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Abstract—Mobile CrowdSensing (MCS) has recently emerged
as a practical paradigm for large-scale and fine-grained urban
sensing systems. To reduce sensing cost, Sparse MCS only senses
data from a few subareas instead of sensing the full map, while
the other unsensed subareas could be inferred by the intradata
correlations among the sensed data. In certain applications, users
are not only interested in inferring the data of other unsensed
subareas in the current sensing cycle, but also interested in
predicting the full map data of the near future sensing cycles.
However, the intradata correlations exploited from the historical
sparse sensed data cannot be effectively used for predicting full
data in the temporal-spatial domain. To address this problem, in
this paper, we propose an urban prediction scheme via Sparse
MCS consisting of the matrix completion and the near-future
prediction. To effectively utilize the sparse sensed data for predic-
tion, we first present a bipartite-graph-based matrix completion
algorithm with temporal-spatial constraints to accurately recover
the unsensed data and preserve the temporal-spatial correlations.
Then, for predicting the fine-grained future sensing map, with
the historical full sensing data, we further propose a neural-
network-based continuous conditional random field, including a
Long Short-Term Memory component to learn the non-linear
temporal relationships, and a Stacked Denoising Auto-Encoder
component to learn the pairwise spatial correlations. Extensive
experiments have been conducted on three real-world urban
sensing data sets consisting of five typical sensing tasks, which
verify the effectiveness of our proposed algorithms in improving
the prediction accuracy with the sparse sensed data.

Index Terms—Mobile crowdsensing, matrix completion, con-
tinuous conditional random field.

I. INTRODUCTION

With the rapid development of sensor-rich mobile devices
and wireless communications, Mobile CrowdSensing (MCS)
[1] has recently become a promising paradigm which recruits
users carrying mobile devices to perform various sensing tasks,
such as environment monitoring [2], infrastructure identifica-
tion [3], and vehicle tracking [4], etc. To achieve high sensing
quality, the traditional MCS applications would like to recruit
a large number of users to collect data from all of the target
sensing subareas. However, considering the sensing costs, we
cannot afford to recruit too many users. More importantly,
due to the uncertain mobilities of users, some target sensing
subareas even have no available users at times [5], [6]. Hence,
in most cases, we can only obtain the incomplete, random and
even sparse sensed data, especially when we face the large-
scale and fine-grained urban sensing tasks.
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Fig. 1: Users sense data from a few subareas, which could be
used to predict the data of all subareas in the near future.

In order to deal with this problem, some researchers propose
a more practical paradigm, called Sparse MCS [7]–[11], which
utilizes the sensing data of a few subareas to infer the rest of
data from unsensed subareas. As shown in Fig. 1 (left part),
suppose that there is a Sparse MCS scenario where we want to
get a fine-grained urban sensing map at the current time, while
only 3 out of 5×4 subareas have been sensed, and the data of
the remaining subareas need to be inferred by the sparse sensed
data. To solve this problem, most of the existing works exploit
the intradata correlations among the sensed data to design
various data inference algorithms. Liu et al. [12], Wang et al.
[7], [8], and He et al. [13] separately use the Compressive
Sensing (CS) and its variants (e.g., Spatio-Temporal-CS and
Bayesian-CS) as the data inference algorithms to recover the
complete sensing matrix from the sparse sensed data. Another
interesting problem is that if we could choose some effective
subareas to sense data, and identify which subareas are the
most useful for data inference. To deal with this problem, Liu
et al. [9], [11] introduce Reinforcement Learning and Xie
et al. [10] present a sensing scheduling scheme to actively
determine the next subareas to be sensed, according to the
already sensed data. In this way, the high data inference
accuracy can still be achieved, while the requirement of the
sensed data can be significantly reduced.

Although the existing works on Sparse MCS provide an
effective way to infer the full sensing map from sparse sensed
data, in some cases, as shown in Fig. 1, we are still more
interested in predicting the full map data of the near future
sensing cycles, rather than just inferring the data of other
unsensed subareas in the current cycle. For example, in the
traffic congestion or parking capacity monitoring tasks, the



current data are not very important, since users still need
some time to drive there, and thus the data of the next several
cycles are more instructive. Unfortunately, the existing works
fail to do predict on the future data only based on the sparse
sensed data. To achieve this goal, firstly, we have to infer
a historical complete data matrix by sensing over a certain
number of data1. However, the previous inference methods
are not prediction-oriented, because the intradata correlations
could not show the temporal-spatial correlations among all
the subareas/cycles and hence are not enough to assist in
predicting the future data. Secondly, the non-linear temporal
relationships between the past and future sensing cycles and
the complex spatial correlations across different subareas make
the urban prediction problem more challenging. Therefore,
how to effectively utilize the sparse sensed data for prediction
and how to learn the complex temporal-spatial correlations for
predicting the near future are two main challenges in the urban
prediction problem via Sparse MCS.

In this paper, we turn attention from inferring the current
unsensed data to predicting the near future full map from the
sparse sensed data, and propose an urban prediction scheme
via Sparse MCS. To effectively utilize the sparse sensed data
for prediction, we first use a Bipartite-Graph-based Matrix
Completion algorithm with Temporal-Spatial constraints (TS-
BGMC) to conduct the unsensed data inference, which not
only extracts intradata correlations from the sparse sensed data,
but also preserves the temporal-spatial correlations among all
the subareas and sensing cycles. In this way, we can accu-
rately recover the historical unsensed data kept with effective
temporal-spatial correlations, which provides more sufficient
conditions for prediction. To further capture the temporal-
spatial correlations for prediction, we propose a Neural-
Network-based Continuous Conditional Random Field (NN-
CCRF) model, including a Long Short-Term Memory (LSTM)
component to learn the non-linear temporal relationships, and a
Stacked Denoising Auto-Encoder (SDAE) component to learn
the pairwise spatial correlations. To summarise, we aim to
make full use of the sparse sensed data, and iteratively update
and recover the historical complete data matrix at each sensing
cycle, in order to predict the fine-grained near future sensing
map as accurately as possible.

Our work has the following contributions:
• We formulate the urban prediction problem and propose

an urban prediction scheme via Sparse Moblie Crowd-
Sensing, with the goal of predicting the fine-grained near
future sensing map from the historical sparse sensed data.

• To effectively utilize the sparse sensed data for prediction,
we present a Bipartite-Graph-based Matrix Completion
algorithm with Temporal-Spatial constraints (TS-BGMC)
to recover the historical complete matrix kept with
effective temporal-spatial relationships, which provides
sufficient conditions for prediction.

1From the theoretical level, Candès and Recht [14] prove that we should
use at least Cn1.2r logn sensed data for inferring a n× n matrix of rank r
with high accuracy, and several follow-on studies further slight the thresholds
to about O(nr logn) [15].

• To further capture the temporal-spatial correlations for
prediction, we propose a Neural-Network-based Con-
tinuous Conditional Random Field (NN-CCRF) model,
including a Long Short-Term Memory (LSTM) compo-
nent to learn the non-linear temporal relationships, and a
Stacked Denoising Auto-Encoder (SDAE) component for
the pairwise spatial correlations.

• We evaluate the proposed algorithms on three real-world
data sets with five typical sensing tasks, and verify the
effectiveness of our proposed algorithms in improving the
prediction accuracy with the sparse sensed data.

II. RELATED WORK

Mobile CrowdSensing is a promising paradigm which uses
the mobile devices carried by users to perform various urban
sensing tasks [1], [2]. In order to achieve high sensing quality,
most of the existing works on MCS would like to recruit a
large number of mobile users to sense data from as many
target sensing subareas as possible [5], [6]. However, these
works obviously cost a lot and still cannot sense data from
the subareas with no users, especially when we face the large-
scale and fine-grained urban sensing tasks. In order to reduce
the costs and deal with the incomplete and random sensed
data, some researchers introduce the data inference into MCS,
called Sparse MCS [7]–[11], where we can sense data from
only a few subareas and use some data inference algorithms
to infer the unsensed data.

Recently, many fine-grained urban sensing systems have
been developed via Sparse MCS. Rana et al. [16] conducted
an urban noise monitoring system which randomly senses data
from some target subareas and uses compressive sensing to
infer a fine-grained urban noise map. Zhu et al. [17] also
used a modified compressive sensing approach to estimate the
urban traffic speeds, based on the data periodically collected by
probe vehicles. To make more generalization, Wang et al. [7],
[8] formally presented the Sparse MCS paradigm that consists
of three stages, including cell selection, data inference, and
quality assessment. Briefly, Sparse MCS will first select some
subareas to sense, and then uses the sensed data to infer the full
map. If the inferred results are of poor quality, Sparse MCS
continues to sense data and infer the full map. The authors
also conducted various experiments over four urban sensing
tasks, including temperature, humidity, air quality and traffic
monitoring, in order to verify the effectiveness of Sparse MCS.

Similarly, He et al. [13] and Liu et al. [12] also proposed
the urban air pollution and signal mapping systems based on
Sparse MCS, while they further added the incentive design to
steer users to sense data from some subareas. Furthermore,
to effectively sense the useful subareas which hold sufficient
information for data inference, Liu et al. [9], [11] introduced
the Reinforcement Learning technology and Xie et al. [10]
studied the sensing scheduling scheme to actively determine
the next sensed subareas. Although Sparse MCS provides an
effective way for the fine-grained urban sensing systems, the
existing works mainly focus on inferring the current unsensed
data but can hardly predict the near future full map.



III. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider a general urban sensing scenario where the
sensing system recruits some users to collect data from a large-
scale target sensing area to provide the fine-grained urban
sensing services. We divide the whole sensing campaign into
many equal-length sensing cycles and the target area is split
into m subareas, in order to provide the fine-grained results.
Note that the lengths of cycles and the sizes of subareas are
predetermined according to the tasks’ requirements2.

Under such a fine-grained urban sensing scenario, we recruit
users to sense data from some subareas, and then use the
data inference algorithms to infer the unsensed data for each
sensing cycle. Specifically, for each sensing cycle, we obtain
some data sensed from a few subareas, which are recorded
in a vector y′m×1, and the unsensed data are recorded as 0
(if 0 is not the reasonable sensing value, then we should use
another value). Let the vector ym×1 denote the ground truth
and the binary sensed vector cm×1 mark whether one subarea
has been sensed: if subarea i has been sensed at the current
cycle, c[i] = 1; otherwise, c[i] = 0, and thus

y′ = y • c, (1)

where • represents an element-wise product, i.e., y′[i] = y[i]×
c[i]. Then, we use a data inference algorithm f() to infer the
unsensed data from the sensed y′, with the inference error
ε(y, ŷ), as follows:

f(y′) = ŷ ≈ y, (2)
ε(y, ŷ) = Σm

i=1|y[i]− ŷ[i]|. (3)

At the n-th sensing cycle, we have already sensed n
vector and obtained the actually sensed matrix Y ′n ,
{y′T1 , y′T2 , ..., y′Tn }. Similarly, let Yn , {yT1 , yT2 , ..., yTn } and
Cn , {cT1 , cT2 , ..., cTn}, we have Y ′n = Yn •Cn. Then, with the
goal to accurately predict the fine-grained near future full map
from the sparse sensed data, we first use a matrix completion
algorithm m() to recover the historical sensed matrix Ŷn from
Y ′n, and then use an near-future prediction method p() to
predict the future sensing vector:

p(m(Y ′n)) = p(Ŷn) = ŷn+1 ≈ yn+1, (4)
ε(yn+1, ŷn+1) = Σm

i=1|yn+1[i]− ŷn+1[i]|. (5)

Then, we can add the predicted ŷn+1 to Ŷn and obtain Ŷn+1,
in order to iteratively calculate the next k cycles, denoted as
p(m(Y ′n), k) = ŷn+k.

B. Problem Formulation

Problem [Urban Prediction via Sparse MCS]: Given a MCS
task with m subareas and n sensing cycles, for each cycle, we
can sense data from quite a few subareas, and then use the

2To reduce the complexity of the problem, we assume that the lengths of
cycles and the sizes of subareas are set properly that the data sensed from
the same subarea within the same cycle are the same. If we have irregular
lengths and sizes, we should further use some algorithms, i.e., the numerical
interpolation methods, to readjust them first.
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Fig. 2: Urban sensing and prediction via Sparse MCS.

historical sparse sensed data to infer the future full map of the
k near future sensing cycles, with the objective of minimizing
the prediction errors:

min
n−k∑
j=1

ε(yj+k, ŷj+k) (6)

s.t. p(m(Y ′j ), k) = ŷj+k,∀j ∈ {1, 2, ..., n− k}. (7)

We now provide a running example to describe the urban
prediction problem in more details, as shown in Fig. 2. Sup-
pose that we have an urban sensing task which needs to sense
data from a target area from 8:00 to 20:00. To provide the fine-
grained results, we divide the target sensing area into 5 × 4
subareas and provide sensing data for these subareas every
one hour. To reduce the costs and deal with the unavailable
subareas, for each sensing cycle, only a few subareas will be
sensed, e.g., at 8:00, we only obtain the data sensed from 3
subareas. After 12 hours, the current time is 19:00, and we
obtain the data sensed from 4 subareas in this sensing cycle.
We can use a data inference algorithm to infer the unsensed
data of the current sensing cycle (marked as the blue grids).
Furthermore, we would like to predict the near future full
map (marked as the grey grids) from the historical sparse
sensed data. In this paper, we first use a matrix completion
algorithm to recover the historical complete matrix from the
sparse sensed matrix, which provides accurate and sufficient
data for prediction. Then, with the inferred matrix, we use
a prediction method to learn the temporal-spatial correlations
for predicting the near-future full map.

IV. TEMPORAL-SPATIAL MATRIX COMPLETION WITH
BIPARTITE GRAPH

A. Temporal-Spatial Matrix Factorization

The urban sensing is actually to collect the various readings
from the urban regions. Note that most of the sensing data
are continuous in the physical world, which generally exhibit
strong temporal-spatial correlations, and thus the complete
sensing matrix Y usually has the low-rank property. Given
an incompletely and randomly (or even sparse) sensed data



matrix Y ′, we would like to recover the full sensing matrix Ŷ
based on the low-rank property:

min rank(Ŷ ) (8)

s.t., Ŷ • C = Y ′. (9)

Note that the above optimization is nonconvex, so we can
hardly solve it directly. Given the complete sensing matrix Y
with rank k 3, i.e., rank(Y ) = rank(Ŷ ) = k, we can factor our
inferred matrix Ŷ into the product of a spatial factor matrix
Lm×k and a temporal factor matrix Rn×k, as shown in Fig. 3
(left part), in order to capture the low rank feature and change
the above rank optimization problem with constraints to the
error minimization problem for missing data recovery:

min ‖(Y − Ŷ ) • C‖2F = ‖Y ′ − LRT • C‖2F , (10)

s.t., rank(Y ) = rank(Ŷ ) = k, Ŷ = LRT , (11)

where ‖‖F is the Frobenius norm and used to present the error
between the inferred matrix and the actually sensed matrix.

To obtain the optimal Ŷ from Y ′, many existing methods,
such as the Alternating Least Squares [17], [18], can be used
to train the two factors to solve the problem, i.e., Ŷ = LRT

according to the Eq. 10. However, the Eq. 10 only focuses on
the learning from the sensed data but ignores the temporal-
spatial correlations existing in the unsensed data. Therefore,
we further consider the important and naturally occurring
correlations as the supplement and constraint for Eq. 10, and
thus obtain the error minimization problem with temporal-
spatial constraints as follows:

min ‖Y ′−Ŷ • C‖2F + λt‖Ŷ TT ‖2F + λs‖SŶ ‖2F , (12)

where T and S are the temporal and spatial constraint matrices:
• T presents the temporal constraint among the sensing

data of the same subarea between different sensing cy-
cles. Intuitively, two continuously sensed data from the
same subarea are usually similar. Thus, we choose a
temporal constraint matrix Tn×n = Toeplitz(0, 1,−1)
for Eq. 12 to constrain that two continuous data from
one subarea are the same. Moreover, the prior domain
knowledge and the sufficient historical data may provide
more temporal constraints, such as the periodicity and
statistical characteristics, which can be used to conduct a
more sophisticated T.

• S presents the spatial constraint among the sensing data of
the same sensing cycle between different subareas. Simi-
lar with the temporal constraint, the data sensed from the
closer subareas usually have the similar values. Thus, we
use the Euclidean distance to characterize the spatial cor-
relation, denoted as Sm×m[i, j]=exp(−distance(i, j)/σ2

s ).
Then, for each row i in S, we normalize them as∑m

j=1,j 6=i S[i, j]=1 and set S[i, i]=−1,∀i = {1, ...,m}.
Note that the temporal and spatial constraint matrices T and S
are used as a supplement to further constrain the unsensed data

3k is a property of Y , but in practice, we cannot obtain the complete matrix
Y and have to collect it for some sensing cycles to estimate the initial rank k
and readjust it according to the recovery errors during the sensing campaign.
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Fig. 3: Matrix factorization with bipartite graph.

in the sensing matrix, which also preserve the temporal-spatial
relationships among all the subareas and sensing cycles for the
near-future prediction. Meanwhile, as shown in Eq. 12, we can
use the weighted parameters λt and λs to balance the weights
of different elements. Furthermore, many other correlations
could be easily modified into our error minimization problem.

B. Graph-based Matrix Completion

To conduct the matrix completion, we first consider the rela-
tionships between the temporal-spatial factors and the inferred
results. As discussed above, we obtain that the inferred matrix
Ŷ = LRT . Specifically, as shown in Fig. 3 (right part), let
L , {lT1 , lT2 , ..., lTm}T and R , {r1, r2, ..., rm}T , we have
Ŷ [i, j] = lir

T
j =

∑k
c=1 li[c]rj [c]. Actually, the elements in

the inferred matrix Ŷ can be seen as the linear combination
of the elements in temporal-spatial factors L and R. As an
example, suppose that we obtain the rank k = 2 and the well
trained temporal-spatial factors L and R, as shown in Fig. 3,
the unsensed data Y ′[i, j] = 0 can be inferred as follows:

Ŷ [i, j] = lir
T
j = li[1]rj [1] + li[2]rj [2],

Ŷ [i′, j] = li′r
T
j = li′ [1]rj [1] + li′ [2]rj [2]. (13)

Thus, we conduct the bipartite graph that consists of li and
rj as the vertexes and Ŷ [i, j] as the edges, where i ∈ [1,m]
and j ∈ [1, n]. Then, the matrix completion can be seen as the
linear calculations of li and rj to obtain Ŷ [i, j].

After understanding the relationships between the factors
and the inferred matrix, we further consider how to train the
temporal-spatial factors L and R. Based on the error mini-
mization problem in Eqs. 11 and 12, we have Y ′ = LRT •C.
Go back to the example in Fig. 3 (left part), we have

Y ′[1, n] = l1[1]rn[1] + l1[2]rn[2] = 5. (14)

Consider that in the first (n − 1) sensing cycles, we already
calculate the suitable Lm×k and R(n−1)×k. For the current
n-th sensing cycle, we know the sensed data Y ′[1, n] and
the spatial factor l1, and then we can use the linear Eq. 14
to calculate the unknown temporal factor rn. With the well
trained R = {R(n−1)×k, rn} and L, we can recover the
unsensed data, e.g., the Ŷ [i, j] and Ŷ [i′, j] in our example,
through the linear calculations.

The detailed graph-based matrix completion algorithm is
summarized in Alg. 1 with an example shown in Fig. 4. For the



Algorithm 1 Graph-based Matrix Completion

Input: Y ′m×n = {Y ′m×(n−1), y
′T
n }, Lm×k = {l1, l2, ..., lm},

R(n−1)×k = {r1, r2, ..., rn−1}
Output: Ŷm×n

1: Init rn, Rn×k = {R(n−1)×k, rn}, count = 0;
2: Build the linear system by using y′n, Lm×k, and R(n−1)×k,

and then calculate rn;
3: while not convergent and count < MAX_ITER do
4: Fix Rn×k and treat Lm×k as unknown, build the linear

system by using Y ′m×n, Lm×k and Rn×k, and then
calculate and update Lm×k;

5: Fix Lm×k and treat Rn×k as unknown, build the linear
system by using Y ′m×n, Lm×k and Rn×k, and then
calculate and update Rn×k, Ŷ = LRT , and count++;

6: return Ŷ .
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Fig. 4: Matrix completion based on bipartite graph.

current n-th, we have already held the well trained temporal
and spatial factors Lm×k and R(n−1)×k for the historical
sensing matrix. We first build the linear system as Eq. 14 (line
2) to calculate the newly added temporal factor rn. Note that
the current factors Lm×k and R(n−1)×k only hold the temporal
and spatial information learned from the historical matrix
Y ′m×(n−1), we then iteratively train and update the factor L or
R by using an Alternating Least Squares [8], [10], [17], [18]
while keeping the others fixed (lines 3-5), until the inferred
Ŷ is convergent or the maximum number of iterations is
reached. Finally, the graph-based matrix completion algorithm
outputs the complete inferred matrix Ŷ , which further provides
sufficient data with effective temporal-spatial relationships for
the near-future prediction in the next section.

V. CONTINUOUS CONDITIONAL RANDOM FIELD FOR
URBAN PREDICTION

A. Neural Network-based CCRF

Continuous Conditional Random Field (CCRF) has been
used for prediction in the recent years [19], [20], which aims
to capture not only the relationships between the input and
output data, but also the correlations among the output data. As
shown in Fig. 5 (upper part), in the urban prediction, the input
data is the time series of the data sensed from each subarea and
the output data is the predicted results for the subareas. Thus,
we model the relationships between the input and output data
as the temporal relationships and the correlations among the
output data as the spatial correlations in the urban prediction
problem. Obviously, we should learn both of the temporal and
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spatial correlations to predict the near future sensing map,
which can be naturally modeled as a CCRF model.

Specifically, for the temporal relationships in the sequence
of the data sensed from each subarea, we propose to use
a Long Short-Term Memory (LSTM) [21] component to
learn the non-linear relationships from the input data to the
output results. For the spatial correlations among the sensing
data of different subareas, we introduce a Stacked Denoising
Auto-Encoder (SDAE) [22] component to learn the pairwise
influences among the output results. Note that both LSTM
and SDAE are the famous neural networks which have been
proved to be effective on capturing the non-linear temporal and
spatial correlations, which can be added into CCRF model to
enhance the performances. As shown in Fig. 5 (lower part),
we present an overview of the proposed NN-CCRF model for
urban prediction, consisting of a LSTM component to learn the
non-linear temporal relationships and a SDAE component to
learn the pairwise spatial correlations, which can benefit from
both CCRF model and NN algorithms. To reduce complexity,
we simply consider the next-cycle prediction in the NN-CCRF
(i.e., the LSTM and SDAE) and the algorithm is illustrated
in Alg. 2. For the other near future cycles, we can add the
predicted next-cycle results ŷn+1 to Ŷn and obtain Ŷn+1, in
order to iteratively calculate the next several cycles.

B. LSTM for Temporal Relationships

Long Short-Term Memory (LSTM) is a famous neural
network architecture and well-suited to make prediction on
time series data [21]. Obviously, in our urban prediction prob-
lem, there exist strong temporal relationships in the sequence
of data sensed from the same subareas, i.e., the input data
xi. More importantly, the temporal relationships are usually
non-linear and irregular, and dealing with these non-linear
and irregular temporal relationships is actually the advantage
of LSTM. Therefore, in this work, we conduct the LSTM
component to capture the temporal relationships from the input
sequence of sensed data and predict the output sensing data
of the next sensing cycle.



Algorithm 2 NN-CCRF-based Next-Cycle Prediction

Input: Ŷm×n = {xT1 , xT2 , ..., xTm}T , h∗, K∗, ωt, ωs

Output: ŷn+1

1: Init ŷ′n+1, count = 0;
2: for i=1,2,...,m do
3: Use the LSTM with parameter h∗ to predict ŷ′n+1[i]

from xi, ŷ′n+1[i] = lstm(xi|h∗);
4: ŷn+1 = ŷ′n+1

5: while count < MAX_ITER do
6: Use the SDAE with parameter K∗ to predict ŷn+1 from

ŷ′n+1, ŷn+1 = sdae(ŷn+1|K∗);
7: Conduct the linear combination of the results from SDAE

and LSTM, ŷn+1 = ωs · ŷn+1 + ωt · ŷ′n+1;
8: return ŷn+1.

Specifically, we conduct the LSTM component with param-
eter h∗ to predict the output data ŷ′n+1 from the input data
Ŷm×n = {xT1 , xT2 , ..., xTm}T , as follows:

ŷ′n+1[i] = lstm(xi|h∗), (15)

ŷ′n+1 = lstm(Ŷ , h∗), (16)

lstm(Ŷ , h∗) = σ(Whh
∗
t + bh|Ŷ ,W∗, U∗, b∗), (17)

where σ() is the sigmod function and W∗, U∗, and b∗ are the
well-trained weighted matrices and bias vectors for different
subareas within the LSTM component. More specifically, a
common LSTM unit, composed of a memory cell c, an input
gate i, an output gate o, and a forget gate f , specifies the W∗,
U∗, and b∗ by iteratively updating h∗t :

ft = σ(Wf Ŷt + Ufh
∗
t−1 + bf ), (18)

it = σ(WiŶt + Uih
∗
t−1 + bi), (19)

ot = σ(WoŶt + Uoh
∗
t−1 + bo), (20)

ct = ft • ct−1 + it • φ(WcŶt + Uch
∗
t−1 + bc), (21)

h∗t = ot • φ(ct), (22)

where • denotes the element-wise product and φ() is the
hyperbolic tangent function.

The LSTM component is illustrated in Alg. 2 (lines 2-
3). Note that the predicted results obtained from the LSTM
component are only the preliminary estimations without con-
sidering the spatial correlations. Thus, we use ŷ′n+1 to record
these preliminary estimations (line 4), and further learn the
spatial correlations to adjust the results in the next subsection.

C. SDAE for Spatial Correlations

Stacked Denoising Auto-Encoder (SDAE) [22] is a feedfor-
ward neural network consisting of multiple layers of denoising
autoencoders, which inputs the corrupted data and trains to
output the revised data. In our next-cycle prediction problem,
the preliminary estimations, i.e., ŷ′n+1, obtained from the
LSTM component can be actually considered as the corrupted
input data, since they only capture the temporal relationships
but ignore the spatial correlations. Then, the output revised
data can be modeled as the predictions on the ground truth,

i.e., ŷn+1 ∼ yn+1, which means that the SDAE matches the
corrupted data ŷ′n+1 to ground truth yn+1. In this way, we
adopt the SDAE component to capture the spatial correlations
from the input preliminary estimations from the LSTM compo-
nent, in order to further constrain and smooth the preliminary
estimations to obtain the better next-cycle prediction results.

Specifically, the SDAE contains two processes, i.e., encod-
ing and decoding. With the preliminary estimations ŷ′n+1 and
the ground truth yn+1, the SDAE component first encodes
ŷ′n+1 into image z and then decodes the z to ŷn+1 as the
prediction of yn+1, as follows:

z = σ(Wz ŷ
′
n+1 + bz), (23)

ŷn+1 = σ(Wy + by), (24)

where Wz and Wy are the weighted matrices and bz and by
are the bias vectors. Then, the objective function is

min ‖yn+1 − ŷn+1‖2F + ω‖W‖2F , (25)

where W denotes the weighted matrices which match the
corrupted data ŷ′n+1 to ground truth yn+1 in Eqs. 23 and 24.

To effectively capture the spatial correlations among the
sensing data, we propose to use a same spatial correlation
matrix K∗m×m to replace all of the weighted matrices in the
encoding and decoding processes, i.e., the Wz , Wy , and W in
Eqs. 23, 24, and 25. In this way, for each encoding or decoding
process, we actually use the pairwise correlations between i-
th and j-th subareas to constrain and smooth the predicted
results, and training the SDAE is actually to learn the spatial
correlation matrix K∗. Therefore, our SDAE component can
focus on the pairwise spatial correlations:

ŷn+1 = sdae(ŷ′n+1|K∗), (26)

with the objective function converted as follows:

min ‖yn+1 − σn(K∗ ŷ′n+1)‖2F + ω‖K∗‖2F , (27)

where σn() denotes the n times encoding-decoding processes.

The SDAE component is illustrated in Alg. 2 (lines 5-6).
Note that the parameter MAX_ITER is the number of the
SDAE layers, since the layers of SDAE are the same with the
purpose to extract features layer-by-layer. Finally, we conduct
a linear combination of the results from SDAE and LSTM,
with the parameters ωs and ωt to balance the weights of
temporal and spatial correlations.

Combining the TS-BGMC with NN-CCRF, we finally
present the urban prediction scheme via Sparse MCS. For
each sensing cycle, we first utilize the TS-BGMC to recover
a complete sensing matrix and then employ the NN-CCRF to
predict the near-future full map. For the next sensing cycle, we
use the newly sensed data to update and recover the complete
sensing matrix and employ the NN-CCRF to predict the future
ones. To summarise, our proposed urban prediction scheme
aims to make full use of the sparse data sensed from different
subareas and different sensing cycles, which iteratively updates
and recovers the complete sensing matrix, in order to predict
the full map data of the near future as accurately as possible.



TABLE I: Statistics of three evaluation data sets

Sensor-Scope U-Air TaxiSpeed
City Lausanne (Switzerland) Beijing (China) Beijing (China)
Data Temperature-Humidity PM2.5-PM10 Traffic speed

Subarea 57 subareas each with 50*30m2 36 subareas each with 1000*1000m2 100 road segments as subareas
Cycle & Duration 0.5h & 7d 1h & 11d 1h & 4d

Mean ± Std. 6.04± 1.87◦C (T)/84.52± 6.32% (H) 79.11± 81.21 (PM2.5)/63.12± 48.56 (PM10) 13.01± 6.97m/s

VI. PERFORMANCE EVALUATION

A. Data Sets

To evaluate our proposed urban prediction scheme, we adopt
three well-known urban sensing data sets, including Sensor-
Scope [23], U-Air [24], and TaxiSpeed [25]. The detailed
statistics are shown in Table I with the descriptions as follows:

The Sensor-Scope [23] data set collected various types of
environmental readings by using many static sensors deployed
in the EPFL campus. We select two representative types of
sensing data, i.e., temperature and humidity, and use the Mean
Absolute Error (MAE) to evaluate the data accuracy.

The U-Air [24] data set collected some important air quality
data, such as PM2.5 and PM10, by some monitor stations
deployed in Beijing, China. As shown in Table I, the air quality
readings in U-Air fluctuate greatly, and we thus use the air
quality index category4 and compare the error rates.

The TaxiSpeed [25] data set collected the traffic speed data
for road segments by using the GPS devices deployed on
taxis in Beijing, China. We consider the road segments as the
subareas and use the MAE to evaluate the data accuracy.

Note that all of these three data sets were collected by static
sensors, while recently, we can use mobile devices to collect
the same data from the subareas. Moreover, these five selected
sensing tasks, including temperature, humidity, PM2.5, PM10,
and traffic speed, are typical urban sensing tasks and also in
need of predictions. Therefore, we use these data sets to verify
the effectiveness of the proposed algorithms.

B. Comparison Algorithms

In order to effectively utilize the sparse sensed data to
conduct predictions, we first present the Bipartite-Graph-
based Matrix Completion algorithm with Temporal-Spatial
constraints (referred as “TS-BGMC"). We mainly compare it
with the following algorithms:
• BGMC, which is the same matrix completion algorithm

but ignores the temporal-spatial constraints.
• KNN-S/T, which uses the weighted average of K data

sensed from the nearest subareas (spatial/temporal cor-
relations) as the inferred value of the current subarea
in each sensing cycle. KNN-S/T is modified from the
famous K-Nearest Neighbors (KNN) algorithm.

Since the subarea selection is not the main point of this
work, we randomly sense some subareas in each sensing
cycle, and send the sensed data to data inference algorithms

4Six categories [24]: Good (0-50), Moderate (51-100), Unhealthy for
Sensitive Groups (101-150), Unhealthy (150-200), Very Unhealthy (201-300),
and Hazardous (>300).

to recover the unsensed data. With the recovered sensing ma-
trix, we then conduct the Neural-Network-based Continuous
Conditional Random Field (referred as “NN-CCRF") to do the
near-future prediction. Note that in this paper, we mainly focus
on predicting the near future sensing map from the sparse
sensed data, which is such a difficult scenario that most of the
existing works on urban prediction cannot work well, and we
thus mainly compare it with the following algorithms:
• LSTM, which only uses the LSTM component to predict

the near-future full map. Without the SDAE component,
LSTM mainly captures the temporal relationships but
ignores the spatial correlations among the sensing data.

• LINEAR, which uses the Linear Regression model to
predict the near-future full map. It assumes that the future
results are linearly related to the historical sensed data.

In addition, the structure of the neural networks is not
the main point of this work, and we conduct a three layers
LSTM with 32 hidden states and also build a 4 layers SDAE
component in our evaluations. For the training process, we
use the first 20% of the data to train both TS-BGMC and
NN-CCRF. In order to conduct sufficient training data, we
repeatedly use the data set by randomly selecting the sensed
subareas for each sensing cycle. We also learn the rank k from
the training data for each sensing task.

C. Evaluation Results

1) Matrix Completion: We first test the average inference
accuracy under different sensed ratios from 0.1 to 0.5. Note
that the sensed ratio 0.1 means that only 10% subareas
will be sensed randomly at each sensing cycle, which is
already very sparse for urban sensing tasks. As shown in
Fig. 6, we can see that the inference errors of all compared
methods decrease along with the increases of the sensed ratios.
Obviously, the reason is that the more sensed data contains
the more information, which can help the matrix completion.
Our TS-BGMC can perform the best in most times, since
the temporal-spatial constraints can really help the matrix
completion. Meanwhile, the BGMC has a close performance
with TS-BGMC, since both of them use the same method to
recover the matrices. Moreover, the KNN-S usually achieves
better performances than KNN-T, which shows that the spatial
correlations in matrix completion may be more important than
temporal relationships and both of them should be considered
in the near-future prediction.

Furthermore, in order to show the effectiveness of the
proposed matrix completion algorithms, we constrain the
accuracy and test the number of sensed subareas over three



(a) Temperature (b) Humidity (c) PM2.5 (d) PM10 (e) Traffic Speed

Fig. 6: Inference accuracy under different sensed ratios over Sensor-Scope, U-Air, and TaxiSpeed.

(a) Temperature (b) Humidity (c) PM2.5 (d) PM10 (e) Traffic Speed

Fig. 7: Number of sensed subareas under different inference accuracy over Sensor-Scope, U-Air, and TaxiSpeed.

(a) Temperature (b) Humidity (c) PM2.5 (d) PM10 (e) Traffic Speed

Fig. 8: Prediction accuracy under different sensed ratios over Sensor-Scope, U-Air, and TaxiSpeed.

data sets with five tasks. The results are shown in Fig. 7, which
actually have the similar tendency with Fig. 6. Under different
data accuracy, the TS-BGMC always needs to sense the least
subareas, while BGMC usually has to sense more subareas
than TS-BGMC. Also, the KNN-S and KNN-T usually need
to sense the most subareas, especially when the required errors
are low (the high accuracy requirements). Therefore, both of
the Figs. 6 and 7 can verify the effectiveness of TS-BGMC.

2) Near-Future Prediction: With the accurate and complete
sensing matrices recovered from the matrix completion part,
we then evaluate the effectiveness of our near-future prediction
part. We first set the sensed ratio to 0.5 and use the matrix
recovered by TS-BGMC to evaluate the performance of next-
cycle predictions. As shown in Fig. 8 (a-e) (upper part), NN-
CCRF always outperforms the LSTM and LINEAR. We then
change the sensed ratio from 0.1 to 0.5 and evaluate the NN-
CCRF on different matrix completion algorithms. Since KNN-
S and KNN-T perform poorly on the near-future prediction, we
mainly compare the TS-BGMC and BGMC with NN-CCRF,
as shown in Fig. 8 (lower part). We can see that the TS-
BGMC with NN-CCRF obviously outperforms the BGMC,

which verifies that our temporal-spatial constraints in TS-
BGMC can not only help on matrix completion but also hold
the strong temporal-spatial correlations for prediction.

Furthermore, we also change the predicted near future
cycles from 1 to 5, with the sensed ratio 0.1. As shown in
Fig. 9, our proposed NN-CCRF can always achieve the best
performance and clearly outperform the LSTM, which shows
that our NN-CCRF can effectively capture the temporal-spatial
correlations. Moreover, the LINEAR method performs poorly,
since the temporal-spatial correlations in urban sensing tasks
are more complex than the simple linear relationships.

3) Running Time: Finally, we report the running time of
the proposed methods, as shown in Table II. Our experiment
platform is equipped with Intel(R) Xeon(R) CPU E5-2630 v4
@ 2.20GHz and 32 GB RAM, and we implement the urban
prediction scheme using Pytorch. The TS-BGMC costs 0.33−
0.62s to recover a complete matrix for each sensing cycle. The
LSTM component costs 1.00 − 2.13ms and the NN-CCRF
costs 0.06− 0.12s. The running time are totally acceptable in
practical applications. In addition, the training of LSTM and
SDAE can be conducted offline, which cost ∼10 minutes.



(a) Temperature (b) Humidity (c) PM2.5 (d) PM10 (e) Traffic Speed

Fig. 9: Prediction accuracy for near future sensing cycles over Sensor-Scope, U-Air, and TaxiSpeed.

TABLE II: Running time for main methods

Tem. Hum. PM2.5 PM10 Tra.
TS-BGMC 0.45s 0.45s 0.33s 0.34s 0.62s

LSTM 2.10ms 2.13ms 1.52ms 1.52ms 1.00ms
NN-CCRF 0.12s 0.12s 0.06s 0.06s 0.10s

VII. CONCLUSION

In this paper, we investigate the urban prediction problem
via Sparse MCS, which can use the sparse sensed data to
predict the fine-grained full map of the future sensing data.
To effectively utilize the sparse sensed data, we first present
TS-BGMC to recover the historical sensing matrix and provide
sufficient data for prediction. Then, we further propose NN-
CCRF for urban prediction, in which we first conduct a LSTM
component to learn the non-linear temporal relationships,
then build a SDAE component to learn the pairwise spatial
correlations, and finally predict the fine-grained future sensing
map. Extensive evaluations have been conducted on three real-
world data sets with five types of sensing tasks, and the
results verify that our proposed algorithms can achieve a high
prediction accuracy with the sparse sensed data.
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