing/
3https://www.rms.nsw.gov.au/about/corporate-publications/statistics/traffic-

volumes/aadt-map/

Transformer to a new embedding layer, as shown in Fig.3.
Meanwhile, there are other settings about the Transformer
model: the model dimension dmodel is 512; the number of
attention head is 8; the number of encoder layers is 3. RMSE
is used as the loss function to measure each method.

2) Data Set Settings: we split all data sets at ratio 7:2:1
into training sets, validation sets, and test sets by the time,
then we normalize the data into range [-1, 1] and feed the
normalized data into the model.

C. Model Evaluation

To comprehensively evaluate the active sensing method we
proposed, we first evaluate the performance of the model.
Therefore, we have compared several typical data inference
methods:

• BGMC-st [27] is a matrix completion-based algorithm,
which uses low-rank attributes and spatiotemporal con-
straints to infer data.

• KNN-S and KNN-T are variants of KNN algorithm.
With the help of spatiotemporal relationship, it uses the
weighted average of k data sensed from the nearest sub-
region as the inferred value to fill in the missing value.

• DMF [15] is the Matrix factorization based on the deep
learning multi-layer network, which can better use the
nonlinear characteristics of the matrix through multi-layer
neural networks compared to the traditional method.

To evaluate the data inference model, we test the effect of
the sensing ratio on model performance. It is because that
budget has always been one of the important factors in Sparse
MCS, and a smaller budget often means a smaller perception
ratio for the entire perception map. Therefore, the performance
of the model under different sensing ratios is the key indicator
to evaluate the model. We set five perception ratios from 10%
to 50% and actively sense sparse data from the complete
sensing map according to the sensing ratio. Then we use the
sensing data to train the model. The experiment results are
shown in Fig.5.

The experimental results show that for all data sets, com-
pared with other inference methods, TAS (Transformer based
on Active Sensing method) has obviously better performance
in general, especially on the Humidity data set. On the
PM2.5 data set, when the sensing ratio is relatively large,
BGMC-st and TAS have comparable performance, but as the
sensing ratio decreases, the performance gap between the two
gradually widens, and the TAS effect is better. On the Traffic
Flow data set, there is a large gap in the performance of each
method. For convenience, we standardized the error results
in all experiments in this paper. The performance of DMF
and TAS are very good, but DMF is not as effective as
TAS in other data sets. Therefore, the experimental results
undoubtedly show Transformer’s powerful feature extraction
capability and indirectly prove the necessity of our paper that
designing an active sensing method for the Transformer model.
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Fig. 5. Inference accuracy under different sensing ratios with different inference methods.
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Fig. 6. Inference accuracy under different sensing ratios with different sensing methods.

D. Method Evaluation

In the previous section, we use the proposed active sensing
method to collect data and train the model and then compare
it with other typical data inference methods to prove the
performance of the model. In this section, we will evaluate
the performance of the proposed active sensing method. For
the data inference model based on Transformer, we have the
following two methods to sense the training data:

• Random: Random collecting is the most common sens-
ing method for Sparse MCS. It randomly selects sub-
areas in the entire sensing map.

• Coreset [24]: Coreset is one of the typical sample
selection methods in AL. It equates the error to the
coverage radius of the feature space through mathematical
derivation. Therefore, the strategy of this method is to
select a batch of samples (data) so that this batch of
samples (data) can cover the entire feature space with
the minimum coverage radius.

Some of the active sensing methods mentioned in the
previous sections can only handle specific sensing tasks, and
some are not applicable to the Transformer model. Therefore,
we don’t choose these methods for comparison. In addition,
Coreset is proposed for CNN. To generalize it to the Trans-
former model, we change the distance calculation method but
don’t change its essence, so it will not affect its performance.
Fig.6 shows the experiment results.

As the results show, TAS has more significant advantages
than other sensing methods. As the basis of Sparse MCS,
Random has the worst effect compared with the other two
methods. This is because it neither focuses on the amount
of information in the data itself nor does it consider the
correlation and distribution of data. Coreset is better than

TABLE II
ERROR INCREASE COMPARED TO TAS ON THREE DATA SET

Sensing Ratio 0.10 0.20 0.30 0.40 0.50

TAS-Inf 5.12% 1.34% 4.04% 4.28% 3.68%
TAS-Rep 3.44% 1.36% 2.68% 2.91% 2.74%
Random 9.33% 3.29% 7.49% 7.82% 5.84%

TAS-Inf 5.41% 3.64% 7.24% 6.50% 2.21%
TAS-Rep 1.38% 1.47% 2.12% 2.41% 1.94%
Random 6.72% 4.70% 7.90% 6.21% 3.42%

TAS-Inf 4.93% 1.03% 5.29% 1.51% 2.12%
TAS-Rep 2.25% 1.03% 2.98% 0.91% 1.50%
Random 6.89% 5.30% 7.03% 2.32% 3.39%

Random but not as good as TAS. This is because it only
considers the correlation and distribution of data when select-
ing sensing positions, which makes the selected points more
evenly distributed in the feature space. However, it does not
consider the impact of the data itself on the model. In addition,
when we get the feature of spatiotemporal positions, the time
complexity of Coreset is about the third power of TAS.

E. Ablation Study

In our paper, the importance of spatiotemporal position i
has two parts: Informativeness Inf(i) and Representativeness
Rep(i). In this section, we use an ablation study to verify the
impact of each part on the overall method. We have:

• TAS-Inf: When evaluating the importance of data, only
the informativeness Inf() is considered, and the repre-
sentativeness Rep() is ignored.

• TAS-Rep: When evaluating the importance of data, only
the representativeness Rep() is considered, and the infor-
mativeness Inf() is ignored.



The results of the ablation study are shown in Table II. The
data sets corresponding to the results in Table II are PM2.5,
Humidity, and Traffic Flow from top to bottom. When we
change the TAS to TAS-Inf and TAS-Rep, the error of the
model increases but is less than Random. This means that both
Inf() and Rep() play a role in the selection method, but not
as much as their combination. Moreover, the results show that
TAS-Rep performs better than TAS-Inf. This may be because
the long-tailed distribution of attention scores makes only a
few spatiotemporal positions particularly important. Therefore,
the selection of TAS-Inf after selecting these important data
is casual. TAS-Rep considered the correlation between data,
which is more comprehensive, so its selection is more uniform.
TAS considers these two aspects, which makes its performance
the best.

VI. CONCLUSION

In this paper, we propose an active sensing method in
Sparse MCS to collect data for training the Transformer-
like models. Inspired by the sample selection criteria in AL,
we consider the representativeness and informativeness of the
spatiotemporal positions. For the former, we focus on the
similarity from the data correlation and use the similarity of
spatiotemporal position features to evaluate the representative-
ness of spatiotemporal positions. For the latter, to better extract
the dependency between data, we changed the traditional self-
attention to the spatiotemporal attention for spatiotemporal
data, and then we used the characteristics of the attention
scores in Transformer to quantify the informativeness. Finally,
we use three data sets in the real world to evaluate the
performance of our proposed method.
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